Skip to main content
Log in

NGS Analysis of Human Embryo Culture Media Reveals miRNAs of Extra Embryonic Origin

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Our objective in this work was to isolate, identify, and compare micro-RNAs (miRNAs) found in spent culture media of euploid and aneuploid in vitro fertilization (IVF) embryos. Seventy-two embryos from 62 patients were collected, and their spent media were retained. A total of 108 spent conditioned media samples were analyzed (n = 36 day 3 euploid embryos, n = 36 day 3 aneuploid embryos, and n = 36 matched control media). Fifty hed-control media embryos were analyzed using next-generation sequencing (NGS) technology. We detected 53 known human miRNAs present in the spent conditioned media of euploid and aneuploid IVF embryos. miR-181b-5p and miR-191-5p were found the most represented. We validated our results by quantitative polymerase chain reaction (qPCR), but no significant results were obtained between the groups. In conclusion, we obtained the list of miRNAs present in the spent conditioned media from euploid and aneuploid IVF embryos, but our data suggest that these miRNAs could have a nonembryonic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guerif F, Le Gouge A, Giraudeau B, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22(7):1973–1981.

    CAS  PubMed  Google Scholar 

  2. Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–685.

    CAS  PubMed  Google Scholar 

  3. Seli E, Vergouw CG, Morita H, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94(2):535–542.

    PubMed  Google Scholar 

  4. Seli E, Botros L, Sakkas D, Burns DH. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2008;90(6):2183–2189.

    PubMed  Google Scholar 

  5. Vergouw CG, Kieslinger DC, Kostelijk EH, et al. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod. 2012;27(8):2304–2311.

    CAS  PubMed  Google Scholar 

  6. Sánchez-Ribas I, Riqueros M, Vime P, et al. Differential metabolic profiling of non-pure trisomy 21 human preimplantation embryos. Fertil Steril. 2012;98(5):1157–1164.

    PubMed  Google Scholar 

  7. Ambros V, Chen X. The regulation of genes and genomes by small RNAs. Development. 2007;134(9):1635–1641.

    CAS  PubMed  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

    CAS  PubMed  Google Scholar 

  9. Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE. 2007;2007(367):re1.

    PubMed  Google Scholar 

  10. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 2007;17(3):118–126.

    CAS  PubMed  Google Scholar 

  11. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. PNAS. 2011;108(12):5003–5008.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta SK, Bang C, Thum T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet. 2010;3(5):484–488

    CAS  PubMed  Google Scholar 

  13. Scholer N, Langer C, Dohner H, Buske C, Kuchenbauer F. Serum micro-RNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol. 2010;38(12):1126–1130.

    PubMed  Google Scholar 

  14. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol. 2012;9(8):1066–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101(10):2087–2092.

    CAS  PubMed  Google Scholar 

  17. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531.

    CAS  PubMed  Google Scholar 

  18. Estella C, Herrer I, Moreno JM, et al. miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS One. 2012;7:e41080.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.

    CAS  PubMed  Google Scholar 

  20. Sha AG, Liu JL, Jiang XM, et al. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril. 2011;96(1):150–155.

    CAS  PubMed  Google Scholar 

  21. Moreno-Moya JM, Vilella F, Martínez S, Pellicer A, Simón C. The transcriptomic and proteomic effects of ectopic overexpression of miR-30d in human endometrial epithelial cells. Mol Hum Reprod. 2014;20(6):550–566.

    CAS  PubMed  Google Scholar 

  22. Vilella F, Moreno-Moya JM, Balaguer N, et al. Hsa-miR-30d, secreted by the human endometrium, act as a transcriptomic regulator of the pre-implantation embryo. Development. 2015;142(18):3210–3221.

    CAS  PubMed  Google Scholar 

  23. Teague EM, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update. 2010;16(2):142–165.

    PubMed  Google Scholar 

  24. Matsuzaki S. DNA microarray analysis in endometriosis for development of more effective targeted therapies. Front Biosci. 2011;3:1139–1153.

    Google Scholar 

  25. Habermann JK, Bundgen NK, Gemoll T, et al. Genomic instability influences the transcriptome and proteome in endometrial cancer subtypes. Mol Cancer. 2011;10:132

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominguez F, Moreno-Moya JM, Lozoya T, et al. Embryonic miRNA profiles of normal and ectopic pregnancies. PLoS ONE. 2014;9(7):e102185.

    PubMed  PubMed Central  Google Scholar 

  27. Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196(3):261.

    PubMed  Google Scholar 

  28. Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blastocyst. Fertil Steril. 2013;99(3):855–861.

    CAS  PubMed  Google Scholar 

  29. McCallie B, Schoolcraft WB, Katz-Jaffe MG. Aberration of blastocyst micro-RNA expression is associated with human infertility. Fertil Steril. 2010;93(7):2374–2382.

    CAS  PubMed  Google Scholar 

  30. Ren J, Jin P, Wang E, Marincola FM, Stroncek DF. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med. 2009;7:20.

    PubMed  PubMed Central  Google Scholar 

  31. Li SS, Yu SL, Kao LP, et al. Target identification of microRNAs expressed highly in human embryonic stem cells. J Cell Biochem. 2009;106(6):1020–1030.

    CAS  PubMed  Google Scholar 

  32. Lakshmipathy U, Love B, Goff LA, et al. MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev. 2007;16(6):1003–1016.

    CAS  PubMed  Google Scholar 

  33. Rosenbluth EM, Shelton DN, Wells LM, Sparks AET, Van Voorhis BJ. Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertil Steril. 2014;101(5):0015–0282.

    Google Scholar 

  34. Capalbo A, Ubaldi FM, Cimadomo D, et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016;105(1):225–235.

    CAS  PubMed  Google Scholar 

  35. Tarkowski AK. An air drying method for chromosome preparations from mouse eggs. Cytogenetics. 1966;5:394–400.

    Google Scholar 

  36. Mir P, Rodrigo L, Mateu E, et al. Improving FISH diagnosis for preimplantation genetic aneuploidy screening. Hum Reprod. 2010;25(7):1812–1817.

    CAS  PubMed  Google Scholar 

  37. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucl Acids Res. 2012;40(1):37–52.

    PubMed  Google Scholar 

  38. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl Acids Res. 2014;42(Database issue):D68–D73.

    CAS  PubMed  Google Scholar 

  39. Hsu SD, Tseng YT, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(Database issue):D78–D85.

    CAS  PubMed  Google Scholar 

  40. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server issue):W214–W220

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McCallie BR, Parks JC, Strieby AL, Schoolcraft WB, Katz-Jaffe MG. Human blastocysts exhibit unique microrna profiles in relation to maternal age and chromosome constitution. J Assist Reprod Genet. 2014;31(7):913–919.

    PubMed  PubMed Central  Google Scholar 

  42. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Houghton FD, Hawkhead JA, Humpherson PG, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17(4):999–1005.

    CAS  PubMed  Google Scholar 

  44. Brison DR, Houghton FD, Falconer D, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19(10):2319–2324.

    CAS  PubMed  Google Scholar 

  45. Nagy ZP, Sakkas D, Behr B. Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media (‘metabolomics’). Reprod Biomed Online. 2008;17(4):502–507.

    CAS  PubMed  Google Scholar 

  46. Xu J, Fang R, Chen L, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci USA. 2016;113(42):11907–11912.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Domínguez F, Gadea B, Esteban FJ, Horcajadas JA, Pellicer A, Simón C. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Hum Reprod. 2008;23(9):1993–2000.

    PubMed  Google Scholar 

  48. Baltz JM. Media composition: salts and osmolality. Methods Mol Biol. 2012;912:61–80.

    CAS  PubMed  Google Scholar 

  49. Baltz JM. Connections between preimplantation embryo physiology and culture. J Assist Reprod Genet. 2013;30(8):1001–1007.

    PubMed  PubMed Central  Google Scholar 

  50. Jin XL, O’Neill C. Systematic analysis of the factors that adversely affect the rate of cell accumulation in mouse embryos during their culture in vitro. Reprod Biol Endocrinol. 2014;12:35.

    PubMed  PubMed Central  Google Scholar 

  51. Arny M, Nachtigall L, Quagliarello J. The effect of preimplantation culture conditions on murine embryo implantation and fetal development. Fertil Steril. 1987;48(5):861–865

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Domínguez PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ribas, I., Diaz-Gimeno, P., Quiñonero, A. et al. NGS Analysis of Human Embryo Culture Media Reveals miRNAs of Extra Embryonic Origin. Reprod. Sci. 26, 214–222 (2019). https://doi.org/10.1177/1933719118766252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118766252

Keywords

Navigation