Skip to main content
Log in

Generation of N-tert-butyl-α-phenylnitrone radical adducts in iron breakdown of tert-butyl-hydroperoxide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

ESR spectroscopy coupled to the spin trapping technique was used to evaluate the generation of radical species arising from the ferrous ion induced decomposition of tert-butyl hydroperoxide (’BuOOH) in methylene chloride. We report here that N-tert-butyl-α-phenylinitrone (PBN) can trap peroxyl radicals generated in the ferrous ion induced breakdown of high concentration of ’BuOOH (IM) at room temperature, the radical adduct being stable under the light. The peroxyl radical formation was demonstrated by direct ESR measurements at 77K. In contrast, alkoxyl and methyl radicals were trapped only in the presence of low hydroperoxide concentration (ImM). In order to measure the hyperfine splitting constants (hfsc) of the PBN-methyl adduct spectra were obtained in the presence of diphenylamine (DPA) or 2,6-di-tert-butyl-4-methylphenol (BHT), which quenched the alkoxyl radical. For this latter radical, the hfsc were calculated by computer simulation. A mechanism for a direct interaction between DPA and the alkoxyl radical is presented. DPA quenched the peroxyl radical in the reaction of high hydroperoxide concentrations, with the concomitant generation of a DPA nitrogen-based radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kalyanaraman, C. Mottley, and R.P. Mason, J. Biol. Chem. 258, 3855 (1983).

    CAS  Google Scholar 

  2. W. Chamulitrat, N. Takahashi, and R.P. Mason, J. Biol. Chem. 264, 7889 (1989).

    CAS  Google Scholar 

  3. M.V. Merrit and R.A. Johnson, J. Am. Chem. Soc., 99, 3713 (1977).

    Article  Google Scholar 

  4. E. Niki, S. Yokoi, J. Tsuchiya, and Y. Kamiya, J. Am. Chem. Soc. 105, 1498 (1983).

    Article  CAS  Google Scholar 

  5. N. Ohto, E. Niki, and Y. Kamiya, J. Chem. Soc. Perkin Trans. II 2, 1770 (1977).

    Article  Google Scholar 

  6. A.N. Osipov, V.M. Savov, A.V. Yachyaev, V.E. Zubarev, O.A. Azizova, V.E. Kagan, and Y.A. Vladimirov, Biofizika 29, 533 (1984).

    CAS  Google Scholar 

  7. J.A. Howard and J.C. Tait, Can. J. Chem. 56, 176 (1978).

    Article  CAS  Google Scholar 

  8. M.J. Davies and T.F. Slater, Biochem. J. 245, 167 (1987).

    CAS  Google Scholar 

  9. W.T. Dixon and R.O.C. Norman, J. Chem. Soc. 3119 (1963).

  10. M.F.R. Mulcahy, J.R. Stevens, and J.C. Ward, Aust. J. Chem. 18, 1177 (1965).

    Article  CAS  Google Scholar 

  11. J.A. Weil and J.K. Anderson, J. Chem. Soc. 5567 (1965).

  12. K.M. Schaich and D.C. Borg. In: M.G. Simic and M. Karel (Eds.), Autoxidation in Food and Biological Systems, Plenum Press, New York, 1980, p. 45.

    Google Scholar 

  13. E. Finkelsten, G.M. Rosen, E.J. Rauckman, and J. Paxton, Mol. Pharmacol. 16, 676 (1979).

    Google Scholar 

  14. W.A. Pryor and C.K. Govindan. J. Org. Chem. 46, 4679 (1981).

    Article  CAS  Google Scholar 

  15. W.A. Pryor, C.K. Govindan, and D.F. Church, J. Am. Chem. Soc., 104, 7563 (1982).

    Article  CAS  Google Scholar 

  16. W. Bors, C. Michel, and M. Saran, Bull. Europ. Physiopath. Resp. (suppl.), 17, 13 (1981)

    CAS  Google Scholar 

  17. J.R. Thomas and C.A. Tolman, J. Am. Chem. Soc. 84, 2930 (1962).

    Article  CAS  Google Scholar 

  18. J.R. Thomas, J. Am. Chem. Soc. 82, 5955 (1960).

    Article  CAS  Google Scholar 

  19. E.G. Janzen and I.G. Lopp, J. Phys. Chem. 76, 2056 (1972).

    Article  CAS  Google Scholar 

  20. R. Hoskins, J. Chem. Phys., 25, 788 (1956).

    Article  CAS  Google Scholar 

  21. A.N. Kuznetsov and V.A. Radtsig. Chem. Phys. Lett., 17, 377 (1972).

    Article  CAS  Google Scholar 

  22. M.C.R. Symons, E. Albano, T.F. Slater, and A. Tomasi, J. Chem. Soc. Faraday Trans. I 78, 2205 (1982).

    Article  CAS  Google Scholar 

  23. M.J. Davies and T.F. Slater, Biochem. J. 240, 789 (1986).

    CAS  Google Scholar 

  24. W. Bors, D. Tait, C. Michel, M. Saran, and M. Erben-Russ, Isr. J. Chem. 24, 17 (1984).

    CAS  Google Scholar 

  25. E.G. Janzen, D.E. Nutter, E.-R. Davis, B.J. Blackburn, J.L. Poyer, and P.B. McCay, Can. J. Chem. 56, 2237 (1978).

    Article  CAS  Google Scholar 

  26. M.J. Davies and T.F. Slater, Chem.-Biol. Interact. 58, 137 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iannone, A., Tomasi, A. & Canfield, L.M. Generation of N-tert-butyl-α-phenylnitrone radical adducts in iron breakdown of tert-butyl-hydroperoxide. Res. Chem. Intermed. 22, 469–479 (1996). https://doi.org/10.1163/156856796X00674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856796X00674

Keywords

Navigation