TRICHOTOMY, STABILITY, AND OSCILLATION OF A FUZZY DIFFERENCE EQUATION

G. STEFANIDOU AND G. PAPASCHINOPOULOS

Received 10 November 2003

We study the trichotomy character, the stability, and the oscillatory behavior of the positive solutions of a fuzzy difference equation.

1. Introduction

Difference equations have already been successfully applied in a number of sciences (for a detailed study of the theory of difference equations and their applications, see [1, 2, 7, 8, 11].

The problem of identifying, modeling, and solving a nonlinear difference equation concerning a real-world phenomenon from experimental input-output data, which is uncertain, incomplete, imprecise, or vague, has been attracting increasing attention in recent years. In addition, nowadays, there is an increasing recognition that for understanding vagueness, a fuzzy approach is required. The effect is the introduction and the study of the fuzzy difference equations (see [3, 4, 13, 14, 15]).

In this paper, we study the trichotomy character, the stability, and the oscillatory behavior of the positive solutions of the fuzzy difference equation

$$x_{n+1} = A + \frac{\sum_{i=1}^{k} c_i x_{n-p_i}}{\sum_{j=1}^{m} d_j x_{n-q_j}},$$
(1.1)

where $k, m \in \{1, 2, ...\}, A, c_i, d_j, i \in \{1, 2, ..., k\}, j \in \{1, 2, ..., m\}$, are positive fuzzy numbers, $p_i, i \in \{1, 2, ..., k\}, q_j, j \in \{1, 2, ..., m\}$, are positive integers such that $p_1 < p_2 < ... < p_k, q_1 < q_2 < ... < q_m$, and the initial values $x_i, i \in \{-\pi, -\pi + 1, ..., 0\}$, where

$$\pi = \max\left\{p_k, q_m\right\},\tag{1.2}$$

are positive fuzzy numbers.

Studying a fuzzy difference equation results concerning the behavior of a related family of systems of parametric ordinary difference equations is required. Some necessary results

Copyright © 2004 Hindawi Publishing Corporation

2000 Mathematics Subject Classification: 39A10

Advances in Difference Equations 2004:4 (2004) 337-357

URL: http://dx.doi.org/10.1155/S1687183904311015

concerning the corresponding family of systems of ordinary difference equations of (1.1) have been proved in [16] and others are given in this paper.

2. Preliminaries

We need the following definitions.

For a set *B*, we denote by \overline{B} the closure of *B*. We say that a fuzzy set *A*, from $\mathbb{R}^+ = (0, \infty)$ into the interval [0,1], is a fuzzy number, if *A* is normal, convex, upper semicontinuous (see [14]), and the support supp $A = \bigcup_{a \in (0,1]} \overline{[A]_a} = \overline{\{x : A(x) > 0\}}$ is compact. Then from [12, Theorems 3.1.5 and 3.1.8], the *a*-cuts of the fuzzy number *A*, $[A]_a = \{x \in \mathbb{R}^+ : A(x) \ge a\}$, are closed intervals.

We say that a fuzzy number *A* is positive if supp $A \subset (0, \infty)$.

It is obvious that if *A* is a positive real number, then *A* is a positive fuzzy number and $[A]_a = [A,A], a \in (0,1]$. In this case, we say that *A* is a trivial fuzzy number.

We say that x_n is a positive solution of (1.1) if x_n is a sequence of positive fuzzy numbers which satisfies (1.1).

A positive fuzzy number x is a positive equilibrium for (1.1) if

$$x = A + \frac{\sum_{i=1}^{k} c_i x}{\sum_{j=1}^{m} d_j x}.$$
 (2.1)

Let *E*, *H* be fuzzy numbers with

$$[E]_a = [E_{l,a}, E_{r,a}], \quad [H]_a = [H_{l,a}, H_{r,a}], \quad a \in (0,1].$$
(2.2)

According to [10] and [13, Lemma 2.3], we have that $MIN{E, H} = E$ if

$$E_{l,a} \le H_{l,a}, \quad E_{r,a} \le H_{r,a}, \quad a \in (0,1].$$
 (2.3)

Moreover, let $c_i, f_i, d_j, g_j, i = 1, 2, ..., k, j = 1, 2, ..., m$, be positive fuzzy numbers such that for $a \in (0, 1]$,

$$\begin{bmatrix} c_i \end{bmatrix}_a = \begin{bmatrix} c_{i,l,a}, c_{i,r,a} \end{bmatrix}, \qquad \begin{bmatrix} f_i \end{bmatrix}_a = \begin{bmatrix} f_{i,l,a}, f_{i,r,a} \end{bmatrix}, \\ \begin{bmatrix} d_j \end{bmatrix}_a = \begin{bmatrix} d_{j,l,a}, d_{j,r,a} \end{bmatrix}, \qquad \begin{bmatrix} g_j \end{bmatrix}_a = \begin{bmatrix} g_{j,l,a}, g_{j,r,a} \end{bmatrix},$$
(2.4)

$$E = \frac{\sum_{i=1}^{k} c_i}{\sum_{j=1}^{m} d_j}, \qquad H = \frac{\sum_{i=1}^{k} f_i}{\sum_{j=1}^{m} g_j}.$$
 (2.5)

We will say that *E* is less than *H* and we will write

$$E \prec H$$
 (2.6)

if

$$\frac{\sum_{i=1}^{k} \sup_{a \in \{0,1\}} c_{i,r,a}}{\sum_{j=1}^{m} \inf_{a \in \{0,1\}} d_{j,l,a}} < \frac{\sum_{i=1}^{k} \inf_{a \in \{0,1\}} f_{i,l,a}}{\sum_{j=1}^{m} \sup_{a \in \{0,1\}} g_{j,r,a}}.$$
(2.7)

In addition, we will say that *E* is equal to *H* and we will write

$$E \doteq H \quad \text{if } E \prec H, \ H \prec E, \tag{2.8}$$

which means that for i = 1, 2, ..., k, j = 1, 2, ..., m, and $a \in (0, 1]$,

$$c_{i,l,a} = c_{i,r,a}, \qquad f_{i,l,a} = f_{i,r,a}, \qquad d_{j,l,a} = d_{j,r,a}, \qquad g_{j,l,a} = g_{j,r,a},$$
 (2.9)

and so

$$E_{l,a} = E_{r,a} = H_{l,a} = H_{r,a}, \quad a \in (0,1],$$
(2.10)

which imples that *E*, *H* are equal real numbers.

For the fuzzy numbers *E*, *H*, we give the metric (see [9, 17, 18])

$$D(E,H) = \sup \max \{ |E_{l,a} - H_{l,a}|, |E_{r,a} - H_{r,a}| \},$$
(2.11)

where sup is taken for all $a \in (0, 1]$.

The fuzzy analog of boundedness and persistence (see [5, 6]) is given as follows: we say that a sequence of positive fuzzy numbers x_n persists (resp., is bounded) if there exists a positive number M (resp., N) such that

$$supp x_n \subset [M, \infty)$$
 (resp., $supp x_n \subset (0, N]$), $n = 1, 2, ...$ (2.12)

In addition, we say that x_n is bounded and persists if there exist numbers $M, N \in (0, \infty)$ such that

$$supp x_n \subset [M, N], \quad n = 1, 2, \dots$$
 (2.13)

Let x_n be a sequence of positive fuzzy numbers such that

$$[x_n]_a = [L_{n,a}, R_{n,a}], \quad a \in (0,1], \ n = 0, 1, \dots,$$
(2.14)

and let *x* be a positive fuzzy number such that

$$[x]_a = [L_a, R_a], \quad a \in (0, 1].$$
(2.15)

We say that x_n nearly converges to x with respect to D as $n \to \infty$ if for every $\delta > 0$, there exists a measurable set $T, T \subset (0,1]$, of measure less than δ such that

$$\lim D_T(x_n, x) = 0, \quad \text{as } n \longrightarrow \infty, \tag{2.16}$$

where

$$D_T(x_n, x) = \sup_{a \in \{0,1\}-T} \{ \max\{ |L_{n,a} - L_a|, |R_{n,a} - R_a| \} \}.$$
 (2.17)

If $T = \emptyset$, we say that x_n converges to x with respect to D as $n \to \infty$.

Let *X* be the set of positive fuzzy numbers. Let $E, H \in X$. From [18, Theorem 2.1], we have that $E_{l,a}, H_{l,a}$ (resp., $E_{r,a}, H_{r,a}$) are increasing (resp., decreasing) functions on (0,1]. Therefore, using the definition of the fuzzy numbers, there exist the Lebesque integrals

$$\int_{J} |E_{l,a} - H_{l,a}| \, da, \qquad \int_{J} |E_{r,a} - H_{r,a}| \, da, \qquad (2.18)$$

where J = (0, 1]. We define the function $D_1 : X \times X \to R^+$ such that

$$D_1(E,H) = \max\left\{ \int_J |E_{l,a} - H_{l,a}| \, da, \, \int_J |E_{r,a} - H_{r,a}| \, da \right\}.$$
(2.19)

If $D_1(E, H) = 0$, we have that there exists a measurable set T of measure zero such that

$$E_{l,a} = H_{l,a}, \quad E_{r,a} = H_{r,a} \quad \forall a \in (0,1] - T.$$
 (2.20)

We consider, however, two fuzzy numbers E, H to be equivalent if there exists a measurable set T of measure zero such that (2.20) hold and if we do not distinguish between equivalence of fuzzy numbers, then X becomes a metric space with metric D_1 .

We say that a sequence of positive fuzzy numbers x_n converges to a positive fuzzy number x with respect to D_1 as $n \to \infty$ if

$$\lim D_1(x_n, x) = 0, \quad \text{as } n \longrightarrow \infty.$$
(2.21)

We define the fuzzy analog for periodicity (see [11]) as follows.

A sequence $\{x_n\}$ of positive fuzzy numbers x_n is said to be periodic of period p if

$$D(x_{n+p}, x_n) = 0, \quad n = 0, 1, \dots$$
 (2.22)

Suppose that (1.1) has a unique positive equilibrium *x*. We say that the positive equilibrium *x* of (1.1) is stable if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon)$ such that for every positive solution x_n of (1.1) which satisfies $D(x_{-i}, x) \le \delta$, $i = 0, 1, ..., \pi$, we have $D(x_n, x) \le \epsilon$ for all $n \ge 0$.

Moreover, we say that the positive equilibrium x of (1.1) is nearly asymptotically stable if it is stable and every positive solution of (1.1) nearly tends to the positive equilibrium of (1.1) with respect to D as $n \to \infty$.

Finally, we give the fuzzy analog of the concept of oscillation (see [11]). Let x_n be a sequence of positive fuzzy numbers and let x be a positive fuzzy number. We say that x_n oscillates about x if for every $n_0 \in \mathbb{N}$, there exist $s, m \in \mathbb{N}$, $s, m \ge n_0$, such that

$$MIN \{x_m, x\} = x_m, \qquad MIN \{x_s, x\} = x$$
(2.23)

or

$$MIN \{x_m, x\} = x, \qquad MIN \{x_s, x\} = x_s. \tag{2.24}$$

3. Main results

Arguing as in [13, 14, 15], we can easily prove the following proposition which concerns the existence and the uniqueness of the positive solutions of (1.1).

PROPOSITION 3.1. Consider (1.1), where $k, m \in \{1, 2, ...\}$, $A, c_i, d_j, i \in \{1, 2, ..., k\}$, $j \in \{1, 2, ..., m\}$, are positive fuzzy numbers, and $p_i, q_j, i \in \{1, 2, ..., k\}$, $j \in \{1, 2, ..., m\}$, are positive integers. Then for any positive fuzzy numbers $x_{-\pi}, x_{-\pi+1}, ..., x_0$, there exists a unique positive solution x_n of (1.1) with initial values $x_{-\pi}, x_{-\pi+1}, ..., x_0$.

Now, we present conditions so that (1.1) has unbounded solutions.

PROPOSITION 3.2. Consider (1.1), where $k, m \in \{1, 2, ...\}$, A, c_i, d_j , $i \in \{1, 2, ..., k\}$, $j \in \{1, 2, ..., m\}$, are positive fuzzy numbers, and p_i , $i \in \{1, 2, ..., k\}$, q_j , $j \in \{1, 2, ..., m\}$, are positive integers. If

$$A \prec G, \quad G = \frac{\sum_{i=1}^{k} c_i}{\sum_{j=1}^{m} d_j}, \tag{3.1}$$

then (1.1) has unbounded solutions.

Proof. Let

$$[A]_a = [A_{l,a}, A_{r,a}], \quad a \in (0,1].$$
(3.2)

From (2.4) and (3.2) and since A, c_i , d_j , i = 1, 2, ..., k, j = 1, 2, ..., m, are positive fuzzy numbers, there exist positive real numbers B, C, a_i , e_i , h_j , b_j , i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$B = \inf_{a \in (0,1]} A_{l,a}, \qquad C = \sup_{a \in (0,1]} A_{r,a}, \qquad a_i = \inf_{a \in (0,1]} c_{i,l,a}, e_i = \sup_{a \in (0,1]} c_{i,r,a}, \qquad h_j = \inf_{a \in (0,1]} d_{j,l,a}, \qquad b_j = \sup_{a \in (0,1]} d_{j,r,a}.$$
(3.3)

Let x_n be a positive solution of (1.1) such that (2.14) hold and the initial values x_i , $i = -\pi, -\pi + 1, ..., 0$, are positive fuzzy numbers which satisfy

$$[x_i]_a = [L_{i,a}, R_{i,a}], \quad i = -\pi, -\pi + 1, \dots, 0, \ a \in (0, 1]$$
(3.4)

and for a fixed $\bar{a} \in (0, 1]$, the relations

$$R_{i,\tilde{a}} > \frac{Z^2}{W-C}, \quad L_{i,\tilde{a}} < W, \quad i = -\pi, -\pi + 1, \dots, 0,$$
 (3.5)

are satisfied, where

$$Z = \frac{\sum_{i=1}^{k} e_i}{\sum_{j=1}^{m} h_j}, \qquad W = \frac{\sum_{i=1}^{k} a_i}{\sum_{j=1}^{m} b_j}.$$
 (3.6)

Using [15, Lemma 1], we can easily prove that $L_{n,a}$, $R_{n,a}$ satisfy the family of systems of parametric ordinary difference equations

$$L_{n+1,a} = A_{l,a} + \frac{\sum_{i=1}^{k} c_{i,l,a} L_{n-p_{i,a}}}{\sum_{j=1}^{m} d_{j,r,a} R_{n-q_{j,a}}},$$

$$R_{n+1,a} = A_{r,a} + \frac{\sum_{i=1}^{k} c_{i,r,a} R_{n-p_{i,a}}}{\sum_{j=1}^{m} d_{j,l,a} L_{n-q_{j,a}}},$$
(3.7)

Since (3.1) holds, it is obvious that

$$A_{l,\bar{a}} < \frac{\sum_{i=1}^{k} c_{i,r,\bar{a}}}{\sum_{j=1}^{m} d_{j,l,\bar{a}}}.$$
(3.8)

Using (3.8) and applying [16, Proposition 1] to the system (3.7) for $a = \bar{a}$, we have that

$$\lim_{n \to \infty} L_{n,\bar{a}=A_{l,\bar{a}}}, \quad \lim_{n \to \infty} R_{n,\bar{a}} = \infty.$$
(3.9)

Therefore, from (3.9), the solution x_n of (1.1) which satisfies (3.4) and (3.5) is unbounded.

Remark 3.3. From the proof of Proposition 3.2, it is obvious that (1.1) has unbounded solutions if there exists at least one $a \in (0, 1]$ such that (3.8) holds.

In the following proposition, we study the boundedness and persistence of the positive solutions of (1.1).

PROPOSITION 3.4. Consider (1.1), where $k, m \in \{1, 2, ...\}$, A, c_i, d_j , $i \in \{1, 2, ..., k\}$, $j \in \{1, 2, ..., m\}$, are positive fuzzy numbers, and p_i , $i \in \{1, 2, ..., k\}$, q_j , $j \in \{1, 2, ..., m\}$, are positive integers. If either

$$A \doteq G \tag{3.10}$$

or

$$G \prec A$$
 (3.11)

holds, then every positive solution of (1.1) is bounded and persists.

Proof. Firstly, suppose that (3.10) is satisfied; then A, c_i , d_j , i = 1, 2, ..., k, j = 1, 2, ..., m, are positive real numbers. Hence, for i = 1, 2, ..., k, j = 1, 2, ..., m, we get

$$A = A_{l,a} = A_{r,a}, \quad c_i = c_{i,l,a} = c_{i,r,a}, \quad d_j = d_{j,l,a} = d_{j,r,a}, \quad a \in (0,1],$$
(3.12)

$$A = \frac{\sum_{i=1}^{k} c_i}{\sum_{j=1}^{m} d_j}.$$
(3.13)

Let x_n be a positive solution of (1.1) such that (2.14) hold and let x_i , $i = -\pi, -\pi + 1, ..., 0$, be the positive initial values of x_n such that (3.4) hold. Then there exist positive numbers T_i , S_i , $i = -\pi, -\pi + 1, ..., 0$, such that

$$T_i \le L_{i,a}, R_{i,a} \le S_i, \quad i = -\pi, -\pi + 1, \dots, 0.$$
 (3.14)

Let (y_n, z_n) be the positive solution of the system of ordinary difference equations

$$y_{n+1} = A + \frac{\sum_{i=1}^{k} c_i y_{n-p_i}}{\sum_{j=1}^{m} d_j z_{n-q_j}}, \qquad z_{n+1} = A + \frac{\sum_{i=1}^{k} c_i z_{n-p_i}}{\sum_{j=1}^{m} d_j y_{n-q_j}},$$
(3.15)

with initial values (y_i, z_i) , $i = -\pi, -\pi + 1, ..., 0$, such that $y_i = T_i$, $z_i = S_i$, $i = -\pi, -\pi + 1, ..., 0$. Then from (3.14) and (3.15), we can easily prove that

$$y_1 \le L_{1,a}, \quad R_{1,a} \le z_1, \quad a \in (0,1],$$
(3.16)

and working inductively, we take

$$y_n \le L_{n,a}, \quad R_{n,a} \le z_n, \quad n = 1, 2, \dots, a \in (0, 1].$$
 (3.17)

Since from (3.13) and [16, Proposition 3], (y_n, z_n) is bounded and persists, from (3.17), it is obvious that x_n is also bounded and persists.

Now, suppose that (3.11) holds; then

$$B > Z, \qquad C > W. \tag{3.18}$$

We concider the system of ordinary difference equations

$$y_{n+1} = B + \frac{\sum_{i=1}^{k} a_i y_{n-p_i}}{\sum_{j=1}^{m} b_j z_{n-q_j}}, \qquad z_{n+1} = C + \frac{\sum_{i=1}^{k} e_i z_{n-p_i}}{\sum_{j=1}^{m} h_j y_{n-q_j}},$$
(3.19)

where $B, C, a_i, e_i, b_j, h_j, i = 1, 2, ..., k, j = 1, 2, ..., m$, are defined in (3.3).

Let (y_n, z_n) be a solution of (3.19) with initial values (y_i, z_i) , $i = -\pi, -\pi + 1, ..., 0$, such that $y_i = T_i$, $z_i = S_i$, $i = -\pi, -\pi + 1, ..., 0$, where T_i, S_i , $i = -\pi, -\pi + 1, ..., 0$, are defined in (3.14). Arguing as above, we can prove that (3.17) holds. Since from (3.18) and [16, Proposition 3], (y_n, z_n) is bounded and persists, then from (3.17), it is obvious that, x_n is also bounded and persists. This completes the proof of the proposition.

In what follows, we need the following lemmas.

LEMMA 3.5. Let $r_i, s_j, i = 1, 2, ..., k, j = 1, 2, ..., m$, be positive integers such that

$$(r_1, r_2, \dots, r_k, s_1, s_2, \dots, s_m) = 1,$$
 (3.20)

where $(r_1, r_2, ..., r_k, s_1, s_2, ..., s_m)$ is the greatest common divisor of the integers r_i, s_j , i = 1, 2, ..., k, j = 1, 2, ..., m. Then the following statements are true.

(I) There exists an even positive integer w_1 such that for any nonnegative integer p, there exist nonnegative integers α_{ip} , β_{jp} , i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$\sum_{i=1}^{k} \alpha_{ip} r_i + \sum_{j=1}^{m} \beta_{jp} s_j = w_1 + 2p, \quad p = 0, 1, \dots,$$
(3.21)

where $\sum_{j=1}^{m} \beta_{jp}$ is an even integer.

(II) Suppose that all r_i , i = 1, 2, ..., k, are not even and all s_j , j = 1, 2, ..., m, are not odd integers. Then there exists an odd positive integer w_2 such that for any nonnegative integer p, there exist nonnegative integers y_{ip} , δ_{jp} , i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$\sum_{i=1}^{k} \gamma_{ip} r_i + \sum_{j=1}^{m} \delta_{jp} s_j = w_2 + 2p, \quad p = 0, 1, \dots,$$
(3.22)

where $\sum_{j=1}^{m} \delta_{jp}$ is an even integer.

(III) Suppose that all r_i , i = 1, 2, ..., k, are not even and all s_j , j = 1, 2, ..., m, are not odd integers. Then there exists an even positive integer w_3 such that for any nonnegative integer p, there exist nonnegative integers ϵ_{ip} , ξ_{jp} , i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$\sum_{i=1}^{k} \epsilon_{ip} r_i + \sum_{j=1}^{m} \xi_{jp} s_j = w_3 + 2p, \quad p = 0, 1, \dots,$$
(3.23)

where $\sum_{j=1}^{m} \xi_{jp}$ is an odd integer.

(IV) There exists an odd positive integer w_4 such that for any nonnegative integer p, there exist nonnegative integers λ_{ip} , μ_{jp} , i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$\sum_{i=1}^{k} \lambda_{ip} r_i + \sum_{j=1}^{m} \mu_{jp} s_j = w_4 + 2p, \quad p = 0, 1, \dots,$$
(3.24)

where $\sum_{j=1}^{m} \mu_{jp}$ is an odd integer.

Proof. (I) Since(3.20) holds, there exist integers η_i , ι_j , i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$\sum_{i=1}^{k} \eta_i r_i + \sum_{j=1}^{m} \iota_j s_j = 1.$$
(3.25)

If for any real number *a*, we denote by [*a*] the integral part of *a*, we set for i = 2, 3, ..., k, j = 1, 2, ..., m,

$$\alpha_{1p} = 2p\eta_1 + 2\sum_{i=2}^{k} r_i + 2\sum_{j=1}^{m} s_j - 2\sum_{i=2}^{k} g_{ip}r_i - 2\sum_{j=1}^{m} h_{jp}s_j,$$

$$\alpha_{ip} = 2p\eta_i + 2g_{ip}r_1, \qquad \beta_{jp} = 2p\iota_j + 2h_{jp}r_1,$$
(3.26)

where

$$g_{ip} = \left[\frac{-p\eta_i}{r_1}\right] + 1, \qquad h_{jp} = \left[\frac{-p\iota_j}{r_1}\right] + 1, \quad i = 2, 3, \dots, k, \ j = 1, 2, \dots, m.$$
(3.27)

Therefore, from (3.25) and (3.26), we can easily prove that α_{ip} , β_{jp} , i = 1, 2, ..., k, j = 1, 2, ..., m, which are defined in (3.26), are positive integers satisfying (3.21) for

$$w_1 = 2r_1 \left(\sum_{i=2}^k r_i + \sum_{j=1}^m s_j \right)$$
(3.28)

and $\sum_{i=1}^{m} \beta_{ip}$ is an even number.

(II) Firstly, suppose that one of r_i , i = 1, 2, ..., k, is an odd positive integer and without loss of generality, let r_1 be an odd positive integer. Relation (3.22) follows immediately if we set for i = 2, ..., k and for j = 1, 2, ..., m,

$$\gamma_{1p} = \alpha_{1p} + 1, \qquad \gamma_{ip} = \alpha_{ip}, \qquad \delta_{jp} = \beta_{jp}, \qquad w_2 = w_1 + r_1.$$
 (3.29)

Now, suppose that r_i , i = 1, 2, ..., k, are even positive integers; then from (3.20), one of s_j , j = 1, 2, ..., m, is an odd positive integer and from the hypothesis, one of s_j , j = 1, 2, ..., m, is an even positive integer. Without loss of generality, let s_1 be an odd positive integer and s_2 be an even positive integer. Relation (3.22) follows immediately if we set for i = 1, 2, ..., k and for j = 3, ..., m,

$$\gamma_{ip} = \alpha_{ip}, \qquad \delta_{1p} = \beta_{1p} + 1, \qquad \delta_{2p} = \beta_{2p} + 1, \qquad \delta_{jp} = \beta_{jp}, \qquad w_2 = w_1 + s_1 + s_2.$$
(3.30)

(III) Firstly, suppose that one of s_j , j = 1, 2, ..., m, is an even positive integer and without loss of generality, let s_1 be an even positive integer. Relation (3.23) follows immediately if we set for i = 1, 2, ..., k and j = 2, ..., m,

$$\epsilon_{ip} = \alpha_{ip}, \qquad \xi_{1p} = \beta_{1p} + 1, \qquad \xi_{jp} = \beta_{jp}, \qquad w_3 = w_1 + s_1.$$
 (3.31)

Now, suppose that s_j , j = 1, 2, ..., m, are odd positive integers; then from the hypothesis, at least one of r_i , i = 1, 2, ..., k, is an odd positive integer, and without loss of generality, let r_1 be an odd integer. Relation (3.23) follows immediately if we set for i = 2, ..., k, j = 2, 3, ..., m,

$$\epsilon_{1p} = \alpha_{1p} + 1, \qquad \epsilon_{ip} = \alpha_{ip}, \qquad \delta_{1p} = \beta_{1p} + 1, \qquad \delta_{jp} = \beta_{jp}, \qquad w_3 = w_1 + s_1 + r_1.$$
(3.32)

(IV) Firstly, suppose that at least one of s_j , j = 1, 2, ..., m, is an odd positive integer and without loss of generality, let s_1 be an odd positive integer. Relation (3.24) follows immediately if we set for i = 1, 2, ..., k, j = 2, 3, ..., m,

$$\lambda_{ip} = \alpha_{ip}, \qquad \mu_{1p} = \beta_{1p} + 1, \qquad \mu_{jp} = \beta_{jp}, \qquad w_4 = w_1 + s_1.$$
 (3.33)

Now, suppose that s_j , j = 1, 2, ..., m, are even positive integers; then from (3.20), at least one of r_i , i = 1, 2, ..., k, is an odd positive integer, and without loss of generality, let r_1 be an odd positive integer. Relation (3.24) follows immediately if we set for i = 2, 3, ..., k, j = 2, 3, ..., m,

$$\lambda_{1p} = \alpha_{1p} + 1, \qquad \lambda_{ip} = \alpha_{ip}, \qquad \mu_{1p} = \beta_{1p} + r_1, \qquad \mu_{jp} = \beta_{jp}, \qquad w_4 = w_1 + r_1(s_1 + 1).$$
(3.34)

This completes the proof of the lemma.

LEMMA 3.6. Consider system (3.19), where B, C are positive constants such that

$$B = \frac{\sum_{i=1}^{k} e_i}{\sum_{j=1}^{m} h_j}, \qquad C = \frac{\sum_{i=1}^{k} a_i}{\sum_{j=1}^{m} b_j}.$$
 (3.35)

Then the following statements are true.

(I) Let *r* be a common divisor of the integers $p_i + 1$, $q_j + 1$, i = 1, 2, ..., k, j = 1, 2, ..., m, such that

$$p_i + 1 = rr_i, \quad i = 1, 2, \dots, k, \qquad q_j + 1 = rs_j, \quad j = 1, 2, \dots, m;$$
 (3.36)

then system (3.19) has periodic solutions of prime period r. Moreover, if all r_i , i = 1, 2, ..., k, (resp., s_j , j = 1, 2, ..., m) are even (resp., odd) positive integers, then system (3.19) has periodic solutions of prime period 2r.

(II) Let *r* be the greatest common divisor of the integers $p_i + 1$, $q_j + 1$, i = 1, 2, ..., k, j = 1, 2, ..., m, such that (3.36) hold; then if all r_i , i = 1, 2, ..., k, (resp., s_j , j = 1, 2, ..., m) are even (resp., odd) positive integers, every positive solution of (3.19) tends to a periodic solution of period 2*r*; otherwise, every positive solution of (3.19) tends to a periodic solution of *r*.

Proof. (I) From relations (3.35), (3.36), and [16, Proposition 2], system (3.19) has periodic solutions of prime period *r*.

Now, we prove that system (3.19) has periodic solutions of prime period 2r, if all r_i , i = 1, 2, ..., k, (resp., s_j , j = 1, 2, ..., m) are even (resp., odd) positive integers.

Suppose first that $p_k < q_m$. Let (y_n, z_n) be a positive solution of (3.19) with initial values satisfying

$$y_{-rs_{m}+2r\lambda+\zeta} = y_{-r+\zeta}, \qquad z_{-rs_{m}+2r\lambda+\zeta} = z_{-r+\zeta}, y_{-rs_{m}+2r\nu+r+\zeta} = y_{-2r+\zeta}, \qquad z_{-rs_{m}+2r\nu+r+\zeta} = z_{-2r+\zeta}, \lambda = 0, 1, \dots, \frac{s_{m}-1}{2}, \qquad \nu = 0, 1, \dots, \frac{s_{m}-3}{2}, \qquad \zeta = 1, 2, \dots, r,$$
(3.37)

and, in addition, for $\zeta = 1, 2, ..., r$,

$$y_{-2r+\zeta} > B, \qquad y_{-r+\zeta} > B, \qquad z_{-r+\zeta} = \frac{Cy_{-2r+\zeta}}{y_{-2r+\zeta} - B}, \qquad z_{-2r+\zeta} = \frac{Cy_{-r+\zeta}}{y_{-r+\zeta} - B}.$$
 (3.38)

G. Stefanidou and G. Papaschinopoulos 347

From (3.19), (3.35), (3.36), (3.37), and (3.38), we get for $\zeta = 1, 2, ..., r$,

$$y_{\zeta} = B + C \frac{y_{-2r+\zeta}}{z_{-r+\zeta}} = y_{-2r+\zeta}, \qquad z_{\zeta} = C + B \frac{z_{-2r+\zeta}}{y_{-r+\zeta}} = z_{-2r+\zeta},$$

$$y_{r+\zeta} = B + C \frac{y_{-r+\zeta}}{z_{-2r+\zeta}} = y_{-r+\zeta}, \qquad z_{r+\zeta} = C + B \frac{z_{-r+\zeta}}{y_{-2r+\zeta}} = z_{-r+\zeta}.$$
(3.39)

Let a $v \in \{2, 3, ...\}$. Suppose that for all u = 1, 2, ..., v - 1 and $\zeta = 1, 2, ..., r$, we have

$$y_{2ur+\zeta} = y_{-2r+\zeta}, \qquad z_{2ur+\zeta} = z_{-2r+\zeta}, \qquad y_{2ur+r+\zeta} = y_{-r+\zeta}, \qquad z_{2ur+r+\zeta} = z_{-r+\zeta}.$$
 (3.40)

Then from (3.19), (3.35)–(3.40), we get for $\zeta = 1, 2, ..., r$,

$$y_{2\nu r+\zeta} = B + C \frac{y_{-2r+\zeta}}{z_{-r+\zeta}} = y_{-2r+\zeta}.$$
(3.41)

Similarly, we can prove that for $\zeta = 1, 2, ..., r$,

$$z_{2\nu r+\zeta} = z_{-2r+\zeta}, \qquad y_{2\nu r+r+\zeta} = y_{-r+\zeta}, \qquad z_{2\nu r+r+\zeta} = z_{-r+\zeta}. \tag{3.42}$$

Therefore, from (3.39)–(3.42), we have that system (3.19) has periodic solutions of period 2r.

Now, suppose that $q_m < p_k$. Let (y_n, z_n) be a positive solution of (3.19) such that the initial values satisfy relations (3.38) and for $\omega = 0, 1, ..., r_k/2 - 1, \theta = 1, 2, ..., 2r$,

$$y_{-rr_k+2r\omega+\theta} = y_{-2r+\theta}, \qquad z_{-rr_k+2r\omega+\theta} = z_{-2r+\theta}.$$
 (3.43)

Then arguing as above, we can easily prove that (y_n, z_n) is a periodic solution of period 2r. This completes the proof of statement (I).

(II) Now, we prove that every positive solution of system (3.19) tends to a periodic solution of period κr , where

$$\kappa = \begin{cases} 2 & \text{if } r_i, i = 1, 2, \dots, k, \text{ are even, } s_j, j = 1, 2, \dots, m, \text{ are odd,} \\ 1 & \text{otherwise.} \end{cases}$$
(3.44)

Let (y_n, z_n) be an arbitrary positive solution of (3.19). We prove that there exist the

$$\lim_{n \to \infty} y_{\kappa nr+i} = \epsilon_i, \quad i = 0, 1, \dots, \kappa r - 1.$$
(3.45)

We fix a $\tau \in \{0, 1, ..., \kappa r - 1\}$. Since from [16, Proposition 3], the solution (y_n, z_n) is bounded and persists, we have

$$\liminf_{n \to \infty} y_{\kappa nr+\tau} = l_{\tau} \ge B, \qquad \liminf_{n \to \infty} z_{\kappa nr+\tau} = m_{\tau} \ge C,$$

$$\limsup_{n \to \infty} y_{\kappa nr+\tau} = L_{\tau} < \infty, \qquad \limsup_{n \to \infty} z_{\kappa nr+\tau} = M_{\tau} < \infty.$$
(3.46)

Therefore, from relations (3.19), (3.35), and (3.46), we take

$$m_{\tau} = \frac{CL_{\tau}}{L_{\tau} - B}, \qquad l_{\tau} = \frac{BM_{\tau}}{M_{\tau} - C}.$$
 (3.47)

We prove that (3.45) is true for $i = \tau$. Suppose on the contrary that $l_{\tau} < L_{\tau}$. Then from (3.46), there exists an $\epsilon > 0$ such that

$$L_{\tau} > l_{\tau} + \epsilon > B + \epsilon. \tag{3.48}$$

In view of (3.46), there exists a sequence n_{μ} , $\mu = 1, 2, ...$, such that

$$\lim_{\mu \to \infty} y_{\kappa r n_{\mu} + \tau} = L_{\tau}, \qquad \lim_{\mu \to \infty} y_{r(\kappa n_{\mu} - r_i) + \tau} = T_{r_i, \tau} \le L_{\tau},$$

$$\lim_{\mu \to \infty} z_{r(\kappa n_{\mu} - s_j) + \tau} = S_{s_j, \tau} \ge m_{\tau}.$$
(3.49)

In view of (3.19), (3.35), (3.46), (3.47), and (3.49), we take

$$L_{\tau} = B + \frac{\sum_{i=1}^{k} a_i T_{r_i,\tau}}{\sum_{j=1}^{m} b_j S_{s_j,\tau}} \le B + \frac{CL_{\tau}}{m_{\tau}} = L_{\tau}$$
(3.50)

and obviously, we have that

$$T_{r_{i,\tau}} = L_{\tau}, \quad i = 1, 2, \dots, k,$$

$$S_{s_{i,\tau}} = m_{\tau}, \quad j = 1, 2, \dots, m.$$
(3.51)

In addition, using (3.19), (3.35), (3.46), (3.47), and (3.51), for $\kappa = 2$, from statements (I) and (IV) of Lemma 3.5 and arguing as above, we take for $\gamma = 0, 1, ...,$

$$\lim_{\mu \to \infty} y_{r(2n_{\mu} - w_1 - 2\gamma) + \tau} = L_{\tau}, \qquad \lim_{\mu \to \infty} z_{r(2n_{\mu} - w_1 - s_1 - 2\gamma) + \tau} = m_{\tau}, \tag{3.52}$$

and for $\kappa = 1$ and from all the statements of Lemma 3.5,

$$\lim_{\mu \to \infty} y_{r(n_{\mu} - w_{1} - 2\gamma) + \tau} = L_{\tau}, \qquad \lim_{\mu \to \infty} y_{r(n_{\mu} - w_{2} - 2\gamma) + \tau} = L_{\tau},
\lim_{\mu \to \infty} z_{r(n_{\mu} - w_{3} - 2\gamma) + \tau} = m_{\tau}, \qquad \lim_{\mu \to \infty} z_{r(n_{\mu} - w_{4} - 2\gamma) + \tau} = m_{\tau},$$
(3.53)

 w_1, w_2, w_3, w_4 are defined in Lemma 3.5.

Let a $\sigma_{\kappa} \in \{0, 1, ..., (3 - \kappa)\phi\}, \phi = \max\{r_k, s_m\}$. Suppose first that $\kappa = 2$. Then in view of (3.19), there exist positive integers p, q and a continuous function $F_{\sigma_2} : \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \to \mathbb{R}$ such that

$$y_{r(2n_{\mu}+2\sigma_{2})+\tau} = B + F_{\sigma_{2}}(\zeta_{n_{\mu},0},\ldots,\zeta_{n_{\mu},p},\xi_{n_{\mu},0},\ldots,\xi_{n_{\mu},q}), \qquad (3.54)$$

where for i = 0, 1, ..., p, j = 0, 1, ..., q,

$$\zeta_{n_{\mu},i} = y_{r(2n_{\mu}-w_1-2i)+\tau}, \qquad \xi_{n_{\mu},j} = z_{r(2n_{\mu}-w_1-s_1-2j)+\tau}.$$
(3.55)

If $\kappa = 1$, there exist positive integers v_1 , v_2 , v_3 , v_4 and a continuous function $G_{\sigma_1} : \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \to \mathbb{R}$ such that

$$y_{r(n_{\mu}+\sigma_{1})+\tau} = B + G_{\sigma_{1}}\left(\zeta_{n_{\mu},0}, \dots, \zeta_{n_{\mu},\nu_{1}}, \bar{\zeta}_{n_{\mu},0}, \dots, \bar{\zeta}_{n_{\mu},\nu_{2}}, \xi_{n_{\mu},0}, \dots, \xi_{n_{\mu},\nu_{3}}, \bar{\xi}_{n_{\mu},0}, \dots, \bar{\xi}_{n_{\mu},\nu_{4}}\right), \quad (3.56)$$

where for $i = 0, 1, ..., v_1$, $\overline{i} = 0, 1, ..., v_2$, $j = 0, 1, ..., v_3$, and $\overline{j} = 0, 1, ..., v_4$,

$$\begin{aligned} \zeta_{n_{\mu},i} &= y_{r(n_{\mu}-w_{1}-2i)+\tau}, & \bar{\zeta}_{n_{\mu},\bar{i}} &= y_{r(n_{\mu}-w_{2}-2\bar{i})+\tau}, \\ \xi_{n_{\mu},j} &= z_{r(n_{\mu}-w_{3}-2j)+\tau}, & \bar{\xi}_{n_{\mu},\bar{j}} &= z_{r(n_{\mu}-w_{4}-2\bar{j})+\tau}. \end{aligned}$$
(3.57)

Therefore, from (3.47), (3.52), (3.53), (3.54), and (3.56), it follows that

$$\lim_{\mu \to \infty} y_{r(\kappa n_{\mu} + \kappa \sigma_{\kappa}) + \tau} = B + \frac{CL_{\tau}}{m_{\tau}} = L_{\tau}.$$
(3.58)

Using the same argument to prove (3.58) and using (3.19), we can easily prove that for i = 1, 2, ..., k, j = 1, 2, ..., m,

$$\lim_{\mu \to \infty} y_{r(\kappa n_{\mu} + \kappa \sigma_{\kappa} - r_{i}) + \tau} = L_{\tau}, \qquad \lim_{\mu \to \infty} z_{r(\kappa n_{\mu} + \kappa \sigma_{\kappa} - s_{j}) + \tau} = m_{\tau}.$$
(3.59)

Therefore, if $\delta = \epsilon (m_{\tau} - C)/(L_{\tau} - \epsilon - B)$, then in view of (3.19), (3.47), (3.58), and (3.59), there exists a $\mu_0 \in \{1, 2, ...\}$ such that for j = 1, 2, ..., m,

$$z_{r(\kappa n_{\mu_0}+2\phi+\kappa-s_j)+\tau} \le C + \frac{B(m_{\tau}+\delta)}{L_{\tau}-\epsilon} = m_{\tau}+\delta$$
(3.60)

and so from (3.19), (3.47), (3.48), (3.58), (3.59), and (3.60), we get

$$y_{r(\kappa n_{\mu_0}+2\phi+\kappa)+\tau} \ge B + \frac{C(L_{\tau}-\epsilon)}{m_{\tau}+\delta} = L_{\tau}-\epsilon > l_{\tau}.$$
(3.61)

Using (3.19), (3.47), (3.48), (3.58), (3.59), and (3.61) and working inductively, we can easily prove that

$$y_{r(\kappa n_{\mu_0}+2\phi+\kappa\omega)+\tau} \ge L_{\tau} - \epsilon > l_{\tau}, \quad \omega = 2, 3, \dots,$$
(3.62)

which is a contradiction since $\liminf_{n\to\infty} y_{\kappa rn+\tau} = l_{\tau}$. Therefore, since τ is an arbitrary number such that $\tau \in \{0, 1, ..., \kappa r - 1\}$, relations (3.45) are satisfied.

Moreover, from (3.19) and (3.47), we have that

$$\lim_{n \to \infty} z_{\kappa nr+i} = \xi_i, \quad i = 0, 1, \dots, \kappa r - 1.$$
(3.63)

This completes the proof of the lemma.

In the next proposition, we study the periodicity of the positive solutions of (1.1).

PROPOSITION 3.7. Consider (1.1), where $k,m \in \{1,2,...\}$, A,c_i,d_j , $i \in \{1,2,...,k\}$, $j \in \{1,2,...,m\}$, are positive fuzzy numbers, and p_i , $i \in \{1,2,...,k\}$, q_j , $j \in \{1,2,...,m\}$, are positive integers. If (3.10) holds and r is a common divisor of the integers $p_i + 1$, $q_j + 1$, i = 1,2,...,k, j = 1,2,...,m, then (1.1) has periodic solutions of prime period r. Moreover, if r_i , i = 1,2,...,k, (resp., s_j , j = 1,2,...,m)— r_i , s_j are defined in (3.36)—are even (resp., odd) integers, then (1.1) has periodic solutions of prime period 2r.

Proof. From (3.10), we have that *A*, c_i , i = 1, 2, ..., k, d_j , j = 1, 2, ..., m, are positive real numbers such that (3.12) and (3.13) hold. We consider functions $L_{i,a}$, $R_{i,a}$, $i = -\pi, -\pi + 1, ..., 0$, such that for $\lambda = 0, 1, ..., \phi - 1$, $\theta = 1, 2, ..., r$, and $a \in (0, 1]$,

$$L_{-r\phi+r\lambda+\theta,a} = L_{-r+\theta,a}, \qquad R_{-r\phi+r\lambda+\theta,a} = R_{-r+\theta,a}, \qquad (3.64)$$

the functions $L_{w,a}$, w = -r + 1, -r + 2, ..., 0, are increasing, left continuous, and for all w = -r + 1, -r + 2, ..., 0, we have

$$A + \epsilon < L_{w,a} < 2A, \qquad R_{w,a} = \frac{AL_{w,a}}{L_{w,a} - A},$$
 (3.65)

where ϵ is a positive number such that $\epsilon < A$. Using (3.65) and since the functions $L_{w,a}$, w = -r + 1, -r + 2, ..., 0, are increasing, if $a_1, a_2 \in (0, 1]$, $a_1 \le a_2$, we get

$$AL_{w,a_1}L_{w,a_2} - A^2 L_{w,a_1} \ge AL_{w,a_1}L_{w,a_2} - A^2 L_{w,a_2}$$
(3.66)

which implies that $R_{w,a}$, w = -r + 1, -r + 2, ..., 0, are decreasing functions. Moreover, from (3.65), we get

$$L_{w,a} \le R_{w,a}, \qquad A + \epsilon \le L_{w,a}, R_{w,a} \le \frac{2A^2}{\epsilon}, \tag{3.67}$$

and so from [18, Theorem 2.1], $(L_{w,a}, R_{w,a})$, w = -r + 1, -r + 2, ..., 0, determine the fuzzy numbers x_w , w = -r + 1, -r + 2, ..., 0, such that $[x_w]_a = [L_{w,a}, R_{w,a}]$, w = -r + 1, -r + 2, ..., 0. Let x_n be a positive solution of (1.1) which satisfies (2.14) and let the initial values be positive fuzzy numbers such that (3.4) hold and the functions $L_{i,a}, R_{i,a}$, $i = -\pi, -\pi + 1, ..., 0$, $a \in (0, 1]$, are defined in (3.64), (3.65); $L_{i,a}$, $i = -\pi, -\pi + 1, ..., 0$, $a \in (0, 1]$, are defined in (3.64), (3.65); $L_{i,a}$, $i = -\pi, -\pi + 1, ..., 0$, $a \in (0, 1]$, are increasing and left continuous. Then from [16, Proposition 2], we have that for any $a \in (0, 1]$, the system given by (3.7), (3.12), and (3.13) has periodic solutions of prime period r, which means that there exists solution $(L_{n,a}, R_{n,a})$, $a \in (0, 1]$, of the system such that

$$L_{n+r,a} = L_{n,a}, \quad R_{n+r,a} = R_{n,a}, \quad a \in (0,1].$$
 (3.68)

Therefore, from (2.22) and (3.68), we have that (1.1) has periodic solutions of prime period r.

Now, suppose that r_i , i = 1, 2, ..., k, (resp., s_i , j = 1, 2, ..., m) are even (resp., odd) integers. We consider the functions $L_{i,a}$, $R_{i,a}$, $i = -\pi, -\pi + 1, ..., 0$, such that analogous relations (3.37), (3.38), and (3.43) hold, $L_{w,a}$, w = -r + 1, ..., 0, are increasing, left continuous functions, and the first relation of (3.65) holds. Arguing as above, the solution x_n of (1.1) with initial values x_i , $i = -\pi, -\pi + 1, ..., 0$, satisfying (3.4), where $L_{i,a}$, $R_{i,a}$, $i = -\pi, -\pi + 1, ..., 0$, are defined above, is a periodic solution of prime period 2r.

In the following proposition, we study the convergence of the positive solutions of (1.1).

PROPOSITION 3.8. Consider (1.1), where $k, m \in \{1, 2, ...\}$, A, c_i, d_j , $i \in \{1, 2, ..., k\}$, $j \in \{1, 2, ..., m\}$, are positive fuzzy numbers, and p_i , $i \in \{1, 2, ..., k\}$, q_j , $j \in \{1, 2, ..., m\}$, are positive integers. Then the following statements are true.

(i) If (3.11), holds, then (1.1) has a unique positive equilibrium x and every positive solution of (1.1) nearly converges to the unique positive equilibrium x with respect to D as $n \to \infty$ and converges to x with respect to D_1 as $n \to \infty$.

(ii) If (3.10) is satisfied and r is the greatest common divisor of the integers $p_i + 1$, $q_j + 1$, i = 1, 2, ..., k, j = 1, 2, ..., m, such that (3.36) holds, then every positive solution of (1.1) nearly converges to a period κr solution of (1.1) with respect to D as $n \to \infty$ and converges to a period κr solution of (1.1) with respect to D₁ as $n \to \infty$; κ is defined in (3.44).

Proof. (i) Let x_n be a positive solution of (1.1) which satisfies (2.14). Since (3.7) and (3.11) hold, we can apply [16, Proposition 4] and we have that for any $a \in (0, 1]$, there exist the $\lim_{n\to\infty} L_{n,a}, \lim_{n\to\infty} R_{n,a}$, and

$$\lim_{n \to \infty} L_{n,a} = L_a, \quad \lim_{n \to \infty} R_{n,a} = R_a, \quad a \in (0,1],$$
(3.69)

where

$$L_{a} = \frac{A_{l,a}A_{r,a} - C_{a}D_{a}}{A_{r,a} - C_{a}}, \qquad R_{a} = \frac{A_{l,a}A_{r,a} - C_{a}D_{a}}{A_{l,a} - D_{a}},$$

$$C_{a} = \frac{\sum_{i=1}^{k} c_{i,l,a}}{\sum_{j=1}^{m} d_{j,r,a}}, \qquad D_{a} = \frac{\sum_{i=1}^{k} c_{i,r,a}}{\sum_{j=1}^{m} d_{j,l,a}}.$$
(3.70)

In addition, from (3.3) and (3.70), we get

$$L_a \ge \frac{B^2 - Z^2}{C - W} = \lambda, \qquad R_a \le \frac{C^2 - W^2}{B - Z} = \mu,$$
 (3.71)

where *B*, *C* (resp., *Z*, *W*) are defined in (3.3) (resp., (3.5)). Then from (3.69), (3.71), and arguing as in [13, 14, 15], we can easily prove that L_a , R_a determine a fuzzy number *x* such that $[x]_a = [L_a, R_a]$. Finally, using (3.70), we take that *x* is the unique positive equilibrium of (1.1). Using relations (3.11), (3.69), and arguing as in [15, Proposition 2], we can prove that every positive solution of (1.1) nearly converges to the unique positive equilibrium *x* with respect to *D* as $n \to \infty$ and converges to *x* with respect to D_1 as $n \to \infty$.

(ii) Suppose that (3.10) holds. Let x_n be a positive solution of (1.1) such that (2.14) holds. Since $(L_{n,a}, R_{n,a})$ is a positive solution of the system which is defined by (3.7), (3.12), and (3.13), from Lemma 3.6, we have that

$$\lim_{n \to \infty} L_{\kappa nr+l,a} = \epsilon_{l,a}, \quad \lim_{n \to \infty} R_{\kappa nr+l,a} = \xi_{l,a}, \quad a \in (0,1], \ l = 0, 1, \dots, \kappa r - 1,$$
(3.72)

where κ is defined in (3.44). Using (3.72) and arguing as in [15, Proposition 2], we can prove that every positive solution of (1.1) nearly converges to a period κr solution of (1.1) with respect to *D* as $n \to \infty$ and converges to a period κr solution of (1.1) with respect to D_1 as $n \to \infty$. Thus, the proof of the proposition is completed.

From Propositions 3.2–3.8, it is obvious that (1.1) exhibits the trichotomy character described concentratively by the following proposition.

PROPOSITION 3.9. Consider the fuzzy difference equation (1.1), where $k, m \in \{1, 2, ...\}$, and $A, c_i, d_j, i \in \{1, 2, ..., k\}, j \in \{1, 2, ..., m\}$, are positive fuzzy numbers. Then (1.1) possesses the following trichotomy.

(i) If relation (3.1) is satisfied, then (1.1) has unbounded solutions.

(ii) If (3.10) holds and r is the greatest common divisor of the integers $p_i + 1$, $q_j + 1$, i = 1, 2, ..., k, j = 1, 2, ..., m, such that (3.36) holds, then every positive solution of (1.1) nearly converges to a period κr solution of (1.1) with respect to D as $n \to \infty$ and converges to a period κr solution of (1.1) with respect to D₁ as $n \to \infty$.

(iii) If (3.11) holds, then every positive solution of (1.1) nearly converges to the unique positive equilibrium x with respect to D as $n \to \infty$ and converges to x with respect to D_1 as $n \to \infty$.

In the next proposition, we study the asymptotic stability of the unique positive equilibrium of (1.1).

PROPOSITION 3.10. Consider the fuzzy difference equation (1.1), where $k,m \in \{1,2,...\}$, $A, c_i, d_j, i \in \{1, 2, ..., k\}, j \in \{1, 2, ..., m\}$, are positive fuzzy numbers, and $p_i, i \in \{1, 2, ..., k\}$, $q_j, j \in \{1, 2, ..., m\}$, are positive integers such that (3.11) holds. Suppose that there exists a positive number θ such that

$$\theta < B, \qquad Z < \frac{2B + C - \theta - \sqrt{(C - \theta)^2 + 4BC}}{2},$$

$$(3.73)$$

where B,C are defined in (3.3) and Z is defined in (3.5). Then the unique positive equilibrium x of (1.1) is nearly asymptotically stable.

Proof. Since (3.11) holds, from Proposition 3.8, equation (1.1) has a unique positive equilibrium *x* which satisfies (2.15).

Let ϵ be a positive real number. Since (3.18) holds, we can define the positive real number δ as follows:

$$\delta < \min\{\epsilon, \lambda, \theta, B - Z\}. \tag{3.74}$$

Let x_n be a positive solution of (1.1) such that

$$D(x_{-i}, x) \le \delta \le \epsilon, \quad i = 0, 1, \dots, \pi.$$

$$(3.75)$$

From (3.75), we have

$$|L_{-i,a} - L_a| \le \delta, \quad |R_{-i,a} - R_a| \le \delta, \quad i = 0, 1, \dots, \pi, \ a \in (0, 1].$$
 (3.76)

In addition, from (3.3), (3.7), (3.74), and (3.76) and since (L_a, R_a) satisfies (3.7), we get

$$L_{1,a} - L_{a} = A_{l,a} + \frac{\sum_{i=1}^{k} c_{i,l,a} L_{-p_{i,a}}}{\sum_{j=1}^{m} d_{j,r,a} R_{-q_{j,a}}} - L_{a} \le A_{l,a} + \frac{\sum_{i=1}^{k} c_{i,l,a} (L_{a} + \delta)}{\sum_{j=1}^{m} d_{j,r,a} (R_{a} - \delta)} - L_{a}$$

$$= \delta \frac{C_{a} - A_{l,a} + L_{a}}{R_{a} - \delta} \le \delta \frac{R_{a} - (B - Z)}{R_{a} - \delta}.$$
(3.77)

From (3.74) and (3.77), it is obvious that

$$\left|L_{1,a} - L_{a}\right| < \delta < \epsilon. \tag{3.78}$$

Moreover, arguing as above, we can easily prove that

$$R_{1,a} - R_a \le \delta \frac{D_a - A_{r,a} + R_a}{L_a - \delta}.$$
(3.79)

We claim that

$$\theta < L_a - R_a + A_{r,a} - D_a, \quad a \in (0,1].$$
 (3.80)

We fix an $a \in (0, 1]$ and we concider the function

$$g(h) = \frac{A_{l,a}A_{r,a} - D_a h}{A_{r,a} - h} - \frac{A_{l,a}A_{r,a} - D_a h}{A_{l,a} - D_a} + A_{r,a} - D_a,$$
(3.81)

where h is a nonnegative real variable. Moreover, we consider the function

$$f(x, y, z) = \frac{x^2 - (2x + y)z + z^2}{x - z} - \theta,$$
(3.82)

where $B \le x \le y \le C$ and $W \le z \le Z$, B, C (resp., W, Z) are defined in (3.3) (resp., (3.5)). Using (3.82), we can easily prove that the function f is increasing (resp., decreasing) (resp., decreasing) with respect to x (resp., y) (resp., z) for all y, z (resp., x, z) (resp., x, y) and so from (3.73),

$$f(x, y, z) > f(B, C, Z) = \frac{B^2 - (2B + C)Z + Z^2}{B - Z} - \theta > 0.$$
(3.83)

Therefore, from (3.3), (3.81), (3.82), and (3.83), we have

$$g(0) = f(A_{l,a}, A_{r,a}, D_a) + \theta > \theta.$$
(3.84)

In addition, from (3.81), we can prove that *g* is an increasing function with respect to *h* and so we have $g(0) < g(C_a)$, $a \in (0,1]$. Therefore, from (3.70), (3.81), and (3.84), relation (3.80) is true. Hence, from (3.74), (3.79), and (3.80), we get

$$\left| R_{1,a} - R_a \right| < \delta < \epsilon. \tag{3.85}$$

From (3.7), (3.76), (3.78), and (3.85) and working inductively, we can easily prove that

$$|L_{n,a} - L_a| \le \epsilon, \quad |R_{n,a} - R_a| \le \epsilon, \quad a \in (0,1], \ n = 0,1,\dots,$$
 (3.86)

and so

$$D(x_n, x) \le \epsilon, \quad n \ge 0. \tag{3.87}$$

Therefore, the positive equilibrium *x* is stable. Moreover, from Proposition 3.8, we have that every positive solution of (1.1) nearly tends to *x* with respect to *D* as $n \to \infty$. So, *x* is nearly asymptotically stable. So, the proof of the proposition is completed.

Finally, we study the oscillatory behavior of the positive solutions of the fuzzy difference equation

$$x_{n+1} = A + \frac{\sum_{s=0}^{k} c_{2s+1} x_{n-2s-1}}{\sum_{s=0}^{k} d_{2s+2} x_{n-2s}},$$
(3.88)

where *k* is a positive integer, and *A*, c_{2s+1} , d_{2s+2} , $s \in \{0, 1, ..., k\}$, are positive fuzzy numbers. Obviously, (3.88) is a special case of (1.1).

In what follows, we need to study the oscillatory behavior of the positive solutions of the system of ordinary difference equations

$$y_{n+1} = B + \frac{\sum_{s=0}^{k} a_{2s+1} y_{n-2s-1}}{\sum_{s=0}^{k} b_{2s+2} z_{n-2s}},$$

$$z_{n+1} = C + \frac{\sum_{s=0}^{k} e_{2s+1} z_{n-2s-1}}{\sum_{s=0}^{k} h_{2s+2} y_{n-2s}},$$
(3.89)

where k is a positive integer, $B, C, a_{2s+1}, b_{2s+2}, e_{2s+1}, h_{2s+2}, s \in \{0, 1, \dots, k\}$, are positive real constants, and the initial values $y_j, z_j, j = -2k - 1, -2k, \dots, 0$, are positive real numbers.

Let (y_n, z_n) be a positive solution of (3.89). We say that the solution (y_n, z_n) oscillates about (y, z), $y, z \in \mathbb{R}^+$, if for every $n_0 \in \mathbb{N}$, there exist $s, m \in \mathbb{N}$, $s, m \ge n_0$, such that

$$(y_s - y)(y_m - y) \le 0, \qquad (z_s - z)(z_m - z) \le 0, (y_s - y)(z_s - z) \ge 0, \qquad (y_m - y)(z_m - z) \ge 0.$$
 (3.90)

LEMMA 3.11. Consider system (3.89), where k is a positive integer, B, C, a_{2s+1} , b_{2s+2} , e_{2s+1} , h_{2s+2} , $s \in \{0, 1, ..., k\}$, are positive real constants, and the initial values y_j , z_j , j = -2k - 1, -2k, ..., 0, are positive real numbers. A positive solution (y_n, z_n) of system (3.89) oscillates about the unique positive equilibrium (\bar{x}, \bar{y}) of system (3.89) if either the relations

$$\Lambda \ge \max\left\{\Lambda_{1,s}, \Lambda_{2,s}\right\}, \quad \Delta \ge \max\left\{\Delta_{1,s}, \Delta_{2,s}\right\}, \quad s = 0, 1, \dots, k,$$
(3.91)

or the relations

$$\Lambda \le \min\{\Lambda_{1,s}, \Lambda_{2,s}\}, \quad \Delta \le \min\{\Delta_{1,s}, \Delta_{2,s}\}, \quad s = 0, 1, \dots, k,$$
(3.92)

hold, *where for* s = 0, 1, ..., k,

$$\Lambda = \frac{\sum_{s=0}^{k} e_{2s+1} z_{-2s-1}}{\sum_{s=0}^{k} h_{2s+2} y_{-2s}}, \qquad \Delta = \frac{\sum_{s=0}^{k} a_{2s+1} y_{-2s-1}}{\sum_{s=0}^{k} b_{2s+2} z_{-2s}},$$

$$\Delta_{1,s} = \frac{1}{a_{2s+1}} \left[\mu \frac{\bar{y}}{\bar{z}} \left(\sum_{j=0}^{s} b_{2j+2} \bar{z} + \sum_{j=s+1}^{k} b_{2j+2} z_{-2j+2+2s} \right) - \left(\sum_{j=0}^{s-1} a_{2j+1} \bar{y} + \sum_{j=s+1}^{k} a_{2j+1} y_{-2j+1+2s} \right) \right] - B,$$

$$\Delta_{2,s} = \frac{1}{h_{2s+2}} \left[\frac{\bar{y}}{\lambda \bar{z}} \left(\sum_{j=0}^{s-1} e_{2j+1} \bar{z} + \sum_{j=s}^{k} e_{2j+1} z_{-2j+2s} \right) - \left(\sum_{j=0}^{s-1} h_{2j+2} \bar{y} + \sum_{j=s+1}^{k} h_{2j+2} y_{-2j+1+2s} \right) \right] - B,$$

$$\Lambda_{1,s} = \frac{1}{e_{2s+1}} \left[\lambda \frac{\bar{z}}{\bar{y}} \left(\sum_{j=0}^{s} h_{2j+2} \bar{y} + \sum_{j=s+1}^{k} h_{2j+2} y_{-2j+2s} \right) - \left(\sum_{j=0}^{s-1} e_{2j+1} \bar{z} + \sum_{j=s+1}^{k} e_{2j+1} z_{-2j+1+2s} \right) \right] - C,$$

$$\Lambda_{2,s} = \frac{1}{b_{2s+2}} \left[\frac{\bar{z}}{\mu \bar{y}} \left(\sum_{j=0}^{s-1} a_{2j+1} \bar{y} + \sum_{j=s}^{k} a_{2j+1} y_{-2j+2s} \right) - \left(\sum_{j=0}^{s-1} b_{2j+2} \bar{z} + \sum_{j=s+1}^{k} b_{2j+2} z_{-2j+1+2s} \right) \right] - C,$$

$$\lambda = \frac{\sum_{s=0}^{k} e_{2s+1}}{\sum_{s=0}^{k} h_{2s+2}}, \qquad \mu = \frac{\sum_{s=0}^{k} a_{2s+1}}{\sum_{s=0}^{k} b_{2s+2}}.$$
(3.93)

Proof. Suppose that (3.91) hold. We prove that for $\rho = 0, 1, ..., k$,

$$y_{2\rho+1} \ge \bar{y}, \qquad z_{2\rho+1} \ge \bar{z}, \qquad y_{2\rho+2} \le \bar{y}, \qquad z_{2\rho+2} \le \bar{z}.$$
 (3.94)

From (3.89) and (3.91), we have

$$y_{1} = B + \frac{\sum_{s=0}^{k} a_{2s+1} y_{-2s-1}}{\sum_{s=0}^{k} b_{2s+2} z_{-2s}} = B + \Delta \ge B + \Delta_{1,k} = \bar{y},$$

$$z_{1} = C + \Lambda \ge C + \Lambda_{1,k} = \bar{z}.$$
(3.95)

Since from (3.91), $\Lambda \ge \Lambda_{2,0}$ and $\Delta \ge \Delta_{2,0}$, then from (3.89), we have

$$y_{2} = B + \frac{\sum_{s=0}^{k} a_{2s+1} y_{-2s}}{b_{2} z_{1} + \sum_{s=1}^{k} b_{2s+2} z_{1-2s}} \leq B + \frac{(C + \Lambda)b_{2} + \sum_{s=1}^{k} b_{2s+2} z_{1-2s}}{b_{2} z_{1} + \sum_{s=1}^{k} b_{2s+2} z_{1-2s}} \frac{\mu \bar{y}}{\bar{z}} = B + \frac{\mu \bar{y}}{\bar{z}} = \bar{y},$$

$$z_{2} \leq C + \frac{\lambda \bar{z}}{\bar{y}} = \bar{z}.$$
(3.96)

Using (3.89), (3.91), (3.95), and (3.96), relations $\Delta \ge \Delta_{1,\rho-1}$, $\Lambda \ge \Lambda_{1,\rho-1}$ (resp., $\Delta \ge \Delta_{2,\rho}$, $\Lambda \ge \Lambda_{2,\rho}$), $\rho = 1, 2, ..., k$, and working inductively, we can easily prove (3.94) for $\rho = 1, 2, ..., k$:

$$y_{2\rho+1} \ge \bar{y}, \qquad z_{2\rho+1} \ge \bar{z} \quad (\text{resp., } y_{2\rho+2} \le \bar{y}, \, z_{2\rho+2} \le \bar{z}).$$
 (3.97)

Therefore, (3.94) hold for $\rho = 0, 1, ..., k$. Then since (3.94) hold for $\rho = 0, 1, ..., k$, using (3.89) and working inductively, we can easily prove that (3.94) hold for any $\rho = k + 1, k + 2, ...,$ and so if (3.91) hold, the proof of the lemma is completed.

Similarly, if (3.92) are satisfied, then we can easily prove that

$$y_{2\rho+1} \le \bar{y}, \quad z_{2\rho+1} \le \bar{z}, \quad y_{2\rho+2} \ge \bar{y}, \quad z_{2\rho+2} \ge \bar{z}, \quad \rho = 0, 1, \dots$$
 (3.98)

This completes the proof of the lemma.

Using Lemma 3.11 and arguing as in [13, Proposition 2.4], we can easily prove the following proposition which concerns the oscillatory behavior of the positive solutions of the fuzzy difference equation (3.88).

PROPOSITION 3.12. Consider (3.88), where k is a positive integer, and A, c_{2s+1} , d_{2s+2} , $s \in \{0, 1, ..., k\}$, are positive fuzzy numbers. Then a positive solution x_n of (3.88) satisfying (2.14) oscillates about the positive equilibrium x, which satisfies (2.15) if, for any s = 0, 1, ..., k and $a \in (0, 1]$, either the relations

$$\bar{\Lambda}_a \ge \max\left\{\bar{\Lambda}_{1,s,a}, \bar{\Lambda}_{2,s,a}\right\}, \qquad \bar{\Delta}_a \ge \max\left\{\bar{\Delta}_{1,s,a}, \bar{\Delta}_{2,s,a}\right\}$$
(3.99)

or the relations

$$\bar{\Lambda}_a \le \min\left\{\bar{\Lambda}_{1,s,a}, \bar{\Lambda}_{2,s,a}\right\}, \qquad \bar{\Delta}_a \le \min\left\{\bar{\Delta}_{1,s,a}, \bar{\Delta}_{2,s,a}\right\}$$
(3.100)

hold, where $\bar{\Lambda}_a, \bar{\Delta}_a, \bar{\Lambda}_{1,s,a}, \bar{\Lambda}_{2,s,a}, \bar{\Delta}_{1,s,a}, \bar{\Delta}_{2,s,a}$ are defined for the analogous system (3.7) in the same way as Λ , Δ , $\Lambda_{1,s}, \Lambda_{2,s}, \Delta_{1,s}, \Delta_{2,s}$ were defined in Lemma 3.11 for system (3.89).

Using Proposition 3.12, we take the following corollary.

COROLLARY 3.13. Consider (3.88), where k is a positive integer, and A, c_{2s+1} , d_{2s+2} , $s \in \{0, 1, ..., k\}$, are positive fuzzy numbers. Then a positive solution x_n of (3.88) satisfying (2.14) oscillates about the positive equilibrium x, which satisfies (2.15) if, for any p = 0, 1, ..., k and $a \in (0, 1]$, either the relations

$$L_{-2k-1+2p,a} \ge L_a, \qquad R_{-2k-1+2p,a} \ge R_a, L_{-2k+2p,a} \le L_a, \qquad R_{-2k+2p,a} \le R_a$$
(3.101)

or the relations

$$L_{-2k-1+2p,a} \le L_{a}, \qquad R_{-2k-1+2p,a} \le R_{a}, L_{-2k+2p,a} \ge L_{a}, \qquad R_{-2k+2p,a} \ge R_{a}$$
(3.102)

hold.

Acknowledgment

This work is a part of the first author Doctoral thesis.

References

- [1] R. P. Agarwal, *Difference Equations and Inequalities*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 155, Marcel Dekker, New York, 1992.
- [2] D. Benest and C. Froeschle, Analysis and Modelling of Discrete Dynamical Systems, Advances in Discrete Mathematics and Applications, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998.
- [3] E. Y. Deeba and A. De Korvin, Analysis by fuzzy difference equations of a model of CO₂ level in the blood, Appl. Math. Lett. 12 (1999), no. 3, 33–40.
- [4] E. Y. Deeba, A. De Korvin, and E. L. Koh, A fuzzy difference equation with an application, J. Differ. Equations Appl. 2 (1996), no. 4, 365–374.
- [5] R. DeVault, G. Ladas, and S. W. Schultz, *On the recursive sequence* $x_{n+1} = A/x_n^p + B/x_{n-1}^q$, Advances in Difference Equations (Veszprém, 1995), Gordon and Breach, Amsterdam, 1997, pp. 125–136.
- [6] _____, On the recursive sequence $x_{n+1} = A/x_n + 1/x_{n-2}$, Proc. Amer. Math. Soc. **126** (1998), no. 11, 3257–3261.
- [7] L. Edelstein-Keshet, *Mathematical Models in Biology*, The Random House/Birkhäuser Mathematics Series, Random House, New York, 1988.
- [8] S. N. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1996.
- [9] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl. 83 (1981), no. 2, 566–569.
- [10] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey, 1995.
- [11] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993.
- [12] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, CRC Press, Florida, 1997.
- [13] G. Papaschinopoulos and B. K. Papadopoulos, *On the fuzzy difference equation* $x_{n+1} = A + B/x_n$, Soft Comput. **6** (2002), 436–440.
- [14] _____, On the fuzzy difference equation $x_{n+1} = A + x_n/x_{n-m}$, Fuzzy Sets and Systems 129 (2002), no. 1, 73–81.
- [15] G. Papaschinopoulos and G. Stefanidou, Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation, Fuzzy Sets and Systems 140 (2003), no. 3, 523–539.
- [16] _____, Trichotomy of a system of two difference equations, J. Math. Anal. Appl. 289 (2004), no. 1, 216–230.
- [17] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983), no. 2, 552–558.
- [18] C. Wu and B. Zhang, *Embedding problem of noncompact fuzzy number space E[~]* (I), Fuzzy Sets and Systems **105** (1999), no. 1, 165–169.

G. Stefanidou: Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

E-mail address: tfele@yahoo.gr

G. Papaschinopoulos: Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

E-mail address: gpapas@ee.duth.gr