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1. Introduction

In recent years, the existence of periodic solutions for second-order Liénard equations

u′′ + f (u,u′)u′ + g(u)= e(t,u,u′) (1.1)

and its special case have been studied by many researchers, we refer the readers to [1, 3,
4, 6, 7, 9–12] and the references therein.

Let us consider the so-called one-dimensional p-Laplacian operator (φp(u′))′, where
p > 1 and φp :R→R is given by φp(s)= |s|p−2s for s �= 0 and φp(0)= 0. Periodic bound-
ary conditions containing this operator have been considered in [2, 5].

In [8], Manásevich and Mawhin investigated the existence of periodic solutions to
some system cases involving the fairly general vector-valued operator φ. They considerd
the boundary value problem

(
φ(u′)

)′ = f (t,u,u′), u(0)= u(T), u′(0)= u′(T), (1.2)

where the function φ : RN → RN satisfies some monotonicity conditions which ensure
that φ is a homeomorphism onto RN .

Recently, in [16] we studied the existence of periodic solutions for the nonlinear dif-
ferential equation with a p-Laplacian-like operator

(
φ(u′)

)′
+ f (t,u,u′)= 0. (1.3)
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2 Periodic solutions for Liénard equations

Motivated by the work of [13], in this paper we use new polar coordinates [13] to
investigate the existence of periodic solutions for the second-order generalized Liénard
equations with p-Laplacian-like operator

(
φ(u′)

)′
+ f (u,u′)u′ + g(u)= e(t,u,u′), t ∈ [0,T]. (1.4)

Throughout this paper, we always assume that φ, g ∈ C(R,R), f ∈ C(R2,R), e ∈
C([0,T]×R2,R). And the following conditions also hold.

(H1) φ is continuous and strictly increasing, yφ(y) > 0 for y �= 0, and there exist p > 2,
m2 ≥m1 > 0, such that

m1|y|p−1 ≤
∣
∣φ(y)

∣
∣≤m2|y|p−1. (1.5)

(H2) e ∈ C([0,T]×R2,R), periodic in t with period T , there exist α1,β1,γ1 > 0, and
p > k > 2 such that

∣
∣e(t,x, y)

∣
∣≤ α1|x|p−1 +β1|y|k−1 + γ1 for (t,x, y)∈ [0,T]×R2. (1.6)

(H3) f ∈ C(R2,R), there exist α2,β2,γ2 > 0 such that
∣
∣ f (x, y)

∣
∣≤ α2|x|p−2 +β2|y|k−2 + γ2 for (x, y)∈R2. (1.7)

(H4) There exist λ,μ, and n≥ 0 such that

m2

m1

(
p′

p′ − 1

)p−1(
2nπp

T

)p

+
α1
m1

+
p− 1
p

(
α2
m1

)p/(p−1)(
m2

m1

)1/(p−1)2

< λ

≤ g(x)
φ(x)

≤ μ <
m1

m2

(
p′

p′ +1

)p−1(
2(n+1)πp

T

)p

− α1
m2

− p− 1
p

(
α2
m2

)p/(p−1)(
m2

m1

)1/(p−1)
,

(1.8)

where

p′ = p(p− 1), πp = 2π(p− 1)1/p

p sin(π/p)
. (1.9)

(H5) Solutions of (1.4) are unique with respect to initial value.
In this paper, we use a new coordinate to estimate the time when a point moves along

a trajectory around the origin and then give some sufficient conditions for the existence
of periodic solutions of (1.4).

2. Periodic solutions with a Laplacian-like operator

Let v = φ(u′). Then (1.4) is equivalent to the system

u′ = φ−1(v),

v′ = −g(u)− f
(
u,φ−1(v)

)
φ−1(v) + e

(
t,u,φ−1(v)

)
.

(2.1)
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Let u(t,ξ,η) denote the solution of (1.4) which satisfies the initial value condition

u(0,ξ,η)= ξ, v(0,ξ,η)= η, (2.2)

then we have the following conclusion.

Lemma 2.1. Suppose (H1)–(H5) hold, then for all c > 0, there exists constant A > 0 such
that if

1
p
|ξ|p + p− 1

p
|η|p/(p−1) = A2, (2.3)

then

1
p

∣
∣u(t,ξ,η)

∣
∣p +

p− 1
p

∣
∣v(t,ξ,η)

∣
∣p/(p−1) ≥ c2 for t ∈ [0,T]. (2.4)

Proof. Let (u(t),v(t)), t ∈ [0,T], be a solution of (2.1) satisfying u(0,ξ,η)= ξ, v(0,ξ,η)=
η.

Let

r2(t)= 1
p

∣
∣u(t)

∣
∣p +

p− 1
p

∣
∣v(t)

∣
∣p/(p−1). (2.5)

It is clear that (H1) implies

(
|v|
m2

)1/(p−1)
≤ ∣∣φ−1(v)∣∣≤

(
|v|
m1

)1/(p−1)
. (2.6)

So we have
∣
∣
∣
∣
dr2(t)
dt

∣
∣
∣
∣=

∣
∣
∣
∣
∣u(t)

∣
∣p−2u(t)u′(t) +

∣
∣v(t)

∣
∣(2−p)/(p−1)v(t)v′(t)

∣
∣
∣

≤ |u|p−1∣∣φ−1(v)∣∣+ |v|1/(p−1)
∣
∣
∣− g(u)− f

(
u,φ−1(v)

)
φ−1(v) + e

(
t,u,φ−1(v)

)∣∣
∣

≤ |u|p−1∣∣φ−1(v)∣∣+μ|v|1/(p−1)∣∣φ(u)∣∣

+ |v|1/(p−1)
(
α2|u|p−2 +β2

∣
∣φ−1(v)

∣
∣k−2 + γ2

)∣
∣φ−1(v)

∣
∣

+ |v|1/(p−1)
(
α1|u|p−1 +β1

∣
∣φ−1(v)

∣
∣k−1 + γ1

)

≤ |u|p−1
(
|v|
m1

)1/(p−1)
+μm2|v|1/(p−1)|u|p−1

+α2m
−1/(p−1)
1 |v|2/(p−1)|u|p−2 +β2m

(1−k)/(p−1)
1 |v|k/(p−1)

+ γ2m
−1/(p−1)
1 |v|2/(p−1) +α1|v|1/(p−1)|u|p−1

+β1m
(1−k)/(p−1)
1 |v|k/(p−1) + γ1|v|1/(p−1)

= l1|u|p−1|v|1/(p−1) + l2|v|k/(p−1) + l3|v|2/(p−1)|u|p−2 + l4|v|2/(p−1) + γ1|v|1/(p−1),
(2.7)
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where

l1 =m
−1/(p−1)
1 +μm2 +α1, l2 = β1m

(1−k)/(p−1)
1 +β2m

(1−k)/(p−1)
1 ,

l3 = α2m
−1/(p−1)
1 , l4 = γ2m

−1/(p−1)
1 ,

(2.8)

while

l1|u|p−1|v|1/(p−1) ≤ l1

(
1
p
|v|p/(p−1) + p− 1

p
|u|p

)

≤ l1max
{
p− 1,

1
p− 1

}(
1
p
|u|p + p− 1

p
|v|p/(p−1)

)

= l1max
{
p− 1,

1
p− 1

}
r2,

l2|v|k/(p−1) ≤ k

p
|v|p/(p−1) + p− k

p
l
p/(p−k)
2 ≤ k

p− 1
r2 +

p− k

p
l
p/(p−k)
2

l3|v|2/(p−1)|u|p−2 ≤ l3

(
2
p
|v|p/(p−1) + p− 2

p
|u|p

)

≤ l3

(
2

p− 1
+ p− 2

)

r2,

l4|v|2/(p−1) ≤ 2
p
|v|p/(p−1) + p− 2

p
l
p/(p−2)
4 ≤ 2

p− 1
r2 +

p− 2
p

l
p/(p−2)
4 ,

γ1|v|1/(p−1) ≤ 1
p
|v|p/(p−1) + p− 1

p
γ
p/(p−1)
1 ≤ 1

p− 1
r2 +

p− 1
p

γ
p/(p−1)
1 .

(2.9)

So,

∣
∣
∣
∣
dr2(t)
dt

∣
∣
∣
∣≤ br2(t) + a, (2.10)

where

a= p− k

p
l
p/(p−k)
2 +

p− 2
p

l
p/(p−2)
4 +

p− 1
p

γ
p/(p−1)
1 ,

b = l1max
{
p− 1,

1
p− 1

}
+ l3

(
2

p− 1
+ p− 2

)

+
k+3
p− 1

.

(2.11)

It follows that

(
r2(0)+

a

b

)
e−bT ≤

(
r2(0)+

a

b

)
e−bt ≤

(
r2(t) +

a

b

)

≤
(
r2(0)+

a

b

)
ebt ≤

(
r2(0)+

a

b

)
ebT , 0≤ t ≤ T.

(2.12)

Let A= [(c2 + a/b)ebT − a/b]1/2, then r(0)= A implies r(t)≥ c. �
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Lemma 2.2. Let (u(t),v(t)) be a solution of (2.1). Suppose the conditions of (H1)–(H5) are
satisfied. Then there is R such that under the generalized polar coordinates, r(0)≥ R implies
that

dθ(t)
dt

≤ 0, t ∈ [0,T]. (2.13)

Proof. Applying generalized polar coordinates,

u= p1/pr2/p|cosθ|(2−p)/p cosθ,

v =
(

p

p− 1

)(p−1)/p
r2(p−1)/p|sinθ|(p−2)/p sinθ,

(2.14)

or

r cosθ = 1√
p
|u|(p−2)/2u,

r sinθ =
√

p− 1
p
|v|(2−p)/2(p−1)v.

(2.15)

Then θ = tan−1[
√
p− 1(|v|((2−p)/2(p−1))v/|u|((p−2)/2)u)]. So we have

θ′ = |u|
((p−2)/2)|v|((2−p)/2(p−1))

2
√
p− 1r2

[
uv′ − (p− 1)u′v

]

=−|u|
((p−2)/2)|v|((2−p)/2(p−1))

2
√
p− 1r2

[
ug(u) +u f

(
u,φ−1(v)

)
φ−1(v)

+ (p− 1)vφ−1(v)−ue
(
t,u,φ−1(v)

)]

(2.16)

as

ug(u) +u f
(
u,φ−1(v)

)
φ−1(v) + (p− 1)vφ−1(v)−ue

(
t,u,φ−1(v)

)

≥ λuφ(u) + (p− 1)vφ−1(v)−|u|
(
α2|u|p−2 +β2

∣
∣φ−1(v)

∣
∣k−2 + γ2

)∣
∣φ−1(v)

∣
∣

−|u|
(
α1|u|p−1 +β1

∣
∣φ−1(v)

∣
∣k−1 + γ1

)

≥ λm1|u|p + (p− 1)m
−1/(p−1)
2 |v|p/(p−1)−α2m

−1/(p−1)
1 |u|p−1|v|1/(p−1)

− γ2m
−1/(p−1)
1 |u||v|1/(p−1)−α1|u|p−

(
β1 +β2

)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1)− γ1|u|

= (λm1−α1
)|u|p + (p− 1)m

−1/(p−1)
2 |v|p/(p−1)−α2m

−1/(p−1)
1 |u|p−1|v|1/(p−1)

− γ2m
−1/(p−1)
1 |u||v|1/(p−1)− (β1 +β2

)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1)− γ1|u|.

(2.17)
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Let

τ = p(p− 1)
4(k− 1)

m
−1/(p−1)
2 , β′ = 4

(
β1 +β2

)
(k− 1)

p(p− 1)
m

(1−k)/(p−1)
1 m

1/(p−1)
2 , (2.18)

so we have

(
β1 +β2

)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1)

= τ|u|
(
|v|(k−1)/(p−1)β′

)
≤ τ|u|

(
k− 1
p− 1

|v|+ p− k

p− 1
β′(p−1)/(p−k)

)

= 1
4
pm

−1/(p−1)
2 |u||v|+ p(p− k)

4(k− 1)
m
−1/(p−1)
2 β′(p−1)/(p−k)|u|

≤ 1
4
pm

−1/(p−1)
2

(
1
p
|u|p + p− 1

p
|v|p/(p−1)

)

+
p(p− k)
4(k− 1)

m
−1/(p−1)
2 β′(p−1)/(p−k)|u|.

(2.19)

Let

τ1 = 1
4
p(p− 1)m

−1/(p−1)
2 , β′1 =

4γ2
p(p− 1)

(
m2

m1

)1/(p−1)
, (2.20)

then

γ2m
−1/(p−1)
1 |u||v|1/(p−1) = τ1|u|

(
|v|1/(p−1)β′1

)

≤ τ1|u|
(

1
p− 1

|v|+ p− 2
p− 1

β
′(p−1)/(p−2)
1

)

= 1
4
pm

−1/(p−1)
2 |u||v|+ p(p− 2)

4
m
−1/(p−1)
2 β

′(p−1)/(p−2)
1 |u|

≤ 1
4
pm

−1/(p−1)
2

(
1
p
|u|p + p− 1

p
|v|p/(p−1)

)

+
p(p− 2)

4
m
−1/(p−1)
2 β

′(p−1)/(p−2)
1 |u|.

(2.21)

Let

τ2 = 1
4
p(p− 1)m

−1/(p−1)
2 , β′2 =

4α2
p(p− 1)

(
m2

m1

)1/(p−1)
(2.22)
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then

α2m
−1/(p−1)
1 |u|p−1|v|1/(p−1)

= τ2
(
|v|1/(p−1)β′2|u|p−1

)
≤ τ2

(
1
p
|v|p/(p−1) + p− 1

p

(
β′2|u|p−1

)p/(p−1)
)

≤ 1
4
pm

−1/(p−1)
2

(
1
p
|u|p + p− 1

p
|v|p/(p−1)

)

+
p− 1
p

τ2β
′
2
p/(p−1)|u|p.

(2.23)

We select λ large enough such that

δ = λm1−α1− p− 1
p

τ2β
′
2
p/(p−1)−m

−1/(p−1)
2 > 0, (2.24)

Let d = γ1 + (p(p − k)/4(k − 1))m
−1/(p−1)
2 β′(p−1)/(p−k) + (p(p − 2)/4)m

−1/(p−1)
2

β
′(p−1)/(p−2)
1 , we also have

d|u| = δp|u|
(

d

δp

)

≤ δ|u|p + (p− 1)δ

(
d

pδ

)p/(p−1)
, (2.25)

therefore

ug(u) +u f
(
u,φ−1(v)

)
φ−1(v) + (p− 1)vφ−1(v)−ue

(
t,u,φ−1(v)

)

≥ 1
4
pm

−1/(p−1)
2

[
1
p
|u|P p+ p− 1

p
|v|p/(p−1)

]

− (p− 1)δ

(
d

pδ

)p/(p−1)

= 1
4
pm

−1/(p−1)
2 r2(t)− (p− 1)δ

(
d

pδ

)p/(p−1)
.

(2.26)

Lemma 2.1 implies that there is R > 0, such that

1
4
pm

−1/(p−1)
2 r2(t) > (p− 1)δ

(
d

pδ

)p/(p−1)
(2.27)

when r(0) >R, then our assertion is verified. �

Lemma 2.3. Assume that (H1)–(H5) hold, and

1
p
|ξ|p + p− 1

p
|η|p/(p−1) = A2 (A	 1) (2.28)
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then

(
u(T ,ξ,η),v(T ,ξ,η)

) �= (λ2/pξ,λ2(p−1)/pη), (2.29)

where λ is an arbitrary positive number.

Proof. It follows from Lemma 2.1 that if

1
p
|ξ|p + p− 1

p
|η|p/(p−1) = A2, (2.30)

then

1
p

∣
∣u(t,ξ,η)

∣
∣p +

p− 1
p

∣
∣v(t,ξ,η)

∣
∣p/(p−1) ≥ c2 for t ∈ [0,T]. (2.31)

According to the generalized polar coordinates (2.14), we have

r(t)≥ c for t ∈ [0,T] if r(0)=A. (2.32)

On the other hand, when r(0)→∞, it holds uniformly from (H1)–(H3) that

−θ′ = |u|
(p−2)/2|v|(2−p)/2(p−1)

2
√
p− 1r2

[
ug(u) +u f

(
u,φ−1(v)

)
φ−1(v)

+ (p− 1)vφ−1(v)−ue
(
t,u,φ−1(v)

)]

≥ |u|
(p−2)/2|v|(2−p)/2(p−1)

2
√
p− 1r2

[(
λm1−α1

)|u|p + (p− 1)m
−1/(p−1)
2 |v|p/(p−1)

−α2m
−1/(p−1)
1 |u|p−1|v|1/(p−1)− γ2m

−1/(p−1)
1 |u||v|1/(p−1)

− (β1 +β2
)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1)− γ1|u|

]

(2.33)

as

α2m
−1/(p−1)
1 |u|p−1|v|1/(p−1)

=m
−1/(p−1)
2

(
|v|1/(p−1)

)
[

α2

(
m2

m1

)1/(p−1)
|u|p−1

]

≤m
−1/(p−1)
2

[
1
p
|v|p/(p−1) + p− 1

p
α
p/(p−1)
2

(
m2

m1

)p/(p−1)2

|u|p
]

= 1
p
m
−1/(p−1)
2 |v|p/(p−1) + p− 1

p
α
p/(p−1)
2 m1

−p/(p−1)2m2
1/(p−1)2|u|p.

(2.34)
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So

−θ′ ≥ |u|
(p−2)/2|v|(2−p)/2(p−1)

2
√
p− 1r2

[
(
λm1−α1− α̃

)|u|p + p′ − 1
p′

(p− 1)m
−1/(p−1)
2 |v|p/(p−1)

− γ2m
−1/(p−1)
1 |u||v|1/(p−1)

− (β1 +β2
)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1)− γ1|u|

]

= p|sinθ|(2−p)/p|cosθ|(p−2)/p
2(p− 1)1/p

[
(
λm1−α1− α̃

)
cos2 θ +

p′ − 1
p′

m
−1/(p−1)
2 sin2 θ

]

− γ2m
−1/(p−1)
1 p2/p

2(p− 1)2/pr2(p−2)/p
|cosθ||sinθ|(4−p)/p

−
(
β1 +β2

)
m

(1−k)/(p−1)
1 pk/p

2(p− 1)k/pr2(p−k)/p
|cosθ||sinθ|(2k−p)/p

− γ1p1/p

2(p− 1)1/pr2(p−1)/p
|cosθ||sinθ|(2−p)/p

= a1
(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

− γ2m
−1/(p−1)
1 p2/p

2(p− 1)2/pr2(p−2)/p
|cosθ||sinθ|(4−p)/p

−
(
β1 +β2

)
m

(1−k)/(p−1)
1 pk/p

2(p− 1)k/pr2(p−k)/p
|cosθ||sinθ|(2k−p)/p

− γ1p1/p

2(p− 1)1/pr2(p−1)/p
|cosθ||sinθ|(2−p)/p,

(2.35)

where

α̃= p− 1
p

α
p/(p−1)
2 m

−p/(p−1)2
1 m

1/(p−1)2
2 , p′ = p(p− 1),

a1 = p(p′ − 1)

2p′(p− 1)1/pm
1/(p−1)
2

, b1 = p′

p′ − 1

(
λm1−α1− α̃

)
m

1/(p−1)
2 .

(2.36)

Denote b̂ =min{b1,1}, then we have

−θ′ ≥ a1
(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

− γ2m
−1/(p−1)
1 p2/p

2b̂(p− 1)2/pr2(p−2)/p

(
b1 cos2 θ + sin2 θ

)
|cosθ||sinθ|(4−p)/p
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−
(
β1 +β2

)
m

(1−k)/(p−1)
1 pk/p

2b̂(p− 1)k/pr2(p−k)/p

(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

− γ1p1/p

2b̂(p− 1)1/pr2(p−1)/p

(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

= â1
(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p,

(2.37)

where

â1 = a1− γ2m
−1/(p−1)
1 p2/p

2b̂(p− 1)2/pr2(p−2)/p
−
(
β1 +β2

)
m

(1−k)/(p−1)
2 pk/p

2b̂(p− 1)k/pr2(p−k)/p
− γ1p1/p

2b̂(p− 1)1/pr2(p−1)/p
.

(2.38)

Assume that it takes time Δt for the motion (r(t),θ(t))(r(0)= A, θ(0)= θ0) to com-
plete one cycle around the origin. It follows from the above inequality that

Δt <
∫ θ0+2π

θ0

dθ

â1
(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

= 4
â1

∫ π/2

0

dθ
(
b1 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

.

(2.39)

Let

η = tan−1
1
√
b1

tanθ, (2.40)

then

Δt <
4

â1b
1/p
1

∫ π/2

0

dη

| tanη|(2−p)/p =
2

â1b
1/p
1

B

(
1
p
,
p− 1
p

)

= 2π

â1b
1/p
1 sin(π/p)

, (2.41)

from (H4), we have

a1b
1/p
1 sin

π

p
= π

πp

(
p′ − 1
p′

)(p−1)/p(
λm1−α1− α̃

m2

)1/p

>
2nπ
T

. (2.42)

So there exists σ > 0 such that (a1− σ)b
1/p
1 sin(π/p) > 2nπ/T . For the σ > 0, there exists

R′ > 0 such that

0 <
γ2m

−1/(p−1)
1 p2/p

2b̂(p− 1)2/pr2(p−2)/p
+

(
β1 +β2

)
m

(1−k)/(p−1)
2 pk/p

2b̂(p− 1)k/pr2(p−k)/p
+

γp1/p

2b̂(p− 1)1/pr2(p−1)/p
< σ

(2.43)
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for A >R′ large enough. So we have

â1b
1/p
1 sin

π

p
=
(

a1− γ2m
−1/(p−1)
1 p2/p

2b̂(p− 1)2/pr2(p−2)/p
−
(
β1 +β2

)
m

(1−k)/(p−1)
2 pk/p

2b̂(p− 1)k/pr2(p−k)/p

− γp1/p

2b̂(p− 1)1/pr2(p−1)/p

)

b
1/p
1 sin

π

p
> (a1− σ)b

1/p
1 sin

π

p
>
2nπ
T

.

(2.44)

Therefore

T

Δt
> n (2.45)

as

α2m
−1/(p−1)
1 |u|p−1|v|1/(p−1) =m

−1/(p−1)
1

(
|v|1/(p−1)

)(
α2|u|p−1

)

≤m
−1/(p−1)
1

[
1
p
|v|p/(p−1) + p− 1

p
α
p/(p−1)
2 |u|p

]

= 1
p
m
−1/(p−1)
1 |v|p/(p−1) + p− 1

p
α
p/(p−1)
2 m

−1/(p−1)
1 |u|p.

(2.46)

Similarly, we have

0 <−θ′ = |u|
(p−2)/2|v|(2−p)/2(p−1)

2
√
p− 1r2

[
ug(u) +u f

(
u,φ−1(v)

)
φ−1(v) + (p− 1)vφ−1(v)

−ue
(
t,u,φ−1(v)

)]

≤ |u|
(p−2)/2|v|(2−p)/2(p−1)

2
√
p− 1r2

[(
μm2 +α1)|u|p + (p− 1)m

−1/(p−1)
1 |v|p/(p−1)

+α2m
−1/(p−1)
1 |u|p−1|v|1/(p−1)+γ2m−1/(p−1)

1 |u||v|1/(p−1)

+
(
β1 +β2

)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1) + γ1|u|

]

≤ |u|
(p−2)/2|v|(2−p)/2(p−1)

2
√
p− 1r2

[(
μm2 +α1 + α̃′

)|u|p + p′ +1
p′

(p− 1)m
−1/(p−1)
1 |v|p/(p−1)

+ γ2m
−1/(p−1)
1 |u||v|1/(p−1)

+
(
β1 +β2

)
m

(1−k)/(p−1)
1 |u||v|(k−1)/(p−1) + γ1|u|

]
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= p|sinθ|(2−p)/p|cosθ|(p−2)/p
2(p− 1)1/p

[
(
μm2 +α1 + α̃′

)
cos2 θ +

p′ +1
p′

m
−1/(p−1)
1 sin2 θ

]

+
γ2m

−1/(p−1)
1 p2/p

2(p− 1)2/pr2(p−2)/p
|cosθ||sinθ|(4−p)/p

+

(
β1 +β2

)
m

(1−k)/(p−1)
1 pk/p

2(p− 1)k/pr2(p−k)/p
|cosθ||sinθ|(2k−P)/p

+
γ1p1/p

2(p− 1)1/pr2(p−1)/p
|cosθ||sinθ|(2−p)/p

= a2
(
b2 cos2 θ + sin2 θ

)
|sinθ|(2−p)/p|cosθ|(p−2)/p

+
γ2m

−1/(p−1)
1 p2/p

2(p− 1)2/pr2(p−2)/p
|cosθ||sinθ|(4−p)/p

+

(
β1 +β2

)
m

(1−k)/(p−1)
1 pk/p

2(p− 1)k/pr2(p−k)/p
|cosθ||sinθ|(2k−p)/p

+
γ1p1/p

2(p− 1)1/pr2(p−1)/p
|cosθ||sinθ|(2−p)/p,

(2.47)

where

α̃′ = p− 1
p

α
p/(p−1)
2 m

−1/(p−1)
1 , a2 = p(p′ +1)

2p′(p− 1)1/pm
1/(p−1)
1

,

b2 = p′

p′ +1

(
μm2 +α1 + α̃′

)
m

1/(p−1)
1 ,

(2.48)

with the similar argument, we also get

T

Δt
< n+1. (2.49)

Then it holds that

n <
T

Δt
< n+1. (2.50)

To finish the proof, we claim that If n < T/Δt < n + 1, then (u(T ,ξ,η),v(T ,ξ,η)) �=
(λ2/pξ,λ2(p−1)/pη). If there is λ > 0 such that (u(T ,ξ,η),v(T ,ξ,η)) = (λ2/pξ,λ2(p−1)/pη),
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then
(

p1/pr(T)2/p
∣
∣cosθ(T)

∣
∣(2−p)/p cosθ(T),

(
p

p− 1

)(p−1)/p

× r(T)2(p−1)/p
∣
∣sinθ(T)

∣
∣(p−2)/p sinθ(T)

)

=
(

λ2/p p1/pr(0)2/p
∣
∣cosθ(0)

∣
∣(2−p)/p cosθ(0),λ2(p−1)/p

(
p

p− 1

)(p−1)/p

× r(0)2(p−1)/p
∣
∣sinθ(0)

∣
∣(p−2)/p sinθ(0)

)

.

(2.51)

So

r(T)2/p
∣
∣cosθ(T)

∣
∣(2−p)/p cosθ(T)= λ2/pr(0)2/p

∣
∣cosθ(0)

∣
∣(2−p)/p cosθ(0), (2.52)

r(T)2(p−1)/p
∣
∣sinθ(T)

∣
∣(p−2/p sinθ(T)= λ2(p−1)/pr(0)2(p−1)/p

∣
∣sinθ(0)

∣
∣(p−2/p sinθ(0).

(2.53)

From (2.52) we have

r(T)2/p
∣
∣cosθ(T)

∣
∣2/psgncosθ(T)= (λr(0))2/p∣∣cosθ(0)∣∣2/psgncosθ(0), (2.54)

so, sgncosθ(T) = sgncosθ(0), therefore, r(T)2/p|cosθ(T)|2/p = (λr(0))2/p|cosθ(0)|2/p,
moreover,

r(T)cosθ(T)= λr(0)cosθ(0). (2.55)

Similarly from (2.53) one has

r(T)sinθ(T)= λr(0)sinθ(0). (2.56)

So, from (2.55) and (2.56), we have

r(T)= λr(0),
(
cosθ(T), sinθ(T)

)= (cosθ(0),sinθ(0)). (2.57)

Therefore,

θ(T)= θ(0)+ 2kπ or θ(T)− θ(0)= 2kπ. (2.58)

However, from nΔt < T < (n+1)Δt, we have

θ(T)− θ(0) < θ(nΔt)− θ(0)=−2nπ, (2.59)

θ(T)− θ(0) > θ
(
(n+1)Δt

)− θ(0)=−2(n+1)π, (2.60)

since θ′ < 0. So there is no integer k such that θ(T)− θ(0)= 2kπ.
Therefore, the conclusion follows. �
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Theorem 2.4. Suppose (H1)–(H5) hold. Then (1.4) has at least one T-periodic solution
u(t).

Proof. By Lemma 2.3, we know that there exists A > 0 (A	 1) such that if

1
p
|ξ|p + p− 1

p
|η|p/(p−1) = A2, (2.61)

then

(
u(T ,ξ,η),v(T ,ξ,η)

) �= (λ2/pξ,λ2(p−1)/pη) for λ > 0. (2.62)

Assume that

ξ1 = u(T ,ξ,η), η1 = v(T ,ξ,η). (2.63)

Consider a two-dimensional open region DA bounded by

DA =
{

(ξ,η) :
1
p
|ξ|p + p− 1

p
|η|p/(p−1) =A2

}

, (2.64)

then we define a topological mapping

H :DA �−→R2, (ξ,η) �−→ (ξ1,η1). (2.65)

It follows from Lemma 2.3 that

(ξ1,η1) �=
(
λ2/pξ,λ2(p−1)/pη

)
, (ξ,η)∈ ∂DA. (2.66)

Now we define a homotopy h :DA× [0,1]→ R2 by

h(ξ,η,μ)=−(μ2/pξ,μ2(p−1)/pη)+ ((1−μ)2/pξ1, (1−μ)2(p−1)/pη1
)

=−
(
μ2/p 0
0 μ2(p−1)/p

)

I(ξ,η) +

(
(1−μ)2/p 0

0 (1−μ)2(p−1)/p

)

H(ξ,η),
(2.67)

for μ∈ [0,1]. It is easy to see that h(ξ,η,0),h(ξ,η,1) �= 0 for (ξ,η)∈ ∂DA. Then we show
that h(ξ,η,μ) �= 0 for (ξ,η)∈ ∂DA, where μ∈ (0,1). If not, there is μ0 ∈ (0,1),(ξ,η)∈ ∂DA

such that h(ξ,η,μ0)= 0, that is,

(ξ1,η1)=
((

μ

1−μ

)2/p
ξ,
(

μ

1−μ

)2(p−1)/p
η

)

, (2.68)

which is impossible. So h(ξ,η,μ) �= 0 for μ∈ [0,1].
Then, deg{h(ξ,η,0),DA,0} = deg{h(ξ,η,1),DA,0}, that is,

deg{H ,DA,0} = deg{−I ,DA,0} �= 0. (2.69)

Therefore, H has at least one fixed point (ξ∗,η∗) ∈ DA. It is easy to see that u(t) =
u(t,ξ∗,η∗) is a T-periodic solution of (1.4). �
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If we let φ(u) = ϕp(u) = |u|p−2u, p > 2, then we have the following special cases of
(1.4):

(
ϕp(u′)

)′
+ f (u,u′)u′ + g(u)= p(t,u,u′) t ∈ [0,T], (2.70)

so we can easy get the following results.

Theorem 2.5. Assume (H2) and (H3) hold and solutions of (2.70) are unique with respect
to initial value, moreover suppose that there exist λ, μ, and n such that

(
p′

p′ − 1

)p−1(
2nπp

T

)p

+α1 +
p− 1
p

α2
p/p−1

< λ≤ g(x)
φp(x)

≤ μ <

(
p′

p′ +1

)p−1(
2(n+1)πp

T

)p

−α1− p− 1
p

α2
p/p−1,

(2.71)

then (2.70) has at least one T-periodic solution.

3. Example

In this section, we present an example to illustrate our main results. Consider the follow-
ing differential equation:

(
φ(u′)

)′
+ f (u,u′)u′ + g(u)= e(t,u,u′), t ∈ [0,T], (3.1)

where

φ(x)= |x|(x+ sinx), f (x, y)= |y|3/4 + a, a > 0, g(x)= 2φ(x),

e(t,x, y)=−2
3
|x|x−|y|3/4y + bcos2πt, b > 0.

(3.2)

We claim that

2
3
|x|2 ≤ ∣∣φ(x)∣∣≤ 2|x|2. (3.3)

In fact, if x �= 0, we have

∣
∣φ(x)

∣
∣= |x|2

∣
∣
∣
∣1+

sinx
x

∣
∣
∣
∣ > |x|2

(
1− 1

π

)
>
2
3
|x|2, (3.4)

so (3.3) holds. Therefore, p = 3, m1 = 2/3, m2 = 2. Also, we can get α1 = 2/3, β1 = 1,
γ1 = b, α2 = 0, β2 = 1, γ2 = a, k = 11/4.

Let n= 0 and T = 1, then conditions (H1)–(H4) are satisfied.
Now, we check that condition (H5) is satisfied.
Suppose that x1(t) and x2(t) are two different solutions to (3.1) satisfying

x1(t0)= x2(t0)= x0, x′1(t0)= x′2(t0)= x′0. (3.5)
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Let y = φ(x′), then (xi(t), yi(t))= (xi(t),φ(x′i (t))) (i= 1,2) are two different solutions to
the system

x′ = φ−1(y),

y′ = −g(x)− f
(
x,φ−1(y)

)
φ−1(y) + e

(
t,x,φ−1(y)

)
,

(3.6)

satisfying (xi(t0), yi(t0))= (x0,φ(x′(t0))) (i= 1,2).
Without loss of generality, we assume that there exists t1 > t0 such that

x2(t) > x1(t), t ∈ (t0, t1
]
. (3.7)

As x1(t0)= x2(t0)= x0, x′1(t0)= x′2(t0)= x′0, and xi ∈ C2[t0, t1], so there exists t∗ ∈ (t0, t1)
such that

x′2(t) > x′1(t), t ∈ (t0, t∗
]
. (3.8)

Therefore, for t ∈ (t0, t∗], we have

y2(t)− y1(t)=−
∫ t

t0

{[
g
(
x2(s)

)− g
(
x1(s)

)]
+
[
f
(
x2(s),x′2(s)

)
x′2(s)− f

(
x1(s),x′1(s)

)
x′1(s)

]

− [e(s,x2(s),x′2(s)
)− e

(
s,x1(s),x′1(s)

)]}
ds

=−
∫ t

t0

{
2
[
φ
(
x2(s)

)−φ
(
x1(s)

)]
+2
[∣
∣x′2(s)

∣
∣3/4x′2(s)−

∣
∣x′1(s)

∣
∣3/4x′1(s)

]

+ a
(
x′2(s)− x′1(s)

)
+
2
3

[∣
∣x′2(s)

∣
∣x′2(s)−

∣
∣x′1(s)

∣
∣x′1(s)

]}
ds < 0.

(3.9)

That is,

φ
(
x′2(t)

)−φ
(
x′1(t)

)
< 0, t ∈ (t0, t∗

]
. (3.10)

So, x′2(t) < x′1(t), t ∈ (t0, t∗], this is a contradiction.
Therefore, by Theorem 2.4, we can conclude that (3.1) has at least one 1-periodic so-

lution.
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24 (1992), no. 1-2, 207–227 (1994).

[6] C. Fabry, J. Mawhin, and M. N. Nkashama, A multiplicity result for periodic solutions of forced
nonlinear second order ordinary differential equations, Bulletin of the London Mathematical So-
ciety 18 (1986), no. 2, 173–180.

[7] J.-P. Gossez and P. Omari, Periodic solutions of a second order ordinary differential equation: a
necessary and sufficient condition for nonresonance, Journal of Differential Equations 94 (1991),
no. 1, 67–82.
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