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We prove the following let &, 8,a > 0, and b > 0 be real numbers, and let w; (j = 1,...,n;
n>2) be positive real numbers with w; +- = 1. The inequalities « 27 ywi/(1— p?)
Siiwi/(1=pj) 35 wi/(1+pj) ﬁZ] L wil( p]) hold for all real numbers p; €
[0,1) (j = 1,...,n) if and only if & < min(1, a/2 and = max(1,(1 — min,<j<, w;/2)b).
Furthermore, we provide a matrix version. The first inequality (with @ =1and a=2) is
a discrete counterpart of an integral inequality published by E. A. Milne in 1925.
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1. Introduction

Motivated by an interesting paper of Rao [8], we proved in [1] the following double-
inequality for sums.

ProrosiTION 1.1. Let w; (j=1,...,n; n>2) be positive real numbers with wy +- - - +w, = 1.
Then we have for all real numbers p; € [0,1) (j = 1,...,n),

(2i%) <5 iy = (Sity) . o

with the best possible exponents

=1, €2 =2— min w;. (1.2)
1<j<n
The left-hand side of (1.1) (with ¢; = 1) is a discrete version of an integral inequality
due to Milne [7]. Rao showed that (1.1) (with ¢; = 1 and ¢, = 2) is valid for all w; >0
(j=1..,m)withw;+---+w,=1landall p; € (-1,1) (j = 1,...,n).
Double-inequality (1.1) admits the following matrix version; see [1, 8].

ProrosiTION 1.2. Let wj (j = 1,...,n5n = 2) be positive real numbers with wy + - - - +
wy = 1 and let I be the unit matrix. Then we have for all families of commuting Hermitian
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matrices Py,...,P, with0 < P; <I (j =1,...,n),

(ij(IZ—P})”) <> wi(I-P Z (I+P;) 1s(ij(Iz—P})‘l),
j=1 j=1 j=1

(1.3)
with the best possible exponents

=1, =2— min w;. (1.4)
1<j<n

In Section 2 we provide new bounds for Z]'Ll w;/(1—pj) Z _1w;/(1+pj), which are
closely related to those given in (1.1). It turns out that the new upper bound and the upper
bound in (1.1) cannot be compared. And in Section 3 we present a matrix analogue of
our discrete double-inequality.

2. Inequalities for sums

The following counterpart of Proposition 1.1 holds.

THEOREM 2.1. Let a,3,a >0, and b > 0 be real numbers. Further, let w; (j = 1,...,n;n > 2)
be positive real numbers with wy + - - - + w,, = 1. The inequalities

Wi n n n Wi
N e D e D @)
= j=1 j=1 j=1 _p
hold for all real numbers p; € [0,1) (j = 1,...,n) if and only if

o« < min(1,a/2), B = max <1 (1 — min w]/2> b) (2.2)

1<j=n

Proof. Let w = min<j<, wj and ¢ = 2/(2 — w). First, we suppose that B = max(1,b/c).
Since

_ pb
max(l,b/c)zl_f;c (0=<p<), (23)
we obtain
n Wi n Wi
B > L (2.4)
j;l—P? ;;1‘1’1‘

To prove the right-hand side of (2.1) we may assume that

O0<pp<pp1=---=<p1<L (2.5)
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We define

j=11_P; j=11_pjj=ll+pj, (26)
F‘Z(p) =F(p,.-.,P,Pq+1,--->Pn), 15615”_1’ Pq+1 <p< L

Differentiation leads to

)2 2 2 n )2 2
Ul’)Fé(p):cp”(l p) —2pWo+ > w;((l D _{d+p) ) (2.7)

W‘] l_pc j=q+1 1_pj 1+Pj
where Wy = wy + - - - +w,. Using
(1_17)2 (1+P)2 2 2 .
- >(1-p)—10+p) forj=qg+1,...,n, (2.8)
we get
1-p?)°? 1-p7\
(Mf)F‘;(p)zq“l(l_};C) —4p+2pWy
! , (2.9)
-1 1_P2 -1
> cp© —4c7 ' p =G(c,p), say.
1—pe
Let
r_ o V(r=s)
E(r,sx,y) = (£u> (2.10)
rxS_yS
be the extended mean of order (r,s) of x, y > 0. Then we have
Gle,p) = 4c ' p (EQ2,6p, 1)) 7 —4c™!p. (2.11)

Since 1 < ¢ <2 and E(r,s;x, y) increases with increase in either r or s (see [4]), we obtain

E(2,cp,1) = E(2,1;p,1) = pTH > pl/2, (2.12)

From (2.11) and (2.12) we conclude that G(c, p) > 0. This implies that F; is strictly in-
creasing on [ pg11,1). Hence, we get

E(p1,.-.., pn) = Fi(p1) = Fi(p2) = Fa(p2) = Fa(p3)

1 1 (2.13)
—_— > 0.
1-p; 1-p3
Combining (2.4) and (2.13) it follows that the inequality on the right-hand side of (2.1)
is valid.

> e > anl (pn,l) Zanl(pVI) =
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Next, let « < min(1,a/2). Applying

1_ a
min(1,a/2) < 1 pz

(0<p<1) (2.14)

and the first inequality of (1.1) (with ¢; = 1) we conclude that the left-hand side of (2.1)
holds for all real numbers pi €10,1) (j =1,...,n).

It remains to show that the validity of (2.1) implies (2.2). Weset py = ---=p,=p €
(0,1). Then the left-hand side of (2.1) leads to

< b= pa.
1-p?
We let p tend to 0 and obtain & < 1. And, if p tends to 1, then (2.15) yields a < a/2. Let

w=wiwithk € {1,...,n}. Weset p;j =0 (1 < j<mn;j#k)and py = p € (0,1). Then the
right-hand side of (2.1) is equivalent to

(2.15)

(I=w+w/(1=p)) Q1 =w+w/(1+p))
1—w+w/(1-pb)

<B (2.16)

If p tends to 0, then 1 < f. And, if p tends to 1, then we get (1 — w/2)b < f. O
Remarks 2.2. (i) We define for b > 0,

H(b) = max (1,(1 — w/2)b) Z b (2.17)
:1 ]

where w; >0 (j = 1,...,n), wy +--- +w, = I, w = mini<j<, wj, and p; € [0,1) (j =
1,...,n). If0<b<2/(2—w), then

H'(b) =

noa,. b )
Ziwjpflog(p]) < (2.18)

o _P]b‘)2
And, if b > 2/(2 — w), then

H'(b) = (1-w/2) Z (1-p%+pllog(p?)) = (2.19)

- p] )
This implies that H is decreasing on (0,2/(2 — w)] and increasing on [2/(2 — w), o).
Hence: if (2.2) holds, then the function

n

H*(ﬁ)b) =

(2.20)
il pj

satisfies H* (8,b) = H*(1,2/(2 — w)). This means that the expression on the right-hand

side of (2.1) attains its smallest value if § = 1 and b = 2/(2 — w). Similarly, we obtain: if

(2.2) holds, then the expression on the left-hand side of (2.1) attains its largest value if
a=1landa=2.



H. Alzer and A. Kovacec 5

(ii) The upper bounds given in (1.1) with ¢; =2 —wand (2.1) with =1, b =2/(2 -
w) cannot be compared. To prove this we set p; = - -+ = p, = p € (0,1) and denote by
Ri(p) and Ry(p) the expressions on the right-hand side of (1.1) and (2.1), respectively.
Then we get

Ri(p) = (1—1]72) ) Ry(p) = 1—1pr (2.21)

First, we show that R, (p) > R,(p) in the neighbourhood of 1. Let
A(p) =Ri(p) - Ra(p),  @(p) = (1-p")A(p). (2.22)

Since ¢; > 1, b > 1 we have
b-1
limg(p) = hmbp—c_l 1=, (2.23)
P=12pey(1-p?)”
This implies that ¢ and A are positive in the neighbourhood of 1.

Next, we show that R; (p) < Rz(p) in the neighbourhood of 0. Let
a(p) = A(p'?). (2.24)
We obtain ¢(0) = 0 and since 0 < b/2 < 1 we get
limo’(p) = lim (C;—Qpb/zl%) = —oo0, (2.25)
p—0 p=o\ (I=p)atl 2 (1-pb2)

This implies that ¢ and A attain negative values in the neighbourhood of 0.

(iii) The two-parameter mean value family defined in (2.10) has been the subject of
intensive research. The main properties are studied in [4-6], where also historical remarks
and references can be found.

3. Matrix inequalities

We now provide a matrix analogue of Theorem 2.1. The reader who wants to have a
proper understanding of the following theorem and its proof needs a general knowledge
of matrix theory. We refer to the monographs [2, 3].

TuEOREM 3.1. Let a,3,a >0, and b > 0 be real numbers. Further, let w; (j = 1,...,n;n > 2)
be positive real numbers with wy + - - - + w,, = 1. The inequalities

i (1-P%)" i i (I+P) ' < i (- (1)

hold for all families of commuting Hermitian matrices P\,..., Py, satisfying 0 < P; < I in the
Lowner ordering, if and only if

a < min(1,a/2), B = max <1, (1 mm w]/Z) b) (3.2)

<]<n
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Proof. First, we assume that (3.2) is valid. Since the P; commute, there exists a nonsingu-
lar matrix S such that S‘leS = diag(...,Asj,...), where A1j,...,A,; are the eigenvalues of
P;. By definition of the positive semidefinite ordering (Lowner ordering) it follows that
P; <I implies 0 < A;; < 1 for I = 1,...,n. So the expressions given in (3.1) make sense.
Denoting by L, M, and R the matrices on the left-hand side, in the middle, and on the
right-hand side of (3.1), respectively, we get

Tow; wj w;
3—1L5=diag<...,a : ) S‘1M8=diag<...,z Ly f)
1:11_ ?j ].:11—/1[]'],:11‘%/11]'
s-le_diag(...,ﬁZ Wf'b,...>.

(3.3)

Applying Theorem 2.1 we obtain S™'LS < $7'!MS < S!RS, and hence L < M <R.

Next, we suppose that (3.1) holds for all families of commuting Hermitian matrices
Py,..., Py, satisfying 0 < P; < I. We proceed in analogy with the proof of Theorem 2.1: put
Py =... =P, =diag(p,...,p) with p € (0,1). Then the left-hand side of (3.1) leads to an
inequality for scalar matrices (i.e., multiples of the identity I), namely,

1
lo4 I< ! I- !
1—pe 1-p 1+p

I (3.4)

Considering a pair of corresponding diagonal entries we conclude that this inequality is
equivalent to (2.15). Tending with p to 0 and 1, respectively, we get &« < min(1,a/2). Next,
let w = wi, where k € {1,...,n}. Weset P; = 0 for j # k and Py = pI. Then the right-hand
side of (3.1) yields

((L=w)I+ (w/(1=p)I) - (1= w)+ (w/(1+p))I) < B((1 = w)I+ (w/(1 - p))I).
(3.5)

Again, this is an inequality for scalar matrices and it suffices to consider diagonal entries.
This leads to (2.16). We let p tend to 0 and 1, respectively, and obtain the second of the
inequalities (3.2). O
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