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A general method is given in order to guarantee at least one nontrivial solution, as well
as infinitely many radially symmetric solutions, for an abstract class of hemivariational
inequalities. This abstract class contains some special cases studied by many authors. We
remark that, differently from the classical literature, in the proofs we use the Cerami com-
pactness condition and the principle of symmetric criticality for locally Lipschitz func-
tions.

1. Introduction

Let (H ,〈·,·〉H) be a real separable Hilbert space and we suppose that the inclusions H↩
Ll(RN ) are continuous with the embedding constants C(l), where l ∈ [2, p0] (2 < p0 <
2� = 2N/(N − 2)). We denote by ‖ · ‖H the norm induced on H by the inner product
〈·,·〉H and by ‖ · ‖l the norm of Ll(RN ).

Let f : RN ×R→ R be a continuous function. Several studies have appeared dealing
with the existence and multiplicity of nonzero solutions u∈H of the equation

(E)

〈u,v〉H =
∫
RN

f
(
x,u(x)

)
v(x)dx, ∀v ∈H. (1.1)

Existence and multiplicity results in some special cases of (E) were studied in many pa-
pers, see for instance Strauss [20], Bartsch and Willem [3, 4], Bartsch and Wang [2], and
in the monographs of Kavian [8], Struwe [21], and Willem [22].

Now, let f : RN ×R→ R be a measurable function, and consider a real number 2 <
p < p0, and we suppose that the function f satisfies the growth condition

(f1) | f (x,s)| ≤ c(|s|+ |s|p−1) for a.e. x ∈RN , for all s∈R,
where c > 0 is a positive constant. In what follows, we use only that the functions h1(u)=
c|u| and h2(u)= c|u|p−1 are convex, increasing, and h1(0)= h2(0)= 0.

Let F :RN ×R→R be the function defined by

F(x,u)=
∫ u

0
f (x,s)ds, for a.e. x ∈RN , ∀s∈R. (1.2)
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For a.e. x ∈RN , we have

∣∣F(x,u)−F(x,v)
∣∣≤ c1|u− v|[h1(|u|)+h1

(|v|)+h2
(|u|)+h2

(|v|)], (1.3)

where c1 is a constant which does not depend on u and v. Therefore, the function F(x,·)
is locally Lipschitz and we can define the (partial) Clarke derivative of it, that is,

F0
2 (x,u;w)= limsup

y→u, t→0+

F(x, y + tw)−F(x, y)
t

, (1.4)

for a.e. x ∈RN and for all u,w ∈R.
Now we formulate the following hemivariational inequality problem.

Problem 1.1. Find u∈H such that
(P)

〈u,v〉H +
∫
RN

F0
2

(
x,u(x);−v(x))≥ 0, ∀v ∈H. (1.5)

To study the existence of solutions of problem (P), we introduce the functional Ψ :
H →R defined by Ψ(u)= (1/2)‖u‖2H −Φ(u), where Φ(u)= ∫RN F(x,u(x))dx. We will see
that the critical points (in the sense of Chang) of the functional Ψ are the solutions of
problem (P). Therefore, it is enough to study the existence of the critical points of the
functional Ψ.

Such problems appear in the nonsmoothmechanics, see the books of Panagiotopoulos
[17, 18], Motreanu and Panagiotopoulos [14]. The study of problem (P) is motivated
by these books and by the aforementioned papers. We emphasize that problem (P) was
studied in some special cases by Gazzola and Rădulescu [6], and Kristály [11], where the
nonsmooth Palais-Smale condition was used. In this paper, we extend the above results to
a general case and we use the so-called nonsmooth Cerami compactness condition. More
precisely, we say that Ψ satisfies the Cerami (PS) condition at level c ∈ R ((CPS)c) if
every sequence (un) ⊂ H , such that Ψ(un)→ c and (1 + ‖un‖H)λΨ(un)→ 0, contains a
convergent subsequence in H (see [9] or [12]).

We suppose that the function f :RN ×R→R satisfies the following condition.
(f2) There exist α∈ (max{2, p0((p− 2)/(p0− 2))}, p0) and a constant C > 0 such that

for a.e. x ∈RN and all u∈R, we have

−C|u|α ≥ F(x,u) +
1
2
F0
2 (x,u;−u). (1.6)

To study the Cerami compactness condition, we impose further assumptions on f .
First, we define two functions by

f (x,s)= lim
δ→0+

essinf
{
f (x, t) : |t− s| < δ

}
,

f (x,s)= lim
δ→0+

esssup
{
f (x, t) : |t− s| < δ

}
,

(1.7)
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for every s∈R and a.e. x ∈RN . It is clear that f (x,·) is lower semicontinuous and f (x,·)
is upper semicontinuous. The following hypotheses for f was introduced by Chang [5].

(f3) The functions f , f are N-measurable, that is, for every measurable function u :

RN →R, the functions x 
→ f (x,u(x)), x 
→ f (x,u(x)) are measurable.

(f4) For every ε > 0, there exists cε > 0, such that for a.e. x ∈RN and for every s∈R,
we have

∣∣ f (x,s)∣∣≤ εh1(s) + c(ε)h2(s), (1.8)

where the inclusionH↩L2(RN ) is continuous and the inclusionH↩Lp(RN ) is
compact.

Remark 1.2. We observe that, if we impose the following condition on f :
(f′4) if the inclusion H↩L2(RN ) is continuous, H↩Lp(RN ) is compact and

lim
ε→0+

esssup
{∣∣∣∣ f (x,s)s

∣∣∣∣ : (x,s)∈RN×]− ε,ε[
}
= 0, (1.9)

then this condition with (f1) implies (f4).

We have the following result.

Theorem 1.3. If the conditions (f1)–(f4) are fulfilled, then Ψ satisfies the (CPS)c condition
for every c > 0.

To prove the existence and multiplicity results for problem (P), we impose that the
function f satisfies the following conditions.

(f5) For a constant c� > 0 and for α from condition (f2), we have

F(x,u)≥ c�
(|u|α−|u|2) (1.10)

for a.e. x ∈RN and all s∈R.
(f6) For a.e. x ∈RN and all s∈R, f (x,−s)=− f (x,s).
Our main results are the following.

Theorem 1.4. If the conditions (f1)–(f5) are fulfilled, then problem (P) has a nontrivial
solution.

Theorem 1.5. If the conditions (f1)–(f6) are fulfilled, then problem (P) has infinitely many
distinct solutions.

In what follows, let G be the compact topological group O(N) or a subgroup of O(N).
We consider that G acts continuously and linearly isometrically on the Hilbert space H .
Denote by

HG = {u∈H | gx = x ∀g ∈G
}

(1.11)
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the fixed point set of the action G onH . It is well know thatHG is a closed subspace ofH .
We suppose in addition that the next condition is fulfilled.

( f ′6 ) For a.e. x ∈RN and for every g ∈G, s∈R, we have f (gx,s)= f (x,s).
If we use the principle of symmetric criticality for locally Lipschitz functions, from the

above two theorems, we obtain the following corollaries.

Corollary 1.6. If the conditions (f1)–(f5) and (f′6) are fulfilled, then problem (P) has a
nontrivial, radially symmetric solution.

Corollary 1.7. If the conditions (f1)–(f6) and (f′6) are fulfilled, then problem (P) has in-
finitely many distinct, radially symmetric solutions.

The above results generalize many classical results to nonsmooth case, and in place of
the Palais-Smale condition, the Cerami compactness condition is used.

The paper is organized as follows: in Section 2, some facts about locally Lipschitz func-
tions are given; in Section 3, a key inequality is proved; in Section 4, the nonsmooth Ce-
rami condition is verified for the function Ψ; in Section 5, we discuss the mountain pass
geometry of the function Ψ and there is a multiplicity result given, while in the last sec-
tion, several applications are presented.

2. Basic notions

Let (H ,〈·,·〉H) be a separable Hilbert space andH� its topological dual. LetU ⊂H be an
open set. A function Ψ :U → R is called a locally Lipschitz function if each point u∈ U
possesses a neighborhood Nu of u and a constant K > 0 which depends on Nu such that

∣∣ f (u1)− f
(
u2
)∣∣≤ K

∥∥u1−u2
∥∥
H , ∀u1,u2 ∈Nu. (2.1)

The generalized directional derivative of a locally Lipschitz function Ψ :H →R in u∈
U in the direction v ∈H is defined by

Ψ0(u;v)= limsup
w→u
t↘0

1
t

(
Ψ(w+ tv)−Ψ(w)

)
. (2.2)

It is easy to verify that Ψ0(u;−v)= (−Ψ)0(u;v) for every u∈U and v ∈H .
The generalized gradient of Ψ in u∈H is defined as being the subset of H�,

∂Ψ(u)= {z ∈H� : 〈z,v〉 ≤Ψ0(u;v), ∀v ∈H
}
, (2.3)

where 〈·,·〉 is the duality pairing between H� and H . The subset ∂Ψ(u) ⊂ H� is
nonempty, convex, w�-compact, and we have

Ψ0(u;v)=max
{〈z,v〉 : z ∈ ∂Ψ(u)

}
, ∀v ∈H. (2.4)
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If Ψ1,Ψ2 :U →R are two locally Lipschitz functions, then

(
Ψ1 +Ψ2

)0
(u;v)≤Ψ0

1(u;v) +Ψ0
2(u;v) (2.5)

for every u ∈ U and v ∈ X . We define the function λΨ(u) = inf{‖x�‖ : x� ∈ ∂Ψ(u)}.
This function is lower semicontinuous and this infimum is attained because ∂Ψ(u) is
w�-compact. A point u ∈H is a critical point of Ψ, if λΨ(u) = 0, which is equivalent to
Ψ0(u;v)≥ 0 for every v ∈H . In what follows, we use the following proposition.

Proposition 2.1. Let Ψ :H →R be a locally Lipschitz and take u∈H and µ > 0. Then the
next assertions are equivalent:

(a) Ψ0(u,v) +µ‖v‖ ≥ 0, for all v ∈H ;
(b) λΨ(u)≤ µ.

In the next sections, the following two results are used. The following result is a gen-
eralized version of mountain pass theorem, see [9, Theorem 6].

Proposition 2.2. Let H be a Hilbert space, let Ψ : H → R be a locally Lipschitz function
with Ψ(0)= 0. Suppose that there exist v ∈H and constants ρ,β > 0 such that

(i) Ψ(u)≥ β for all u∈H with ‖u‖ = ρ;
(ii) ‖v‖ > ρ and Ψ(v)≤ 0;
(iii) Ψ satisfies (CPS)c with

c = inf
γ∈Γ

max
t∈[0,1]

Ψ
(
γ(t)

)
, (2.6)

where

Γ= {γ ∈ C
(
[0,1],H

)
: γ(0)= 0, γ(1)= v

}
. (2.7)

Then c ≥ α and c ∈R is a critical value of Ψ.

The fountain theorem remains true for locally Lipschitz functions even in the case if
we replace the Palais-Smale condition by (CPS)c, see [15, Corollary 3.4] and in the differ-
entiable cases see Bartsch [1] or Rabinowitz [19]. Thus we have the following proposition.

Proposition 2.3. Let H be a Hilbert space, {ej | j ∈N} an orthonormal basis of H , and
set Hk = span{e1, . . . ,ek}. Let Ψ :H →R be a locally Lipschitz functional which satisfies the
following hypotheses:

(i) Ψ(u)=Ψ(−u), for all u∈H ,
(ii) for every k ≥ 1, there exists Rk > 0 such that Ψ(u) ≤ Ψ(0) for every u ∈ Hk with

‖u‖ ≥ Rk,
(iii) there exist k0 ≥ 1, b > 0, and ρ > 0 such thatΨ(u)≥ b for every u∈H⊥

k0
with ‖u‖ = ρ,

(iv) Ψ satisfies the (CPS)c condition for every c ∈R+.
Then Ψ possesses an unbounded critical value {ck}k∈N� .

Let G be a compact topological group which acts linearly isometrically on the Hilbert
space H , that is, the action G×H →H is continuous and for every g ∈ G, g :H →H is
a linear isometry. The action on H induces an action of the same type on the dual space
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H� defined by (gx∗)(x)= x∗(gx), for all g ∈G, x ∈H , and x∗ ∈H�. Since

∥∥gx∗∥∥= sup
‖x‖=1

∣∣(gx∗)(x)∣∣= sup
‖x‖=1

∣∣x∗(gx)∣∣, (2.8)

the isometry assumption for the action of G implies that

∥∥gx∗∥∥= sup
‖x‖=1

∣∣x∗(x)∣∣= ∥∥x∗∥∥, ∀x∗ ∈H�, g ∈G. (2.9)

We suppose that Ψ : H → R is a locally Lipschitz and G-invariant function, that is,
Ψ(gx)=Ψ(x) for every g ∈ G and x ∈H . From Krawcewicz and Marzantowicz [10], we
have the relation

g∂Ψ(x)= ∂Ψ(gx)= ∂Ψ(x), for every g ∈G, x ∈H. (2.10)

Therefore the subset ∂Ψ(x)⊂H� is G-invariant, so the function λΨ(x)= infw∈∂Ψ(x)‖w‖,
x ∈H , is G-invariant. The fixed points set of the action G, that is, HG = {x ∈ H | gx =
x ∀g ∈G} is a closed linear subspace of H .

We conclude this section with the principle of symmetric criticality for locally Lips-
chitz functions. This result was proved first by Palais [16] for differentiable functions and
for locally Lipschitz functions by Krawcewicz and Marzantowicz [10].

Theorem 2.4. LetΨ :H →R be a G-invariant locally Lipschitz function and u∈HG. Then
u∈HG is a critical point of Ψ if and only if u is a critical point of ΨG =Ψ |HG :HG→R.

3. Some basic results

In this section, we prove that the function Φ :H →R given by

Φ(u)=
∫
RN

F
(
x,u(x)

)
dx, ∀u∈H , (3.1)

is locally Lipschitz on bounded sets ofH and its generalized directional derivative satisfies
the inequality

Φ0(u;v)≤
∫
RN

F0
2

(
x,u(x);v(x)

)
dx, ∀u,v ∈H. (3.2)

Remark 3.1. The following two results are true for the growth condition (f1). Moreover,
it is enough to prove them in the case when the function f satisfies the growth condition
| f (x,s)| ≤ h(s) for a.e. x ∈RN , for all s∈R, where h is monotone increasing, convex, with
h(0)= 0 and satisfies the following implication: if u∈ Ll(RN ), then h(u)∈ Lq(RN ), with
1/l+1/q = 1. In our case, h= h1 or h= h2. In the general case, we replace h by h1 +h2.
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Proposition 3.2. The functionalΦ :H →R, defined byΦ(u)= ∫RN F(x,u(x))dx, is locally
Lipschitz on bounded sets of H .

Proof. For every u,v ∈H , with ‖u‖,‖v‖ < r, we have

∥∥Φ(u)−Φ(v)
∥∥≤

∫
RN

∣∣F(x,u(x))−F
(
x,v(x)

)∣∣dx
≤ c1

∫
RN

∣∣u(x)− v(x)
∣∣[h(u(x))+h

(
v(x)

)]

≤ c2

(∫
RN

∣∣u(x)− v(x)
∣∣p)1/p[(∫

RN

(
h
(
u(x)

)q
dx
))1/q

+
(∫

RN

(
h
(
v(x)

)q
dx
))1/q]

≤ c2‖u− v‖p
[∥∥h(u)∥∥q +∥∥h(v)∥∥q

]
≤ C(u,v)‖u− v‖H ,

(3.3)

where we used the Hölder inequality, the subadditivity of the norm ‖ · ‖q, and the fact
that the inclusion H↩ Ll(RN ) is continuous. The constant C(u,v) depends only on u
and v. �

Proposition 3.3. If the condition (f1) holds, then for every u,v ∈H ,

Φ0(u;v)≤
∫
RN

F0
2

(
x,u(x);v(x)

)
dx. (3.4)

Proof. It suffices to prove the proposition for the function f , which satisfies only the
growth condition from Remark 3.1. We fix the elements u,v ∈H . The function F(x,·) is
locally Lipschitz, therefore is continuous. Thus F0

2 (x,u(x);v(x)) can be expressed as the
upper limit of (F(x, y + tv(x))−F(x, y))/t, where t→ 0+ taking rational values and y →
u(x) taking values in a countable subset of R. Therefore, the map x→ F0

2 (x,u(x);v(x)) is
measurable as the “countable limsup” of measurable functions in x. From condition (f1),
we get that the function x→ F0

2 (x,u(x);v(x)) is from L1(RN ).
Using the fact that the Hilbert spaceH is separable, there exist a sequence wn ∈ E with

‖wn−u‖H → 0 and a real number sequence tn→ 0+, such that

Φ0(u,v)= lim
n→∞

Φ
(
wn + tnv

)−Φ
(
wn
)

tn
. (3.5)

Because the inclusion H↩ Ll(RN ) is continuous, we get ‖wn− u‖l → 0. Using Brézis
[7, Theorem IV.9(a)], there exists a subsequence of (wn) denoted in the same way, such
that wn(x)→ u(x), a.e. x ∈RN . Now, let ϕn :RN →R∪{+∞} be the function defined by

ϕn(x)=−F
(
x,wn(x) + tnv(x)

)−F
(
x,wn(x)

)
tn

+ c1
∣∣v(x)∣∣[h(∣∣wn(x) + tnv(x)

∣∣)+h
(∣∣wn(x)

∣∣)].
(3.6)
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By the relation (1.3), we see that the functions ϕn are measurable and nonnegative. If
we apply Fatou’s lemma, we get

∫
RN

liminf
n→∞ ϕn(x)dx ≤ liminf

n→∞

∫
RN

ϕn(x)dx. (3.7)

This inequality is equivalent to

∫
RN

limsup
n→∞

[−ϕn(x)
]
dx ≥ limsup

n→∞

∫
RN

[−ϕn(x)
]
dx. (3.8)

For the simplicity in the calculus, we introduce the following notations:
(i) ϕ1

n(x)= (F(x,wn(x) + tnv(x))−F(x,wn(x)))/tn;
(ii) ϕ2

n(x)= c1|v(x)|[h(wn(x) + tnv(x)) +h(wn(x))].
With these notations, we have ϕn(x)=−ϕ1

n(x) +ϕ2
n(x).

Now we prove the existence of the limit b = limn→∞
∫
RN ϕ2

n(x)dx. Since the inclusion
H↩Ll(RN ) is continuous and ‖wn−u‖H → 0, we get ‖wn−u‖l → 0. If we use Brézis’ [7,
Theorem IV.9(b)], there exists a positive function g ∈ Ll(RN ), such that |wn(x)| ≤ g(x)
a.e. x ∈RN . Using the fact that the function h is monotone increasing, we get

∣∣ϕ2
n(x)

∣∣≤ c1
∣∣v(x)∣∣[h(g(x) +∣∣v(x)∣∣)+h

(
g(x)

)]
, a.e. x ∈RN . (3.9)

Moreover, ϕ2
n(x)→ 2c1|v(x)|h(u(x)), a.e. x ∈RN . From the Lebesgue dominated conver-

gence theorem, we have

b = lim
n→∞

∫
RN

ϕ2
n(x)dx =

∫
RN

2c1
∣∣v(x)∣∣h(u(x))dx. (3.10)

If we denote by I1 = limsupn→∞
∫
RN [−ϕn(x)]dx, then using (3.5) and (3.10), we have

I1 = limsup
n→∞

∫
RN

[−ϕn(x)
]
dx =Φ0(u;v)− b. (3.11)

In what follows, we estimate the expression I2 =
∫
RN limsupn→∞[−ϕn(x)]dx. We have

the inequality

∫
RN

limsup
n→∞

[
ϕ1
n(x)

]
dx−

∫
RN

lim
n→∞ϕ

2
n(x)dx ≥ I2. (3.12)

Since wn(x)→ u(x), a.e. x ∈RN , and tn→ 0+, it follows that

∫
RN

lim
n→∞ϕ

2
n(x)dx = 2c1

∫
RN

∣∣v(x)∣∣h(∣∣u(x)∣∣)dx. (3.13)
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On the other hand, we have

∫
RN

limsup
n→∞

ϕ1
n(x)dx ≤

∫
RN

limsup
y→u(x), t→0+

F
(
x, y + tv(x)

)−F(x, y)
t

dx

=
∫
RN

F0
2

(
x,u(x);v(x)

)
dx.

(3.14)

Using the relations (3.8), (3.11), (3.12), and the above estimations, we obtain the de-
sired result.

As we pointed out above, in the general case we replace the function h with the sum
h1 +h2. �

4. The Cerami compactness condition

Theorem 4.1. Assume that the conditions (f1), (f2), (f3), and (f4) are fulfilled, then Ψ satis-
fies the (CPS)c condition for every c > 0.

Proof. Let (un) ⊂ H be a (CPS)c sequence for the function Ψ and c > 0, then we have
Ψ(un)→ c and (1 + ‖un‖H)λΨ(un)→ 0. Because (1 + ‖un‖H)λΨ(un)→ 0, then ‖un‖HλΨ
(un)→ 0. From the definition of λΨ(un), the existence of an element z�un ∈ ∂Ψ(un)is ob-
tained, such that λΨ(un) = ‖z�un‖H� . For every v ∈ H , we have |z�un(v)| ≤ ‖z�un‖H�‖v‖,
therefore ‖z�un‖H�‖v‖ ≥ −z�un(v). If we take v = un, then ‖z�un‖H�‖un‖H ≥−z�un(un).

Using the properties Ψ0(u,v) =max{z�(v) | z� ∈ ∂Ψ(u)} for every v ∈ H , we have
−z�(v)≥−Ψ0(u,v) for all z� ∈ ∂Ψ(u) and v ∈H . If we take u= v = un and z� = z�un , we
get −z�un(un)≥−Ψ0(un,un). Therefore (1/2)‖z�un‖H�‖un‖H ≥−Ψ0(un, (1/2)un). So from
the above, we obtain

c+1≥ c+
1
2

∥∥z�un∥∥H�∥∥un∥∥H ≥−z�un
(
1
2
un

)
≥−Ψ0

(
un;

1
2
un

)
. (4.1)

By the above inequality, the propertyΨ0(u,v)≤ 〈u,v〉+Φ0(u,−v), condition (f2), and
Proposition 3.3, we get

c+1≥Ψ
(
un
)− 1

2
Ψ0(un;un)

= 1
2

∥∥un∥∥2H −Φ
(
un
)− 1

2

(∥∥un∥∥2H +Φ0(un;−un))

≥−
∫
RN

[
F
(
x,un(x)

)
+
1
α
F0
2

(
x,un(x);−un(x)

)]
dx

≥ C
∫
RN

∣∣un(x)∣∣αdx
≥ C

∥∥un∥∥αα.

(4.2)

Therefore, the sequence (un) is bounded in Lα(RN ).
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By the condition (f4), one has that for every ε > 0, there exists c(ε) > 0, such that for
a.e. x ∈RN ,

F
(
x,u(x)

)≤ ε

2

∣∣u(x)∣∣2 + c(ε)
p

∣∣u(x)∣∣p. (4.3)

After integration, we obtain

Φ(u)≤ ε

2
‖u‖22 +

c(ε)
p
‖u‖pp. (4.4)

By the expression of Ψ and from the inequality ‖u‖2 ≤ C(2)‖u‖H , we get
(
1
2
− εC(2)

2

)∥∥un∥∥2H ≤Ψ
(
un
)
+
c(ε)
p

∥∥un∥∥pp
≤ c+1+

c(ε)
p

∥∥un∥∥pp.
(4.5)

Now, we examine the behavior of the sequence (‖un‖pp).
We distinguish three cases:
(a) if p ∈ (2,α), then for every u∈ L2(RN )∩Lα(RN ), we have

‖u‖pp ≤ ‖u‖2(1−s)2 ‖u‖sαα , (4.6)

where p = 2(1− s) +αs, s∈ (0,1),
(b) if p = α, we get immediately that the sequence (‖un‖pp) is bounded,
(c) if p ∈ (α, p0) and α > p0((p− 2)/(p0− 2)), then for every u∈ Lα(RN )∩Lp0 (RN ),

we have

‖u‖pp ≤ ‖u‖(1−s)αα ‖u‖sp0p0 , (4.7)

where p = (1− s)α+ sp0, s∈ (0,1).
If we take ε ∈ (0,1/C(2)) and use the above affirmations (a), (b), (c), and (4.5), we

obtain that the sequence (un) is bounded in H . Therefore, un⇀ u weakly in H . Because
the inclusion H↩Lp(RN ) is compact, we get that un→ u strongly in Lp(RN ).

In what follows, we estimate the expressions I1n = Ψ0(un;un − u) and I2n = Ψ0(u;u−
un). First we estimate the expression I2n =Ψ0(u;u− un). We know that Ψ0(u;v)≥ z�(v),
for all v ∈H and z� ∈ ∂Ψ(u). Therefore, for every z�u ∈ ∂Ψ(u) fixed, we have Ψ0(u;u−
un)≥ z�u (u−un). Since un⇀ u weakly in H , then liminfΨ0(u;u−un)≥ 0.

Now, we estimate the expression I1n = Ψ0(un;un − u). From λΨ(un)→ 0 follows the
existence of a sequence of real numbers µn > 0 (µn → 0), such that λΨ(un)≤ µn. If we use
Proposition 2.1, we get Ψ0(un,un−u) +µn‖un−u‖H ≥ 0.

Now, we estimate the expression In = Φ0(un;u− un) +Φ(u;u− un). From the conti-
nuity of the functions h1(s) = c|s|, h2(s) = c|s|p−1 and the condition (f4), it follows that
for every ε > 0, there exists a c(ε) > 0 such that

max
{∣∣ f (x,s)∣∣,∣∣ f (x,s)∣∣}≤ ε

∣∣h1(s)∣∣+ cεh2(s), (4.8)
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for a.e. x ∈RN and for all s∈R. Using this relation and Proposition 3.3, we have

In =Φ0(un;u−un
)
+Φ

(
u;u−un

)
≤
∫
RN

[
F0
2

(
x,un(x);un(x)−u(x)

)
+F0

2

(
x,u(x);u(x)−un(x)

)]
dx

≤
∫
RN

[
f
(
x,un(x)

)(
un(x)−u(x)

)
+ f
(
x,u(x)

)(
u(x)−un(x)

)]
dx

≤ 2ε
∫
RN

[
h1
(
u(x)

)
+h1

(
un(x)

)]∣∣un(x)−u(x)
∣∣dx

+2c(ε)
∫
RN

[
h2(u(x)

)
+h2

(
un(x)

)]∣∣un(x)−u(x)
∣∣dx.

(4.9)

If we use the Hölder inequality and the fact that the inclusionH↩L2(RN ) is continuous,
we get

In ≤ 2εC(2)
∥∥un−u

∥∥
H

(∥∥h1(u)∥∥2 +∥∥h1(un)∥∥2)
+2c(ε)

∥∥un−u
∥∥
p

(∥∥h2(u)∥∥p′ +∥∥h2(un)∥∥p′), (4.10)

where 1/p+1/p′ = 1.
Since un→ u strongly in Lp(RN ) and if ε→ 0+, then limsupIn ≤ 0 as n→∞.
Finally, we use the inequalityΨ0(u;v)≤ 〈u,v〉+Φ0(u;−v). If we replace v with −v, we

get Ψ0(u,−v)≤−〈u,v〉+Φ0(u;v), therefore 〈u,v〉 ≤Φ0(u;v)−Ψ0(u,−v).
If in the above inequality in the place of u and v we put one after the other u = un,

v = u−un and u= u, v = un−u, we get

〈
un,u−un

〉
H ≤Φ0(un,u−un

)−Ψ0(un;un−u
)
,〈

u,un−u
〉
H ≤Φ0(u,un−u

)−Ψ0(u,u−un
)
.

(4.11)

Adding these relations, we have the key inequality

∥∥un−u
∥∥2
H ≤

[
Φ0(un;u−un

)
+Φ0(u;u−un

)]−Ψ0(un;un−u
)−Ψ0(u;u−un

)
= In− I1n − I2n.

(4.12)

Using the above relation and the estimations of In, I1n and I2n , we get ‖un−u‖2H → 0 as
n→∞. �

5. Existence andmultiplicity results

In this section, we prove Theorems 1.4 and 1.5.

Proof of Theorem 1.4. The conditions (f1)–(f4) assure that the functional Ψ(u) =
(1/2)‖u‖2H −Φ(u) satisfies the (CPS)c condition. We verify only the following geomet-
ric hypotheses from Proposition 2.2:

∃β,ρ > 0 such that Ψ≥ β on Bρ(0)=
{
u∈H : ‖u‖H = ρ

}
; (5.1)

Ψ(0)= 0, ∃v ∈H , ‖v‖H > ρ such that Ψ(v)≤ 0. (5.2)
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For the proof of relation (5.1), we use the relation (f4), that is, | f (x,s)| ≤ ε|s|+ c(ε)
|s|p−1. Integrating this inequality and using that the inclusions H↩ L2RN , H↩ Lp(RN )
are continuous, we get that

Ψ(u)≥
(
1− εC(2)

2

)
‖u‖2H −

1
p
cεC(p)‖u‖pH . (5.3)

The right member of this inequality is a function χ :R+→R of the form χ(t)= At2−Btp,
where A,B > 0 are some constants. The function χ attains its global maximum in the
point tM = (2A/pB)1/(p−2). In our case, A = (1− εC(2))/2 and B = (1/p)cεC(p). If we
take ρ = tM and β ∈]0,χ(tM)], it is easy to see that the condition (5.1) is fulfilled.

By the condition (f5), we have Ψ(u)≤ (c�C(α) + 1/2)‖u‖2H − c�‖u‖αα, where C(α) > 0
is the constant of the continuous inclusionH↩Lα(RN ). If we fix an element v ∈H \ {0}
and in place of u we put tv, then we have

Ψ(tv)≤
(
c�C(α) +

1
2

)
t2‖v‖2H − c�tα‖v‖αα. (5.4)

From this, we see that if t is large enough, then ‖tv‖H > ρ andΨ(tv) < 0. So, the condition
(5.2) is satisfied. �

Proof of Theorem 1.5. We prove that the function Ψ verifies the conditions from
Proposition 2.3. By the conditions (f1)–(f4), we get that the functionΨ satisfies the (CPS)c
for every c > 0. From the assumption (f6), we get that the function Ψ is even, so the re-
quirement (i) from Proposition 2.3 is true. We choose an orthonormal basis {ej} j∈N� of
H and set Hk = span{e1, . . . ,ek}.

As above, we haveΨ(v)≤ (c�C(α) + 1/2)‖v‖2H − c�‖v‖αα. Thus, we haveΨ(0)= 0. Us-
ing the fact that the inclusion H↩ Lα(RN ) is continuous, we have that ‖ · ‖α|Hk is con-
tinuous. Because on a finite-dimensional space the continuous norms are equivalent and
since α > 2, there exists an Rk > 0 large enough such that for every u∈H with ‖u‖H ≥ Rk,
we have Ψ(u) ≤Ψ(0) = 0. For every u ∈H⊥

k and k ∈N�, we consider the real numbers
βk = supu∈H⊥

k \{0}(‖u‖p/‖u‖H). As in [3, Lemma 3.3], we get βk → 0, if k→∞. As in the
proof of relation (5.1), we have

Ψ(u)≥
(
1− εC(2)

2

)
‖u‖2H −

1
p
cε‖u‖pp. (5.5)

By the definition of the number βk, we have ‖u‖p ≤ βk‖u‖H and combining this with
the above relation, we get

Ψ(u)≥
(
1− εC(2)

2

)
‖u‖2H −

1
p
cεβ

p
k‖u‖pH . (5.6)

If we choose 0 < ε < (1/C(2))((p− 2)/p) and rk ∈](cεβp
k )

1/(2−p)], then we have

Ψ(u)≥
(
1− εC(2)

2
− 1

p

)
r2k , (5.7)
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for every u∈H⊥
k with ‖u‖H = rk. Due to the choice of ε and since βk → 0, the assumptions

of Proposition 2.3 are verified. Therefore there exists a sequence of unbounded critical
values of Ψ, which completes the proof. �

For the proofs of Corollaries 1.6 and 1.7, we observe that the inclusions HG↩Ll(RN )
are continuous for l ∈ [2, p0] and HG↩Lp(RN ) is compact. Replacing Ψ with Ψ|HG and
using the principle of symmetric criticality for locally Lipschitz function, we repeat the
proofs of Theorems 1.4 and 1.5.

6. Applications

In this section, we apply the above results for some particular hemivariational inequalities
which generalize several results studied by many authors.

Application 6.1. Let f :RN ×R→R be a measurable function. Suppose that the function
f satisfies the conditions (f1)–(f5).

Let b :RN ×R→R be a continuous function. For b, we will first assume the following.
(b1) b0 := infx∈RN b(x) > 0.
(b2) For everyM > 0,

m
({
x ∈RN : b(x)≤M

})
<∞, (6.1)

wherem denotes the Lebesgue measure in RN .
We consider the Hilbert space

H :=
{
u∈W1,2(RN

)
:
∫
RN

(|�u|2 + b(x)u2
)
dx <∞

}
, (6.2)

with the inner product

〈u,v〉H =
∫
RN

(�u� v+ b(x)uv
)
dx. (6.3)

In the paper, Bartsch and Wang [2] proved that the inclusion H↩Ls(RN ) is compact for
p ∈ [2,2N/(N − 2)). Now we formulate the problem.

Problem 6.2. Find a positive u∈H such that for every v ∈H , we have
(P1)

∫
RN

(�u� v+ b(x)uv
)
dx+

∫
RN

F0
2

(
x,u(x);−v(x))dx ≥ 0. (6.4)

We have the next result which extends a result from Gazzola and Rădulescu [6] and
Bartsch and Wang [2].

Corollary 6.3. If the conditions (f1)–(f5) and (b1)-(b2) hold, then problem (P1) has a
positive solution.
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Proof. We replace the function f by f+ :RN ×R→R defined by

f+(x,u)=

 f (x,u) if u≥ 0,

0 if u < 0,
(6.5)

and we apply Theorem 1.4. �

Application 6.4. Now, we consider Au :=−�u+ |x|2u for u∈D(A), where

D(A) := {u∈ L2
(
RN
)
: Au∈ L2

(
RN
)}
. (6.6)

Here | · | denotes the Euclidean norm of RN .
In this case, the Hilbert space H is defined by

H :=
{
u∈ L2

(
RN
)
:
∫
RN

(|�u|2 + |x|2u2)dx <∞}, (6.7)

with the inner product

〈u,v〉H =
∫
RN

(�u� v+ |x|2uv)dx. (6.8)

The inclusion H↩ Ls(RN ) is compact for p ∈ [2,2N/(N − 2)), see Kavian [8, page
278].

We formulate the next problem.

Problem 6.5. Find a positive u∈H such that for every v ∈H , we have
(P2)

∫
RN

(�u� v+ |x|2uv)dx+
∫
RN

F0
2

(
x,u(x);−v(x))dx ≥ 0. (6.9)

Corollary 6.6. If the conditions (f1)–(f5) hold, then problem (P2) has a positive solution.

Corollary 6.7. If the conditions (f1)–(f6) hold, then problems (P1) and (p2) have infinitely
many distinct positive solutions.

Application 6.8. In this application, we consider the Hilbert space H given by

H :=H1(RN
)= {u∈ L2

(
RN
)
:�u∈ L2

(
RN
)}
, (6.10)

with the inner product

〈u,v〉H =
∫
RN
(�u� v+uv)dx. (6.11)

We consider G=O(N). The group G acts linearly and orthogonally on RN .
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The action of G on H is defined by gu(x) = u(g−1x) for all g ∈ G and x ∈ RN . The
fixed point set of this action is

HG = {u∈H1(RN
) | gu= u

}
. (6.12)

According to a result of Lions [13], the inclusionHG↩Ls(RN ) is compact for s∈ (2,2N/
(N − 2)).

The proposed problem is the following.

Problem 6.9. Find u∈H such that for every v ∈H , we have
(P3)

∫
RN
(�u� v+uv)dx+

∫
RN

F0
2

(
x,u(x);−v(x))dx ≥ 0. (6.13)

Corollary 6.10. If the conditions (f1)–(f6) and (f′6) are fulfilled, then problem (P3) has a
sequence of radial solutions (uk)k∈N ⊂H such that Ψ(uk)→∞ as k→∞.

Remark 6.11. The above result generalizes the main result from Bartsch and Willem [4],
and extends the main result from Kristály [11], where the Palais-Smale condition is used.

We conclude this section with an example which satisfies the conditions (f1)–(f6) and
(f′6).

Example 6.12. We consider a sequence (an)n∈N of real numbers with a0 = 0 and an > 0
for every n≥ 1. We introduce the following notations:

An :=
n∑

k=0
ak, A :=

∞∑
k=0

ak. (6.14)

We suppose that the series A =∑∞
k=0 ak is convergent with A > 1. Let f : R→ R be a

function defined by f (s) = s(|s|p−2 +An) for every s ∈ [n,n+ 1)∪ (−n− 1,−n], where
n ∈ N and p > 2 is a fixed real number. The set of discontinuity of f is Df = Z \ {0}.
We affirm that for N ≥ 3 and p ∈ (2,2N/(N − 2)), the function f satisfies the conditions
(f1)–(f6) and (f′6).

The conditions (f1), (f3), (f4), (f6), and (f′6) are trivial. We verify only the conditions
(f2) and (f5).

For u∈ [n,n+1) (n≥ 0), we have F(u)= (1/p)up − (1/2)Anu2− (1/2)
∑n

k=0 akk2. Be-
cause the function F is continuous, the above equality for F holds for u = n + 1. The
function f is continuous for u∈ (n,n+1), therefore F0(u;−u)=−u f (u). From the def-
inition of f , it follows that F0(u;−u) is left continuous in the discontinuous points of f .
Therefore, F0(u;−u)=−u2(|u|p−2 +An) for every u∈ (n,n+1]. If we take α= p > 2 and
C = 1/2− 1/p, we have

F(u) +
1
2
F0(u;−u)≤−C|u|p, ∀u≥ 0. (6.15)
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Because the functions F(u) and F0(u;−u) are even, the above inequality holds for
every u∈R. Therefore the condition (f2) is true. For α= p and c� = 1/p, it is easy to see
that the condition (f5) is satisfied.
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lection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983.
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