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1. INTRODUCTION

The design of reliable, high data ratemobile wireless commu-
nications systems has been an area of tremendous research
activity for the last couple of years. New developments in the
field of channel modeling, signaling, and code design have
enabled technologies that support high data rates in a wire-
less setting which in turn have fueled consumer interest in
adoption and utilization of wireless devices and services.

This paper deals with communication over rapidly time-
varying channels, that is, channels which cannot be regarded
as time-invariant over a frame. In a typical wireless set-
ting, a signal sent from the transmitter reaches the receiver
through multiple paths, collectively termed asmultipath. In-
terference among the multiple paths results in a decrease in
signal amplitude. Further due to the time-varying nature of
the medium, the received signal amplitude varies with time,
in other words, the signal undergoes fading. The primary
means of combating fading is through diversity, in which
copies of the transmitted message are made available on
different dimensions (time, frequency, or space) to the re-
ceiver. All wireless communications schemes utilize tempo-
ral diversity by using sophisticated channel coding in con-
junction with interleaving to provide replicas of the trans-
mitted signal in the temporal domain. Frequency diversity
techniques employ the fact that waves transmitted on differ-
ent frequencies induce different multipath structure in the

propagation media. In space or antenna diversity spatially
separate antennas are used at the transmitter or the receiver
or both. Communication schemes should utilize all avail-
able forms of diversity to ensure adequate performance. In
this paper we utilize time and frequency diversity by design-
ing an OFDM-like signaling scheme to be used in conjunc-
tion with a multilevel coding scheme easily adapted for fad-
ing.

To implement an OFDM-like framework over channels
that fade in time and frequency, also called doubly dispersive
channels, we need signaling waveforms to be well localized
in time and frequency. The good localization in frequency
is desirable, so that the waveform sees a frequency nonse-
lective channel. At the same time good localization in time
is also desirable as it mitigates the effect of temporal varia-
tions in the channel. In [1, 2], a class of waveforms known
as the Weyl-Heisenberg bases were found to be suitable can-
didates as signaling waveforms. These biorthogonal bases are
obtained by time and frequency shifts of a given prototype
pulse. The time shift T and the frequency shift F are usually
chosen such that TF > 1 so as to minimize the interference
at the receiver. On the other hand if maximum spectral effi-
ciency is required, the parameters T and F are chosen such
that TF = 1 at the expense of interference at the receiver.
In this case an interference cancellation technique at the re-
ceiver can be used to cancel out the intersymbol interference.
Such a scheme is outlined in [3].
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Both approachesmentioned above finally lead to an iden-
tical canonical vector fading channel model in discrete time
given by yk = hkxk + nk, k = 1, . . . ,D, where D is the num-
ber of dimensions we are coding over, yk, hk, xk, and nk
are the received signal, fading realization, transmitted sig-
nal, and noise realization in dimension k. Powerful coding
schemes have been proposed for this channel in the liter-
ature. In [4], high diversity constellations are constructed
by applying the canonical embedding to the ring of inte-
gers of an algebraic number field. In [5], higher diversity
is obtained by applying rotations to a classical signal con-
stellation so that any two points achieve a maximum num-
ber of distinct components. Another approach is taken by
bit-interleaved coded modulation (BICM) [6], where bit-
wise interleaving at the encoder input is used to improve
the performance of coded modulation on fading channels.
In this paper, we propose a multilevel coded modulation
scheme for the canonical channel model described above.
This scheme is reminiscent of Ungerboeck’s trellis-coded
modulation [7]. We develop new partitioning techniques for
integer lattices which are particularly well suited for fading
channels.

The main contribution of this paper is as follows. We
use results from linear operator theory and harmonic anal-
ysis to study coding and modulation design for underspread
time-varying fading channels. Using the fact that under-
spread channels are approximately diagonalized by biorthog-
onal Weyl-Heisenberg bases, we arrive at a canonical formu-
lation of modulation and code design. For a coherent re-
ceiver employing maximum-likelihood decoding, we derive
the code-design criteria as a function of the channel’s scat-
tering function. We provide expressions for the maximum
achievable diversity order as a function of the channel’s scat-
tering function. Secondly, for this canonical channel, we pro-
pose newmultilevel codes based on partitioning a signal con-
stellation carved out from the integer lattice Zn. We use ideas
from generalized concatenation to derive new set partition-
ing techniques for the fading channel. We also provide an al-
gebraic framework which enables us to partition signal con-
stellations in arbitrarily large dimensions.

This paper is organized as follows. In Section 2 we in-
troduce the time-varying fading channel and the OFDM-
like modulation scheme. In Section 3 we derive the code
design criteria and make certain critical observations on
the code-design problem for this channel. In Section 4, we
describe our set partitioning techniques for fading chan-
nels and use it to construct a multilevel coded modulation
scheme. Section 5 contains performance plots and discusses
how the coding scheme is adapted to the channel. Section 6
contains some concluding remarks.

2. UNDERSPREADTIME-VARYING FADINGCHANNELS

In this section, we introduce the time-frequency selective
fading channel model, discuss the consequences of the un-
derspread assumption, introduce our modulation scheme
based on biorthogonal Weyl-Heisenberg bases, and provide
the canonical channel representation.

2.1. Time-frequency selective fading channels

We model the mobile as a linear time-variant system with
input-output relationship given by

y(t) = (Hx)(t) + nw(t) =
∫
t′
h(t, t′)x(t′)dt′ + nw(t), (1)

where x(t) is the transmitted signal, y(t) is the received sig-
nal,H is the linear operator describing the effect of the chan-
nel, h(t, t′) is the kernel of the channel, and nw(t) is zero-
mean circularly symmetric complex white Gaussian noise.
Throughout this paper, we assume that h(t, t′) is a complex
Gaussian process in t and t′. The time-varying transfer func-
tion of the channel is defined as [8]

LH(t, f ) =
∫
τ
h(t, t − τ)e− j2π f τ dτ. (2)

Note that in the time-invariant case where h(t, t − τ) = h(τ)
the time varying transfer function reduces to the ordinary
transfer function, that is, LH(t, f )=

∫
τ h(τ)e

− j2π f τdτ=H( f ).
An alternative representation of the input-output relation (1)
is

y(t) =
∫
τ

∫
ν
SH(ν, τ)x(t − τ)e j2πνt dνdτ, (3)

where SH(ν, τ) is the channel’s delay-Doppler spreading func-
tion which is related to the impulse response h(t, t − τ)
through a Fourier transform as

SH(ν, τ) =
∫
t
h(t, t − τ)e− j2πνt dt. (4)

We invoke a wide-sense stationary uncorrelated scatter-
ing (WSSUS) assumption which is

EH
[
SH(ν, τ)

] = 0,

EH
[
SH(ν, τ)S∗H(ν

′, τ′)
] = CH(ν, τ)δ(ν− ν′)δ(τ − τ′),

(5)

where CH(ν, τ) ≥ 0 denotes the scattering function of the
channel [9, Section 14.1]. Equivalently, the WSSUS assump-
tion implies that the autocorrelation function of the impulse
response h(t, t − τ) has the following structure:

EH
[
h(t, t − τ)h∗(t′, t′ − τ′)

] = φH(t − t′, τ)δ(τ − τ′).
(6)

Thus under this model, the channel taps are uncorrelated
(but not necessarily i.i.d), and the temporal variations are
wide-sense stationary. Finally, we will need the channel’s cor-
relation function defined as

EH
[
LH(t, f )L∗H(t

′, f ′)
] = RH(t − t′, f − f ′), (7)

with the Fourier correspondence

RH(Δt,Δ f ) =
∫
τ

∫
ν
CH(ν, τ)e j2π(νΔt−τΔ f ) dτ dν. (8)
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Figure 1: Amplitude of the channel correlation function for the
Jakes/exponential scattering function. Parameters νm = 50Hz, τ0 =
10−6 Hz.

In literature, it is fairly common to assume that the scattering
function has a product form, that is, CH(ν, τ) = f (τ)g(ν), for
example,

CH(ν, τ) =

⎧⎪⎪⎨
⎪⎪⎩
ke−τ/τ0

1

πνm

√
1− (

ν/νm
)2 if |ν| ≤ νm, τ ≥ 0,

0 otherwise,
(9)

where α > 0. This particular scattering function is called the
exponential/Jakes scattering function. Figure 1 is a plot of the
above correlation function. The function is normalized, that
is, RH(0, 0) = 1.

2.2. The underspread assumption and
its consequences

A fundamental classification of WSSUS channels is into un-
derspread and overspread [9, Section 14.1]. A channel is un-
derspread if its scattering function is highly concentrated
around the origin. Note that for simplicity we assume that
the scattering function is centered around τ = 0, which
means that any potential overall delay τ > 0 has been split
off from the channel. A common assumption is that the scat-
tering function is compactly supported within the rectangle
[−τ0, τ0]×[−ν0, ν0] around the origin of the (τ, ν) plane, that
is,

CH(ν, τ) = 0 for (τ, ν) �∈ [− τ0, τ0
]× [− ν0, ν0

]
. (10)

Thus the delay spread and Doppler spread are assumed to
be bounded. Defining the channel’s spread as the area of this
rectangle, σH = 4τ0ν0, the channel is said to be underspread
if σH ≤ 1 and overspread otherwise. The underspread as-
sumption is relevant as most mobile radio channels are un-
derspread .

As explained in [10] there exist alternative ways to char-
acterize the concentration of the scattering function that

avoid the assumption of compact support. These involve the

weightedm
(φ)
H of the scattering function which are defined as

m
(φ)
H =

∫∫∞
−∞ φ(τ, ν)CH(ν, τ)dτ dν∫∫∞

−∞ CH(ν, τ)dτ dν
, (11)

where φ(τ, ν) ≥ 0 is a weighting function that satisfies
φ(τ, ν) ≥ φ(0, 0) = 0 and penalizes scattering function com-
ponents lying away from the origin. Special cases are the
moments obtained with the weighing functions φk,l(ν, τ) =
|ν|l|τ|k with k, l∈N. Within this framework, aWSSUS chan-
nel is called underspread if specific moments and weighted
integrals are small.

An important result we are going to build our develop-
ment on is the fact that underspread systems are approxi-
mately diagonalized by biorthogonal Weyl-Heisenberg bases
[1, 2]. The Weyl-Heisenberg bases are obtained by time-
frequency shifting two normalized functions g(t) and γ(t)
that have good time-frequency localization,

gk,l(t) = g(t − kT)e j2πlFt, γk,l(t) = γ(t − kT)e j2πlFt,
(12)

where T denotes the time separation and F denotes the fre-
quency separation between the basis functions. The parame-
ters T and F are chosen such that TF ≥ 1. These bases satisfy
the biorthogonality condition,

〈
gk,l, γk′,l′

〉 =
∫
t
gk,l(t)γ∗k′,l′(t)dt = δ(k − k′)δ(l − l′).

(13)

Choosing T ≤ 1/2ν0 and F ≤ 1/2τ0, the kernel h(t, t′) of the
underspread fading channel can be well approximated as

h(t, t′) =
∞∑

k=−∞

∞∑
l=−∞

LH(kT , lF)gk,l(t)γ∗k,l(t
′). (14)

Details on the choice of g(t) and γ(t) can be found in
[1, 2]. The correlation function of the expansion coefficients
LH(kT , lF) is given by sampling the channel correlation func-
tion

E
[
LH(kT , lF)L∗H(k

′T , l′F)
] = RH

(
(k − k′)T , (l − l′)F

)
.
(15)

2.3. Modulation scheme

The diagonalization of underspread systems by the Weyl-
Heisenberg bases naturally suggests using an OFDM-like
modulation scheme for communication over underspread
channels [11]. The transmit signal x(t) is given by

x(t) =
∞∑
k=0

M−1∑
l=0

√
Esck,lgk,l(t), (16)

where the ck,l are the information bearing data symbols,M is
the number of OFDM tones, and Es is an energy normaliza-
tion factor. Using (1), (13), and (16), the received signal y(t)
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is given by

y(t) =
∫
t′
h(t, t′)x(t′)dt′ + nw(t)

=
∫
t′

∞∑
k=−∞

∞∑
l=−∞

LH(kT , lF)gk,l(t)γ∗k,l(t
′)x(t′)dt′ + nw(t)

=
∞∑
k=0

M−1∑
l=0

LH(kT , lF)
√
Esck,lgk,l(t) + nw(t).

(17)

The receiver computes the inner products yk,l,

yk,l =
∫
t
y(t)γ∗k,l(t)dt = LH(kT , lF)

√
Esck,l +wk,l, (18)

where wk,l =
∫
t nw(t)γ

∗
k,l(t)dt. Since the signals γk,l(t) are not

orthogonal, there is some correlation between the noise co-
efficients wk,l. The noise correlation is ignored and the noise
variance is upper bounded using the upper Riesz constant Bf

[11], that is, we assume E[wk,lwk′,l′] = Bf σ2δ(k−k′)δ(l− l′),
where σ2 is the power spectral density of the white Gaussian
noise process nw(t). We note that the parameters T and F are
typically chosen such that TF > 1 is as small as possible in
order to maximize the spectral efficiency. Consequently (14)
yields an oversampled representation of the channel.

Some parallels can be drawn with discrete time channel
models. Consider the channel model given y = Hx+w, where
w, y ∈ CMN are the noise vector and the received channel
vector, respectively, x ∈ CMN is the transmitted signal vector
and H is the random channel matrix. Let H = UDV be the
singular value decomposition of H. If the channel is known
then the transmitter spreads signals across the right singular
vectors V, and the receiver correlates across the left singu-
lar vectors U. This is analogous to transceiver architecture of
Figure 2. As mentioned in (14), the underspread assumption
implies that a particular choice of U and V, viz., the Weyl-
Heisenberg bases, enables the diagonalization of the channel
even when the channel is unknown at the transmitter.

2.4. The canonical channel model

Let yk = (yk,0, yk,1, . . . , yk,M−1)T , hk,l = LH(kT , lF), hk =
(hk,0,hk,1, . . . ,hk,M−1)T , ck = (ck,0, ck,1, . . . , ck,M−1)T , and
wk = (wk,0,wk,1, . . . ,wk,M−1)T , where (·)T and (·)∗ denote
the transpose operator and the conjugate transpose opera-
tor, respectively. The equivalent complex baseband discrete
time vector channel model is then given by

yk =
√
Eshk 	 ck +wk, k ∈ Z, ck ∈ CM , (19)

where 	 denotes the component-wise product of two vec-
tors. The noise wk,l and the channel gains hk,l are zero mean,
circularly symmetric, complex Gaussian random variables
with E[wkw

∗
k ] = 2σ2IM×M and E[hk,l,h∗k′,l′] = RH((k − k′)T ,

(l − l′)F).
Equation (19) represents a set of parallel, correlated (in

time and frequency) discrete time Rayleigh fading channels.

Thus making use of the important result that underspread
time-varying systems are approximately diagonalized by
Weyl-Heisenberg bases, the OFDM-like modulation scheme
allows us to formulate the code-design problem in a canoni-
cal domain.

It may be argued that the use of biorthogonal Weyl-
Heisenberg bases is unnecessary. In particular, for extremely
underspread channels of the form depicted in Figure 1 (with
a spread factor of 5×10−5), orthogonal basis functions would
not suffer much in terms of interference as compared to
biorthogonal basis functions [3]. Since the same bases are
used at the transmitter and the receiver, the complexity of
an orthogonal scheme would be lower. The key point is that,
both approaches would result in the same canonical chan-
nel model. In particular, an interference cancelling technique
mentioned in [3] may be used to cancel out any intersymbol
or intercarrier interference resulting due to the use of orthog-
onal basis functions.

3. CODE DESIGN CRITERIA

In this section we consider a block-coded modulation
scheme. We derive an expression for the pairwise error prob-
ability assuming maximum-likelihood decoding and perfect
channel state information at the receiver. Using the expres-
sion for the pairwise error probability as a starting point, we
develop a framework for designing codes for the canonical
channel described by (19).

3.1. The block-codedmodulation scheme

We consider a block-coded modulation scheme where a
codeword spans M tones and N time slots; that is, we code
across time and frequency so as to exploit time-frequency
diversity. A codeword c = (cT1 , c

T
2 , . . . , c

T
M−1)T is an NM-

dimensional vector obtained by stacking M column vectors
ck, each of length N . Similarly, vectors y,h, and w are given

by y = (yT0 , y
T
1 , . . . , y

T
M−1)

T , h = (h
T
0 ,h

T
1 , . . . ,h

T
M−1)T , and

w = (wT
0 ,w

T
1 , . . . ,w

T
M−1)T . From (19), the received vector y

is given by

y =
√
Esh	 c +w. (20)

Because of assumptions made in Section 2.1, h and w are
zero mean, circularly symmetric, complex Gaussian vectors
with correlation matrices R = E[hh∗] and E[ww∗] =
2σ2INM×NM . As a result, the received vector y is conditioned
on the transmitted codeword c and the channel state h is also
complex Gaussian.

The following proposition gives the Chernoff upper
bound on the pairwise error probability of this block-coded
modulation scheme. In the proposition, the quantity n equals
MN .

Proposition 1. Let h,w ∈ Cn be circularly symmetric,
complex Gaussian random vectors with R = E[hh∗] and
E[ww∗] = 2σ2In×n. Let

√
Es be an energy normalization factor

and let ρ � Es/8σ2. Let c(i) and c( j) be two signal points in sig-
nal constellationM which consists of points in Cn. Let α be the
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Figure 2: The transmitter/receiver structure of the OFDM-like system.

difference vector between these two points, that is, α = c(i)−c( j).
Further, Z = [zi j] is an n× n diagonal matrix with zii = |αi|2.
The pairwise error probability P(c(i) → c( j)) for two signal
points c(i), c( j) ∈ M transmitted over the correlated Rayleigh
fading channel

y =
√
Esh	 c +w (21)

is upper bounded by

P
(
c(i) −→ c( j)

) ≤ 1
det(I + ρRZ)

(22)

=
n∏
i=1

1
1 + ρλi

, (23)

where λi ≥ 0 are the eigenvalues of RZ.

Proof. The proof is straightforward. See for example [12, the
appendix]. A proof appears in the appendix of this paper for
the sake of completeness.

3.2. The role of deep fades in pairwise error probability

We begin by first deriving a lower bound on the pairwise er-
ror probability. It is straightforward to show that the pairwise
error probability is given by the following expression:

P
(
c(i) −→ c( j)

) = Eh

[
Q
(
Es
4σ2

h∗Zh
)]

, (24)

where Q(x) is the Q function which is defined as Q(x) =
(1/
√
2π)

∫∞
x ex

2/2 dx.
Consider the following approximation to theQ function.

Let

Q̃(x) =
⎧⎨
⎩
Q(1), x ≤ 1,

0 otherwise.
(25)

Since Q̃(x) ≤ Q(x) for all x, it follows that

P
(
c(i) −→ c( j)

) ≥ Eh

[
Q̃
(
Es
4σ2

h∗Zh
)]

= Q(1)P
(
h∗Zh ≤ 2

ρ

)
.

(26)

We will consider two extreme cases of correlated fading, viz.,
independent and identically distributed (i.i.d) fading and
block fading. A more comprehensive treatment appears in
[13] where this idea of behavior at origin and diversity has
been generalized to arbitrary fading distributions. The fad-
ing is said to be i.i.d if hi are independent and identically dis-
tributed that is, R = E[hh∗] = INM×NM . The channel is said
to undergo block fading if hi are completely correlated, that
is, h1 = h2 = · · · = hn.

We first consider the i.i.d fading scenario. Let β = (β1,
β2, . . . ,βn) be a permutation of the entries of the vector α =
(|α1|2, |α2|2, . . . , |αn|2) such that the entries of β are arranged
in descending order. Let L be the position of the last nonzero
entry in β, that is, βi > 0, for all i ≤ L. Let Λ = ∑L

i=1 |hi|2. It
follows that

P
(
h∗Zh ≤ 2

ρ

)
≥ P

(
β1Λ ≤ 2

ρ

)
. (27)

If R = I , Λ is the sum of the squares of 2L Gaussian random
variables. Its distribution is known as the Chi-square distri-
bution with 2L degrees of freedom and is given by

fΛ(x) = 1
(L− 1)!

xL−1e−x, x ≥ 0. (28)

For small x, the probability density function of Λ is approxi-
mately

fΛ(x) ≈ 1
(L− 1)!

xL−1 (29)

and hence for i.i.d fading for high SNR, that is, for large ρ,

P
(
Λ ≤ 2

ρβL

)
≈
∫ 2/ρβL

0

1
(L− 1)!

xL−1 dx (30)

= 1
L!

(
2
βL

)L 1
ρL

. (31)

Now let us consider the block-fading scenario. In this
case, R has rank 1; in fact, all entries of R are 1, and the
λ = NM is the only nonzero eigenvalue. Thus, from (23)

P
(
c(i) −→ c( j)

) ≤ 1
1 + ρNM

. (32)
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Let βi and Λ be defined as before. In this case, Λ = L|h1|2 has
an exponential distribution,

fΛ(x) = 1
L
e−x/L, x ≥ 0. (33)

Thus,

P
(
Λ ≤ 2

ρβL

)
= 1− e−2/ρLβL (34)

≈ 2
ρLβL

for large ρ. (35)

Given two functions f (x) and g(x) we say f (x)
.= g(x) if

lim
x→∞

f (x)
g(x)

= k, k ∈ R, k �= 0. (36)

For a fixed SNR ρ, we can say that the kth channel is in a deep
fade if |hk|2 < 1/ρ. From (23) and (31) it follows that in the
high SNR regime, for i.i.d fading,

γ

ρL
≤ Q(1)P

(
Λ ≤ 2

βLρ

)
≤ P

(
c(i) −→ c( j)

)

≤
NM∏
i=1

1
1 + ρλi

=
L∏
i=1

1
1 + ρβi

,

(37)

where γ > 0 is a constant.
Similarly for block-fading,

γ′

ρ
≤ Q(1)P

(
Λ ≤ 2

βLρ

)
≤ P

(
c(i) −→ c( j)

) ≤ 1
1 + ρNM

,

(38)

where γ′ > 0 is a constant.
In particular, for both i.i.d fading and block fading

P
(
Λ ≤ 1

ρ

)
.= P

(
c(i) −→ c( j)

)
. (39)

The quantity P(Λ ≤ 2/βLρ) is a measure of the proba-
bility that the L parallel Rayleigh channels fade simultane-
ously. Since the codewords c(i) and c( j) differ in L compo-
nents, we see that the pairwise error probability is domi-
nated by the event that the L channels hi, i = 1, . . . ,L, are
simultaneously in a deep-fade. Equations (32) and (35) tell
the same story for the block fading scenario. For the general
case of correlated fading which lies in between these two ex-
treme cases, one would expect P(c(i) → c( j))

.= 1/ρr , where
1 ≤ r = rank(RZ) ≤ L. This will be shown later.

3.3. Preferred directions

Unlike the Gaussian channel, the contours of pairwise er-
ror probability are not concentric spheres but are star-shaped
objects. Consider, for example, the two-dimensional case. Let

the channel correlation matrix be denoted as R = ( r0 r∗1
r1 r∗0

)
,

where ri = E[hk+ih∗k ], Zα =
( |α0|2 0

0 |α1|2
)
, and

det
(
I + ρRZα

) = 1 + ρr0
(∣∣α0∣∣2 + ∣∣α1∣∣2)

+ ρ2
∣∣α0∣∣2∣∣α1∣∣2(r20 −

∣∣r1∣∣2).
(40)

As a further simplification, consider a signal constellation
M consisting of points in real space R2. This corresponds to
using only the in-phase component in the passband signal
constellation. Let α � (x, y)T ∈ R2 denote the difference
vector. Figure 3 gives a contour plot of det(I + ρRZδ) as a
function of x and y. Such plots for the special case of i.i.d
fading and high SNR can also be found in [4]. From the fig-
ures, the contours of equal pairwise error probably do not
show circular symmetry unless R has rank 1. This can also
be verified from (40). The lack of circular symmetry leads
to the notion of preferred directions. Under the norm con-
straint |x|2 + |y|2 = 1, the pairwise error probability is sig-
nificantly lower if the difference vector α = (x, y)T points
in a particular direction, for example, along the unit vector
(±1/√2,±1/√2)T instead of (±1, 0)T or (0,±1)T .

In the three-dimensional case,R can be any three-dimen-
sional toeplitz block toeplitz (TBT) matrix. As special cases,
consider the correlation matrices

R1=
⎛
⎜⎝
1 0 0
0 1 0
0 0 1

⎞
⎟⎠ , R2=

⎛
⎜⎝
1 1 0
1 1 0
0 0 1

⎞
⎟⎠ , R3=

⎛
⎜⎝
1 1 1
1 1 1
1 1 1

⎞
⎟⎠ ,

(41)

respectively. The matrix R1 represents i.i.d fading, R2 refers
to the case h1 = h2 and independent of h3, whereas R3 refers
to the block fading scenario h1 = h2 = h3. The contours of
equal pairwise error probability are given in Figure 4.

As in the two-dimensional case, when R is full rank the
locus is star-shaped; in the block fading case where R has
rank 1, the locus is a sphere. As before, the higher the rank of
R, the smaller the value of |x|, |y|, and |z| required to achieve
a given PEP at a given ρ. From the figures, it is clear, that in
order to design good signal constellations, the signal points
should be arranged in space such that the difference vectors
avoid the “nonpreferred” directions.

3.4. Key observations

Beyond three dimensions, things become difficult to visual-
ize; the aim of this section is to make some key observations
which help us to design signal constellations for correlated
fading channels. For the sake of completeness, we begin by
proving that the matrix RZ has nonnegative eigenvalues.

Theorem 1. The matrices Y = RZ and Ỹ � E[(h 	 α)(h 	
α)∗], where R = E[hh∗], Z = diag(|α1|2, |α2|2, . . . , |αn|2),
and α is the column vector (α1,α2, . . . ,αn)T ∈ Cn, have the
same eigenvalues.

Proof. Consider an n × n matrix A and an index set γ ⊆
{1, 2, . . . ,n} with k, k ≤ n elements. The k × k submatrix
A(γ) that lies in the rows and columns of A indexed by γ
is called a k-by-k principal submatrix of A. A k-by-k princi-
pal minor is the determinant of such a principal submatrix.

There are
(
n
k

)
different k-by-k principal minors of A, and the

sum of these is denoted by Ek(A). The characteristic func-
tion pA(s) � det (sI− A) can be written in terms of Ek(A)
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Figure 3: Three contours of the pairwise error probability expression in the two-dimensional case, ρ = 10, r0 = 1. (a) r1 = 0 i.i.d fading,
rank (R) = 2. (b) r1 = 0.8 + j0.4 correlated fading, rank (R) = 2. (c) r1 = 1, correlated fading, rank (R) = 1.
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Figure 4: Surface of constant pairwise error probability in 3D case for R = R1,R2,R3, respectively, ρ = 10 and P(c(i) → c( j)) = 10−3.

as pA(s) = sn − E1(A)tn−1 + E2(A)tn−2 − · · · ± En(A). Thus,
it is sufficient to show that Y and Ỹ have the same minors.
Let γ = {i1, i2, . . . , ik}, 1 ≤ k ≤ n, be an index set. But,

det (Y(γ)) = (
∏k

l=1 |αil |2) det (R(γ)) = det (Ỹ(γ)) which im-
plies pỸ(s) = pY(s).

Corollary 1. ThematrixY = RZ has nonnegative eigenvalues.

Proof. The matrix Y is not Hermitian. However, the matrix Ỹ
as defined in Theorem 1 is Hermitian and positive semidef-
inite as E[z∗Ỹz] = E[|∑n

k=1 z
∗
k αkhk|2] ≥ 0. The result now

follows from Theorem 1.

Definition 1. The diversity order of a signal constellation is
the minimum Hamming distance between the coordinate
vectors of any two distinct points in the signal constellation.

We will denote the diversity order of a constellationM by
the symbol L(M). Note that diversity order is a property of
the signal constellation and does not depend on the channel
model.

Definition 2. The �-product distance between two signal
points x and y that differ in l components, denoted by

d(l)p (x, y)2, is the product of the nonzero components of the
difference vector e = x − y, that is,

d(l)p (x, y)2 =
∏
xi �=yi

(
xi − yi

)2
. (42)

In the high SNR regime for the i.i.d Rayleigh fading chan-
nel, the diversity order and the product distance of a constel-
lation are important criteria for code design [14]. This is
well-known in literature. For the correlated Rayleigh fading
channel, the generalization is quite straightforward and in-
volves taking the channel correlation matrix R into account.
This requires a generalization of the concept of the product
distance. See [15] for similar calculations for the multiple
antenna space-time codes. The calculations for our OFDM-
like scheme on the doubly dispersive channel are similar in
spirit.

For i.i.d fading, in the plot of pairwise error probability
versus signal-to-noise ratio, the diversity order determines
the slope of the curve. In correlated fading, the rank r of the
matrix RZ plays similar role. Note that this quantity is al-
ways smaller than the diversity order of the constellation, as
rank(RZ) ≤ min{rank(R), rank(Z)}.
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The kth elementary symmetric function of n numbers
t1, t2, . . . , tn, k ≤ n, is

Sk
(
t1, t2, . . . , tn

) = ∑
1≤i1<···<ik≤n

k∏
j=1

ti j . (43)

The following elementary theorem helps to generalize the
notion of product distance.

Theorem 2. Let d ≥ 1 be the Hamming weight of the differ-
ence vector α ∈ Cn. Let r be the rank of the correlation matrix
R. Let rα be the rank and let λ1 ≥ λ2 ≥ · · · ≥ λrα > λrα+1 =
· · · = λn = 0 be the eigenvalues of the matrix RZα. Then,

det
(
I + ρRZα

) = 1 +
rα∑
k=1

ρkSk
(
λ1, λ2, . . . , λn

)
, (44)

where 1 ≤ rα ≤ min{d, r}.

Proof. The proof is straightforward. The eigenvalues are
numbered in descending order. Hence, λrα+1 = 0 implies
Sk(λ1, . . . , λn) = 0 for all k > rα. Thus,

det
(
I + ρRZα

) =
n∏
i=1

(
1 + ρλi

)

= 1 +
n∑

k=1
ρkSk

(
λ1, λ2, . . . , λn

)

= 1 +
rα∑
k=1

ρkSk
(
λ1, λ2, . . . , λn

)
.

(45)

The rank of the product of two square matrices can be no
greater than the minimum of the ranks of the individual ma-
trices. Since rank(Zα) = d, we have rα ≤ min{d, r}.

It follows from the previous theorem that, for correlated
fading, in the high SNR regime

P
(
c(i) −→ c( j)

) ≤ 1
1 +

∑rα
k=1 ρkSk

(
λ1, λ2, . . . , λn

)

≈ ρ−rα

Srα
(
λ1, λ2, . . . , λn

) for large ρ.

(46)

The quantity Srα(λ1, . . . , λn), where α � x − y, is the gener-
alization of the notion of product distance between x and y.
Unlike product distance, it depends on the channel statistics
since the eigenvalues and the quantity rα are functions of the
correlation matrix R. In i.i.d fading, we have R = In×n, which
implies rα = d. Further, |αi|2, i = 1, . . . ,n, are the eigen-
values of the diagonal matrix RZα. Thus Srα(λ1, . . . , λn) =∏

αi �=0 |αi|2 = dP(x, y).

3.5. Implications for code design for OFDM schemes
under the block fading assumption

Consider a signal constellation M in Cn with diversity order
L to be used for communication over the canonical channel
given by (19). Recall that the diversity order is an intrinsic

property of the signal constellation and does not depend on
the channel model. Given a particular channel, we say that
M achieves a diversity of m if for every pair of signal points
in M the pairwise error probability decays at least as fast as
ρ−m. A channel is specified by R, the correlation matrix of
the fading coefficients. This matrix depends on the channel
scattering function CH(ν, τ) and the grid parameters T and F
of the OFDM-like modulation scheme.

Let γ(M) be defined as the minimum of the rank of the
matrix RZα over all choices of the difference vector α. Hence,
for a signal constellation M of diversity order L to achieve
a diversity of m on a channel with correlation matrix R, we
need

(i) m ≤ γ(M) ≤ min{rank (R),L},
(ii) for high signal-to-noise ratios, the pairwise error prob-

ability is smallest for the constellation with greatest
γ(M). For two constellations with the same γ(M), the
one with greater Sγ(λ1, λ2, . . . , λn) has a smaller pair-
wise error probability.

Until now, we have allowed arbitrary correlation be-
tween the time-frequency channel coefficients in (19). The
level of time-frequency diversity is captured in the num-
ber of nonzero eigenvalues of the channel correlation matrix
R = E[hh∗]. As shown in [3], the level of delay-Doppler di-
versity can be estimated via the delay and Doppler spreads
and signaling duration of the signaling scheme. The max-
imum available delay-Doppler diversity, that is, the num-
ber of nonzero channel eigenvalues, can be accurately esti-
mated as D = �TmW��BdTs�, where Tm and Bd are the de-
lay and Doppler spreads of the channel, and Ts = NT and
W = MF are the signaling duration and bandwidth, re-
spectively. This delay-Doppler diversity leads to the notion of
time-frequency coherence subspaces as argued in [3], result-
ing in a block fading interpretation of the doubly dispersive
channel in the short-time Fourier domain. In other words,
the number of signal space dimensions NM, can be par-
titioned into D coherence subspaces, each with dimension
NM/D. In the block fading approximation, the channel coef-
ficients are assumed identical in each time-frequency coher-
ence subspace, whereas the coefficients in different subspaces
are statistically independent. The number of independent co-
herence subspaces, D, which also equals the delay-Doppler
diversity in the channel, then represents the maximum num-
ber of nonzero eigenvalues of the channel correlation matrix
R. This means that the matrix R is a block-diagonal matrix
with D blocks.

In the next section, we use constellation partitioning
ideas to design codes with any desired diversity order and
then use the block fading interpretation to adapt the codes
to the channel structure.

So far we have been exclusively concerned with the pair-
wise error probability P(c(i) → c( j)). Using the union bound,
the probability of decoding error when c(i) is transmitted
P(error | c(i)) is upper bounded as

P
(
error | c(i)) ≤ ∑

c( j)∈M, c( j) �=c(i)
P
(
c(i) −→ c( j)

)
. (47)
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LetM denote the number of signal points in constellationM.
Assuming all codewords have the same a priori probability,
that is, P(c(i)) = 1/M for all i,

P(error) =
M∑
i=1

P
(
error | c(i))P(c(i))

≤ 1
M

M∑
i=1

M∑
j=1, j �=i

P
(
c(i) −→ c( j)

)
.

(48)

The above analysis is based on the pairwise error probability
and yields a good approximation to the overall probability of
error if the union bound is tight. This approach has its lim-
itations, in particular in the design of capacity approaching
schemes.

4. CODE DESIGN BY SET PARTITIONING

In 1977, Imai and Hirakawa [16] presented their multilevel
method for constructing binary block codes. Codewords
from the component codes, also called as outer codes, form
rows of a binary array, and the columns of this array are
used as information symbols for another code called the in-
ner code. If on the other hand, each column of this array of
outer codes is used to label a signal point in a signal con-
stellation, we obtain a coded-modulation scheme. Such tech-
niques were also used in [7, 17] for the design of effective
coded-modulation schemes for the AWGN channel. Nowa-
days, multilevel techniques, also called generalized concate-
nation, are well recognized as a powerful tool for designing
new codes in Hamming and Euclidean spaces [18]. In this
section we use the technique of generalized concatenation to
design signal constellations with high diversity order.

4.1. An example in two dimensions

Our idea to partition signal constellations is inspired by
Ungerboeck’s trellis coded-modulation schemes. Recogniz-
ing that the Euclidean distance is an important design pa-
rameter for minimizing pairwise error probability, in [7]
standard QAM constellations were partitioned such that sub-
constellations had greater Euclidean distance. For fading
channels, we design partitioning schemes to ensure that sub-
constellations have a greater diversity order. We illustrate this
by means of an example. We will generalize this scheme in
Section 4.3.

Consider the signal constellation M1 shown in Figure 5.
It can be defined as

M1 �
{(

x1, x2
)T | xi ∈

{
± 1

2
,±3

2

}}
. (49)

We partition it into four subconstellationsM2
0,M

2
α,M

2
1, and

M2
α as shown in Figure 5. The primary objective of the par-

titioning scheme is to ensure that the subsets M2
i have a

larger diversity order L than the parent constellation M1.
For this particular partitioning scheme, we have L(M2

i ) =
2L(M1) = 2.

3/2

1/2

�1/2

�3/2

�3/2 �1/2 1/2 3/2

M2
0

M2
α

M2
1

M2
α

Figure 5: Algebraic description of partitioning scheme A.

4.2. Algebraic description of partitioning scheme A

To generalize scheme A tom dimensions we first need to give
it an algebraic description. This is done as follows. Let F4
denote the finite field of cardinality 4. Let α be a primitive
element of F4. Let the elements of F4 be given by {0, 1,α,α},
where α denotes the element α2. Consider the bijective map
φα : F4 → {−3/2,−1/2, 1/2, 3/2} given by

φα(γ) =

⎧⎪⎪⎨
⎪⎪⎩
−3
2

if γ = 0,

i− 3
2

if γ = αi, 1 ≤ i ≤ 3.
(50)

LetΦα be the vector map corresponding to component-wise
scalar maps φα. Given a set S, let Φα(S) denote the set of all
values the mapΦα can take as its argument varies over S.

As shown in Figure 5, the partitions are now identi-
fied by labels over F4. The partition M2

α consists of the
four points (3/2,−3/2), (1/2,−1/2), (−1/2, 1/2), (−3/2, 3/2)
in R2. We say that this partitioning scheme is defined by its
generator matrix PA = ( 1 1

1 α ), since the partitions M2
0, M

2
1,

M2
α, andM2

α can then be defined as

M2
0 = Φα

({
(γ, 0)PA | γ ∈ F4

})
,

M2
1 = Φα

({
(γ, 1)PA | γ ∈ F4

})
,

M2
α = Φα

({
(γ,α)PA | γ ∈ F4

})
,

M2
α = Φα

({
(γ,α)PA | γ ∈ F4

})
.

(51)

It is easy to see that each of these partitions has diversity order
2. This is because, if s1, s2 ∈ M2

i and s1 �= s2, then s1 −
s2 is a multiple of Φα((1, 1)). Thus s1 and s2 differ in two
coordinates.

We now use the idea of generalized concatenation to
combine the constellation M1 in R2 with suitably cho-
sen outer codes of length n to construct constellations in
R2n with desired diversity order. Consider two outer codes
C i[n, ki,di]4, i = 1, 2, over F4 of length n, dimension ki, and
minimum distance di where d1 > d2. Code C i containsMi =
4ki codewords. Each point inM1 can be uniquely determined
by the label (ω1,ω2), where ω1,ω2 ∈ F4. In particular, the
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pair (c1k , c
2
k) of the kth coordinate, 1 ≤ k ≤ n, of the two code-

words c1 = (c11, c
1
2, . . . , c

1
n) ∈ C1 and c2 = (c21, c

2
2, . . . , c

2
n) ∈ C2

can be used to label signal points inm1. Thus, a pair of code-
words, one from each outer code, labels a signal point inR2n.
We thus have a construction for a signal constellation MCM

in 2n-dimensional real space.
We now show that MCM has M1M2 signal points and a

diversity order of at least mini{diL(Mi)}, where Mi stands
for any one of the four subconstellations Mi

ω,ω ∈ F4. Note
that L(Mi) is well defined since all of these subconstella-
tions have the same diversity order of 2. Fixing a codeword
c1 ∈ C1,M2 different signal points can be labeled with code-
words of C2. Thus the cardinality of MCM is M1M2. A sig-
nal point s in MCM is uniquely identified by a pair of code-
words, one each from C1 and C2. Consider two distinct sig-
nal points s1 and s2 inMCM . Since s1 �= s2 we have two pos-
sibilities.

(1) The signal points correspond to distinct codewords
from C1. Since C1 has a Hamming distance d1, it fol-
lows that s1 and s2 differ in at least d1 times L(M1)
coordinates. Note that this holds true independent of
whether the two signal points correspond to the same
or different codewords from C2.

(2) The signal points correspond to the same codeword
from C1 but different codewords from C2. Hence, ar-
guing as above, since two codewords from C2 differ in
at least d2 positions, s1 and s2 differ in at least d2 times
L(M2) coordinates.

We conclude this subsection with some terminology that
will be helpful in subsequent sections. We partition the con-
stellation M1 once to create four constellations at level 1,
viz., M2

ω, ω ∈ F4. We partition a second time to create 16
constellations at level 2, viz., M3

ω1,ω2
, ω1,ω2 ∈ F4. The parti-

tioning is stopped when each constellation consists of a sin-
gle point. In order words, the parent constellation is at level
0 and the constellations at the last level consist of a single
point each. The order of a partitioning scheme is defined as
the number of levels in the scheme. This should not be con-
fused with the term diversity order. In subsequent sections,
the term M1 will refer to any signal constellation that we
wish to partition. It will not refer to the particular constel-
lation given by (49) unless it is explicitly mentioned to be
so.

4.3. Generalizing partitioning scheme A

Scheme A described in the previous subsection has order 2.
In general an L×m partition generator matrix P whose en-
tries are elements in Fq represents a scheme of order L in
m-dimensional real space with less than or equal to q signal
points per dimension.

Let α be a primitive element in Fq, the finite field with
q elements. Consider the map φα : Fq → {(−q + 1)/2,
(−q + 3)/2, . . . , (q − 1)/2} given by φα(γ) = i− (q − 1)/2, if
γ = αi, 1 ≤ i ≤ q − 1, and φ(0) = (−q + 1)/2. Let Φα be
the vector map corresponding to component-wise scalar
maps φα. Let M1 be a constellation carved out from the

integer lattice Zm. Consider the partitioning matrix

P �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 α α2 · · · αm−1

1 α2 α4 · · · α2(m−1)

...
...

...
. . .

...

1 αL−1 α2(L−1) · · · α(L−1)(m−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (52)

where L ≤ q − 1,m ≤ q − 1, and the set

Mk+1
ω1,ω2,...,ωk

� Φα
({
βP | β = (

βL−k, . . . ,β1,ωk,ωk−1, . . . ,ω1
) ∈ FLq

})
.

(53)

In the above equation the vector β takes all possible val-
ues in FL−kq . Constellation Mk+1

ω1,ω2,...,ωk
consists of qL−k points

each labeled by a distinct vector β. Further, it will be clear
from Theorem 3 that we need L ≤ m for the diversity or-
der of the constellation at level l to be a strictly increasing
function of l. We take a moment to clarify the notation. In
the above equation, α is a primitive element in Fq, whereas
ωjs represent arbitrary (not necessarily primitive) elements
Fq . We thus have a partitioning scheme of order L in an m-
dimensional Euclidean space indexed by labels ωk ∈ Fq given
by

M1 =
⋃
ω1

M2
ω1
,

M2
ω1
=
⋃
ω2

M3
ω1,ω2

,

...

ML
ω1,ω2,...,ωL−1 =

⋃
ωL

ML+1
ω1,ω2,...,ωL−1ωL

.

(54)

The parameter ω1 ∈ Fq labels the subconstellation M1
ω1

of
M1, ω2 labels the subconstellationM3

ω1,ω2
ofM2

ω1
, and so on.

Note that ML
ω1,ω2,...,ωL−1 consists of a set of q points given by

ML+1
ω1,ω2,...,ωL

, ωL ∈ Fq, For the example given in Section 4.1,
we have

M1 =M2
0 ∪M2

α ∪M2
α ∪M2

1,

M2
ω =M3

ω0 ∪M3
ωα ∪M3

ωα ∪M3
ω1 ∀ω ∈ F4.

(55)

Theorem 3. L(Ml
ω1,ω2,...,ωl−1 ) = (l+m−L)+, for all l such that

1 ≤ l ≤ L, where x+ � max{x, 0}.

Proof. Consider that the two distinct points, that is, s1, s2 ∈
Ml

ω1,ω2,...,ωl−1 , s1 �= s2, have the following identification labels:
(βL−l+1 · · · β1 ωl−1 · · · ω1) and (γL−l+1 · · · γ1 ωl−1 · · · ω1),
respectively. Further assume that s1, s2 are chosen such that
β1 �= γ1. Let ζk � βk − γk, k = 1, . . . ,L − l + 1. Consider the
polynomial g(x) = ζL−l+1 + ζL−lx+ · · ·+ ζ1xL−l. Since ζ1 �= 0,
g(x) is a polynomial of degree of L − l and can have at most
L− l roots in Fq. But

s1 − s2 = Φα
(
g(1), g(α), g

(
α2
)
, . . . , g

(
αm−1

))
, (56)
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where α is a primitive element in F4. This implies that signal
points s1 and s2 differ in at least m− (L− l) positions which
implies

L
(
Ml

ω1,ω2,...,ωl−1

) ≥ (l +m− L)+. (57)

We now show that we have equality in (57). Consider the
polynomial h(x) = (x − 1)(x − α) · · · (x − αL−l−1). Let s1
denote the signal pointML+1

0,0,...,0.

g1(x) =
∑L

i ωixi−1 and let g2(x) = g1(x) + h(x). Let g2(x)
be of the form

∑L
i ωixi−1. Let s2 be a point with identification

label (γL, . . . , γ2, γ1). It follows that the difference vector s1 −
s2 = Φω((h(1) h(ω) h(ω2) · · · h(ωm−1)) has Hamming
weight (m − L + l)+. Since the polynomial h(x) has degree
L − l, we have γi = ωi for 1 ≤ i ≤ l − 1, which implies
s2 ∈Ml

ω1,ω2,...,ωl−1 .

Theorem 3 shows that the diversity order increases as we
go down the partition chain. It will be strictly increasing if
L ≤ m. The reason for this partitioning will be clear from
Theorem 4 where we will combine this partitioning scheme
with outer codes to create a signal constellation in higher di-
mensions with higher diversity. Figure 6 shows the partition-
ing scheme A in three dimensions. The constellation M1 is
carved from a shifted version of Z3, the integer lattice in three
dimensions, and has q = 4 points per dimension. The parti-
tion scheme of order 3 can be represented by (53) and (54)
with L = 3, m = 3, q = 4. Figure 6(a) shows the partition
M2

0 which is further divided into 4 subpartitions M3
00, M

3
01,

M3
0α, andM

3
0α, as shown in Figure 6(b). As expected,M2

0 has
diversity 2 andM3

0α has diversity order 3. Figure 7 illustrates
this three-dimensional example in more detail.

4.4. Outer codes

In the example considered in Section 4.1, we needed two
outer codes. In general, we need L outer codes, where L is the
depth of the partitioning scheme. There are three parameters
that have to be chosen for each outer code C i[N , ki,di]pi .

(1) The finite field over which the outer code is defined.
This is dependent on the partitioning scheme. Con-
sider a partitioning scheme of order k. Let t j denote the
number of partitions at level j and Fpj denote the finite
field over which the jth outer code is defined. To la-

bel each of the t j partitionsM
j
1, . . . ,M

j
t j , it is necessary

that pj ≥ t j . For the particular partitioning scheme de-
scribed in the previous subsection, t j equals q, hence
pj ≥ q suffices. We choose pj = q for all j.

(2) The block length N of the outer code. This is de-
pendent on a number of factors like design con-
straints and decoding complexity. If ergodic capacity-
achieving schemes are desired, it is necessary to con-
sider long block lengths.

(3) The rate Ri of the outer codes. This is related to the de-
sired error performance. If pairwise error probability is
the criterion we wish to optimize, then the outer codes
are chosen such that each subpartition has the same
pairwise error probability. This will be elaborated in
Section 5.

We now describe the multilevel encoder and the multi-
stage decoding (MSD) algorithm, first presented by Imai and
Hirakawa in [16]. Figure 8 shows a multilevel encoder for a
partitioning scheme of order L. This figure appears in [18].
For simplicity, assume that p1 = p2 = · · · = pL = p, that
is, all outer codes are defined on the same field Fp. In the
encoder, a block of K source data symbols q = (q1, . . . , qK ),
qi ∈ Fp, is partitioned into L blocks

qi = (
qi1, . . . , q

i
ki

)
, i = 1, . . . ,L, (58)

of length ki with
∑L

i=1 ki = K . Each data block qi is fed
into an individual p-ary encoder Ei generating codewords
ci = (ci1, . . . , c

i
N ) of the component code C i. For simplic-

ity, we assume here equal code lengths N at all levels, but
the choice of code lengths can be arbitrary. For example,
block codes, convolutional codes, or turbo codes can be used.
The codeword symbols cit, t = 1, . . . ,N , of the codewords
ci, i = 1, . . . ,L, at one time instant t form the p-ary label
ct = (c1t , . . . , c

L
t ), which is mapped to the signal point sct .

Let MCM be the constellation in Rmn obtained by con-
catenating the partition scheme of order L as given by (53)
and (54) with L outer codes C i[N , ki,di]q, 1 ≤ i ≤ L.
Theorem 4 proves that MCM has cardinality

∏
i q

ki . Let η
denote the spectral efficiency in bits per real dimension of
MCM . It follows that

η = log2
∏

i q
ki

nm
= log2 q

m

∑
Ri, (59)

where Ri is the rate of the ith outer code.

Theorem 4. The setMCM has cardinality
∏

i q
ki and diversity

order of at leastminl{dl(l +m− L)+}, where x+ � max{x, 0}.

Proof. Let c(i) be a codeword in the outer code C i[N , ki,di]q,
1 ≤ i ≤ L. Further, let (ci1, c

i
2, . . . , c

i
N ) be the representation of

the codeword ci. The L×N codeword matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 · · · c1N

c21 c22 · · · c2N

...
...

. . .
...

cL1 cL2 · · · cLN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(60)

uniquely identifies a signal point, say s, in MCM . Since there
are

∏
i q

ki such distinct matrices, it implies that MCM has
cardinality

∏
i q

ki . The ith column of (60) identifies a signal
point si in M1. Similarly, let t ∈ mCM be the point corre-
sponding to codewords d(i), 1 ≤ i ≤ L. Let the quantity l be
defined as l = min{k | c(k) �= d(k)}. This implies that c(l) and
d(l) differ in at least dl positions. Let i be one such position

and let ωj = c
( j)
i . This implies that si, ti ∈ Ml

ω1,ω2,ωl−1 and
there exists no γ ∈ Fq such that si, ti ∈Ml+1

ω1,ω2,ωl−1,γ. This im-
plies that si and ti differ in (m−L+ l)+ positions. This is true
for at least dl such positions in the outer code. This implies
that s and t differ in at least dl(m−L+l)+ positions. The claim
now follows by taking a minimum over l = 1, 2, . . . ,L.
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Figure 6: Partitioning scheme A in three dimensions q = 4,m = 3, L = 3. (a) PartitionM2
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Note that (l +m− L)+ is the diversity order of a subcon-
stellation Ml

ω1,ω2,...,ωl−1 at level l. This is an increasing func-
tion of l. Since the diversity order of MCM is the minimum
over l of the product dlL(Ml), the distance dl of outer code
C l, needed to attain a particular value of MCM , decreases
as l increases. This enables higher rate codes to be used at
higher levels, that is, levels corresponding to a larger value of
l. Theorem 4 also illustrates how by lowering the minimum
distance di of all the outer codes, thereby increasing their rate,
we can trade off the diversity order of the constellationMCM

for the rate of the code. The significance of Theorem 3 also
now becomes clear. In particular if the fading is i.i.d, then
the outer code C l sees an equivalent channel with diversity
(l +m− L)+. The notion of equivalent channels is described
in detail in [18]. Since this is a better channel than the chan-
nel seen by the outer code C l−1, C l needs a lower correction
capability than C l−1. If the fading is not i.i.d but correlated,
C l may not see a channel with diversity as high as (l+m−L)+,
but the channel will be better than that seen by C l−1.

We now take a look at the decoding algorithm for multi-
level codes. Figure 9 shows a multistage decoder. This figure
also appears in [18]. In this low-complexity decoding algo-
rithm, the component codes C i are successively decoded by
the corresponding decoders Di. At stage i, decoder Di pro-
cesses not only the block y = (y1, . . . , yN ), yk ∈ Rm, where
m is the dimension of the signal space, but also decisions ĉ j ,
j = 1, . . . , i − 1, of the previous decoding stages j. Let Pe, j
denote the word error rate of code C j given that the previous
j − 1 stages have been decoded correctly, that is,

Pe, j � P
(
ĉ j �= c j | ĉ1 = c1, . . . , ĉ j−1 = c j−1

)
. (61)

It follows from the union bound that the overall probability

of error Pe is upper bounded by

Pe ≤
L∑
j=1

Pe, j . (62)

Let R = ∑
Ri denote the sum of the rates of the outer

codes. As mentioned in [18], if error propagation in MSD
is neglected, the bit-error Pb probability for multilevel coded
transmissions is given by

Pb =
L∑
l=1

Ri

R
Pb,i, (63)

where Pb,i denotes the bit-error probability for decoding at
level i when error-free decisions are assumed at the decoding
stages of the previous levels.

4.5. Adaptationof the partitioning scheme to the block
fading channel

So far, we have seen how the partitioning scheme can be used
with outer codes to construct codes of any desired diversity
order. We now adapt these codes to a block fading channel.

Consider a coding scheme overM tones andN time slots.
The underlying channel structure results in a block fading
channel with D coherent subspaces or blocks each of size
b = NM/D. To design a coded-modulation scheme with
spectral efficiency of η bits per dimension, start with an in-
teger lattice in m ≤ D dimensions, and carve out a constel-
lation M1 consisting of qm points. The parameter m is cho-
sen to be quite smaller than D. This is explained in detail in
Section 5.1. This signal constellation has an uncoded spec-
tral efficiency of log2 q bits per dimension. The parameter q
is chosen so as to ensure a constellation expansion factor of at
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Figure 10: Interleaved channel.

least 2, that is, �log2 q/η� ≥ 2. Fixing q constrains how large
m can be asm ≤ q−1. Now partitionM1 L times thereby as-
signing each signal point a q-ary label of length L. Use L outer
codes over Fq. In our partitioning scheme, we fix L = m, that
is, we partition m times and hence need to choose m outer
codes. The rates Ri of the outer codes should be chosen to
satisfy the desired spectral efficiency as per (59). Finally the
coded bits of the outer codes are passed through an inter-
leaver before being modulated and transmitted. We choose
short constraint length convolutional codes as outer codes.
The interleaver is designed so that successive code symbols
of each outer code see independent fades [19].

Consider the following example of how the interleaver
is designed. It also helps to explain how the coded sym-
bols are mapped onto the different time frequency slots in
OFDM modulation. Consider a channel with M = 4 tones.
Let the coherence time correspond to 4 time slots as shown
in Figure 10. Let the tone-spacing be such that the coherence
bandwidth of the channel corresponds to 2 tones. A block
of 8 time-frequency slots corresponds to a time-frequency
coherence subspace and is indicated in the figure by a par-
ticular shade of the grey color. All time-frequency slots in a
coherence subspace see the same fade. Each time-frequency
slot corresponds to one complex dimension or equivalently
2 real dimensions. We code jointly over 8 time slots and 4
tones, which corresponds to 2 sets of 32 real dimensions cor-
responding to the inphase and quadrature components. Thus
we are coding across D = 4 coherence subspaces each of size
b = 8. The desired spectral efficiency η is 1 bit per real di-
mension.

We chooseM1 as defined by (49) as the signal constella-
tion with 16 points. This fixes m = 2 and hence we partition
twice and need two outer codes over F4. We choose convolu-
tional codes as outer codes. Thus we need a rate pair (R1,R2)
such thatR1+R2 = 1. Let c1 and c2 be codewords correspond-
ing to outer codes C1 and C2, respectively. We first modulate
over the inphase components and then over the quadrature
components. A pair of code symbols (c1t , c

2
t ), 1 ≤ t ≤ 16,

uniquely identifies a signal st = (st,1, st,2) ∈ R2. Thus (c11, c
2
1)

determines signal point s1 = (s1,1, s1,2) and we send s1,1 in
over time-frequency slot 1 and s1,2 over time-frequency slot
9 which is that first slot that fades independently of slot 1.
We indicate this in Figure 10 by noting down in c11, c

2
1 in the

time-frequency slots numbered 1 and 9. Similarly, we send
s2,1 and s2,2 over time-frequency slots 17 and 25, respectively,
which fade independently of each other and slots 1 and 3.
We now have run out of independently fading slots, so the
next signal point corresponding to t = 3 is sent over slots 5
and 13. We continue till t = 16 at which point the inphase
components of the 32 time-frequency slots have been ex-
hausted. We then modulate for the quadrature components.
Thus the primary objective of interleaving the code symbols
is to guarantee that successive code symbols see independent
fades. This helps to combat slow or block fading by creating
an implicit time-frequency diversity effect. This trick is well
known, see, for example [19]. We fixed M = 4 and N = 8,
but the procedure to interleave for larger values of M and N
is a natural extension of the above technique. Let α be the
difference vector between two signal points in MCM . Let En
denote the square matrix of all ones of size n. Let In denote
an identity matrix of size n. In the uninterleaved block fad-
ing channel with D blocks of length b each, the matrix R is
given by R = Eb ⊗ ID. In the interleaved channel it is given
by R = ID⊗Eb, where⊗ denotes the tensor product between
two matrices. The amount of delay that can be tolerated in-
fluences the value of N and hence the number of coherence
subspaces D. In the subsequent sections, when we mention
interleaver we mean the interleaver designed above.

In Section 3.3 the notion of preferred directions was in-
troduced. A direction α is a preferred direction if the quantity
det(I + ρRZ) = 1 +

∑rα
k=1 ρ

kSk(λ1, λ2, . . . λn) is large. Here rα
denotes the rank of the matrix RZα. Since the constellation
MCM is carved from an integer lattice it follows that if

Sk
(
λ1, λ2, . . . , λn

)
> 0 =⇒ Sk

(
λ1, λ2, . . . , λn

) ≥ 1, (64)

where any constant scaling factor corresponding to the de-
sired SNR has been absorbed in the quantity ρ. Further,
choosing rates Ri of the outer codes so as to maximize the
diversity order of the constellation MCM , and using an in-
terleaver as described above to ensure that consecutive code
symbols of the convolutional code see independent fades en-
sures the rank of the matrix RZα is large. The codes that
we design do not maximize the quantity Srα(λ1, λ2, . . . , λn).
However as mentioned above, for our codes, the quantity
Srα(λ1, λ2, . . . , λn) is never less than 1. Thus for a block fading
channel, our choice of a constellation carved from an integer
lattice and the interleaver described above helps to approxi-
mate the problem of designing constellations with difference
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Figure 11: Binary labels for partitioning scheme A.

vectors along preferred directions to the problem of parti-
tioning an integer lattice so as to ensure a high diversity or-
der.

5. SIMULATION RESULTS

Consider a transmission scheme over M = 16 tones. We
choose to code across 16 tones and N = 128 time slots to
exploit the time-frequency diversity. The underlying time-
frequency coherence structure results in a block fading chan-
nel with say D = 8 coherence subspaces each of size b = 256.
We also consider other scenarios, viz., D = 16, b = 128,
and D = 32, b = 64. In particular, larger the value of D,
the “richer” the channel and better is the error performance
of a given coding scheme. We desire a coding scheme with
spectral efficiency of η = 1 bit per real dimension. We code
over the inphase and quadrature components separately. We
choose M1 as the 16-point constellation over m = 2 dimen-
sions as specified as by (49). Since q = 4, we need two outer
codes over F4.

As mentioned earlier, we choose convolutional codes as
outer codes. This is primarily because we will use decode us-
ing the BCJR algorithm to minimize the symbol-(bit-) error
rate. For convolutional codes, the complexity of the code is
determined by a parameter ν called the total memory of the
encoder for the code. An encoder for a convolutional code,
by design, corresponds to a k-input, n-output finite state ma-
chine. A convolutional code is said to have total memory of
ν if 2ν represents the total number of states of the state ma-
chine.

Instead of working with outer codes over F4 we choose
to work with binary outer codes. As a result we have to map
the 4-ary labels of the signal points to binary labels. As il-
lustrated in Figure 11, there are two distinct ways of doing
this. At each partition level, the neighbors of signal points
in scheme A2 differ in fewer bit positions than those of sig-
nal points in A1. Hence for working with binary outer codes
we choose scheme A2. It is important to remark here that if
4-ary outer codes are used we do not need to make this dis-
tinction.

Let R1 and R2 denote the rates of the first and second
outer codes, respectively. Since the uncoded scheme has a
spectral efficiency of 2 bits per dimension, this means that we
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Figure 12: Performance of M1 with the rate pairs (1/3, 2/3) and
(1/4, 3/4) using optimal free distance (OFD) convolutional codes
on a block fading channel of 32 blocks of size 64 each. η = 1 bit/real
dimension. All codes have ν = 5, except the rate 1/4 code which has
ν = 4.

have to choose the rate pair (R1,R2) such that R1 + R2 = 1.
We consider two such rate pairs: (1/3, 2/3) and (1/4, 3/4).

Figure 12 shows the performance of the rate pairs
(1/3, 2/3) and (1/4, 3/4) under multistage decoding. The
outer codes were decoded by the BCJR algorithm. The BCJR
algorithm was run on a window of size 2048 bits. The X
axis refers to the energy per bit for the combined modula-
tion scheme. Further, while calculating the bit-error prob-
ability for the second outer code, we assume that the first
code has been decoded correctly. The aim is to choose rates of
the outer codes so that their individual bit-error rate (BER)
curves are matched as closely as possible. In order words, we
choose the outer codes using the equal error probability rule
of [18].

As can be seen from Figure 12, for the rate pair (1/3, 2/3),
for a given trellis complexity of both outer codes, the perfor-
mance of the overall code is determined by the first outer
code. For the rate pair (1/4, 3/4), the BER curves are well
matched. The rate pair (1/4, 3/4) has a better performance
than the (1/3, 2/3) pair.

Figure 13 compares the performance of the same rate
pair (1/4, 3/4) on a block fading channel with D = 32 and
b = 64 with that on a block fading channel with D = 16 and
b = 128. As before the rate 1/4 code and rate 3/4 have to-
tal memory of 4 and 5, respectively. As expected the plots for
the channel with greater D have a steeper slope. The “richer”
channel gains about 2 dB at a bit-error rate of 10−4.

5.1. Further guidelines on the adaptation of the
partitioning scheme and outer codes to
the block fading channel

In this section, we show how to adapt the parameter m and
the total memory of the convolutional outer codes to the
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Figure 13: Performance improvement of M1 with the rate pair
(1/4, 3/4) on the block fading channel with parameters D = 32,
b = 64 as compared to the block fading channel with parameters
D = 16, b = 32. η = 1 bit/dim.

channel parameter D. The relationship between m and D is
best illustrated by means of an example. For a target spectral
efficiency of η = 1 bit per real dimension, we consider two
schemes corresponding to choosing m = 1 and 2, respec-
tively. Ifm = 1, then we use 4 PAM as our signal constellation
in 1-dimensional space and combine it with a rate 1/2 outer
code. Since m = 1 we need only one outer code and there
is no partitioning involved. We compare the performance of
this scheme with a scheme corresponding to m = 2, that is,
the constellation M1 coupled with the rate pair (1/4, 3/4).
Note that both 4-PAM andM1 have an uncoded spectral effi-
ciency of 2 bits per dimension. We simulate the performance
of these two competing schemes over 3 different block-fading
channels characterized by D = 16, 32, and 2048, respectively,
with the product Db kept constant at 2048. We constrain the
total number of states in the encoder for each scheme to be
not greater than 64.

Figure 14 shows that for low values of D the 4-PAM
scheme beats the multilevel scheme. But as the diversity in
the channel, characterized by the parameter D, increases, the
multilevel scheme performs better. The convolutional en-
coder for the multilevel scheme has 16 + 32 = 48 states. For
the channel with D = 32, b = 64, it beats the 4-PAM with
a 32 state encoder by 1.5 dB at a BER of 10−5. It performs
as well as the 4-PAM with a 64 state encoder. As shown in
Figure 15, the performance gains are even higher on an i.i.d
channel, here the multilevel code gains over 1 dB at a BER of
10−5.

Let R = ID ⊗Eb denote the channel correlation matrix of
the interleaved block fading channel. We use short constraint
length convolutional codes as outer codes. Let α denote the
difference between two signal points s1, s2 ∈ MCM cor-
responding to codewords (c11, c

2
1, . . . , c

L
1) and (c12, c

2
2, . . . , c

L
2),

respectively. We say that α is of type i, 1 ≤ i ≤ L, and if

c
j
1 = c

j
2 for all j such that 1 ≤ j < i and c1i �= c2i . If α is of

type i then its Hamming weight cannot be less thanL(Mi)di,
where di is the free distance of convolutional outer code C i.
Suppose α is of type i. It follows that

rank(RZα) ≤
(
min

{⌈
D

m

⌉
,di

})
L(Mi). (65)

The di’s are a decreasing function of i, hence m should be
chosen such that �D/m� is not smaller than dL.

For a given total memory, which is a measure of the com-
plexity of the encoder and decoder of the convolutional code,
and spectral efficiency η, increasing m, the dimensionality
of the uncoded signal constellation M1 increases the diver-
sity order of the coded superconstellationMCM provided the
L outer codes are chosen as OFD codes for the given total
memory

∑
νi = ν, I = 1, . . . ,L. However, if the channel is

poor, that is, D is low or equivalently the rank of channel
matrix R is low, the extra diversity order is of no use as in-
dicated above. As D increases, or equivalently, as the rank of
the matrix R increases, the extra diversity order gained by
partitioning in higher dimensions comes into play and there
is a corresponding-increase in performance as illustrated in
Figures 14 and 15.

6. CONCLUDING REMARKS

This paper dealt with a framework for communication
over doubly dispersive channels. Using the fact that Weyl-
Heisenberg bases approximately diagonalize an underspread
linear system we arrived at a canonical formulation of mod-
ulation and code design. We derived the code design crite-
ria and characterized the maximum achievable diversity in
terms of the scattering function of the channel. We then in-
troduced new set partitioning techniques for multilevel cod-
ing schemes for the canonical fading channel model. We
used these partitioning schemes to partition a signal constel-
lation M1 in m dimensions and combined it with L outer
codes C l[N , kl,dl]q, 1 ≤ l ≤ L, to design a coded signal
constellation MCM in nm dimensions. To a first-order ap-
proximation, the performance of this scheme is determined
by its diversity order L∗ = minl dl(l + m − L)+. The con-
stellation MCM has

∏L
l=1 qkl points. This implies that it is

straightforward to trade constellation size for diversity or-
der by adjusting the rate of the outer codes. The algebraic
description through a generator matrix enables partitioning
in large dimensions. This ability to partition in arbitrarily
large dimensions and change to the rate of the outer codes
gives us the flexibility to adjust the scheme to the “rich-
ness” of the fading channel, that is, the number of non-
zero eigenvalues of R. In other words, if the channel offers
more diversity, then one can increase the rate of the outer
codes while maintaining the same error probability. We de-
scribed a procedure to adapt these codes to the block fad-
ing channel thereby making them suitable for coded mod-
ulation schemes over doubly dispersive channels. Finally we
illustrated the performance of these codes through simula-
tions.



S. Mallik and R. Koetter 17

10�1

10�2

10�3

10�4

10�5

B
it
-e
rr
or

pr
ob

ab
ili
ty

5 6 7 8 9 10 11 12

Eb/N0 (dB)

R = 1/4 ν = 5 (16, 128)
R = 3/4 ν = 6 (16, 128)
4-PAM ν = 6 (16, 128)

(a)

10�1

10�2

10�3

10�4

10�5

10�6

B
it
-e
rr
or

pr
ob

ab
ili
ty

5 6 7 8 9 10 11 12 13

Eb/N0 (dB)

R = 1/4 ν = 4 (32, 64)
R = 3/4 ν = 5 (32, 64)

4-PAM ν = 5 (32, 64)
4-PAM ν = 6 (32, 64)

(b)

Figure 14: Performance comparison of the 16-point constellation M1 with rate pair (1/4, 3/4) versus 4-PAM with rate 1/2 outer code on
two different block fading channels. (a) D = 16, b = 128, (b) D = 32, b = 64.

APPENDIX

We now derive an expression for the pairwise error probabil-
ity of the block-coded modulation scheme. Let c be a code-
word chosen with equal probability from a codebook C. C
can also be interpreted as a set of points in NM-dimensional
complex space CNM . Let y be the received vector. Assum-
ing perfect channel state information at the receiver, the
maximum-likelihood decoder output ĉ is given by

ĉ = argmax
c∈C

fN
(
y − h	

√
Esc

)

= arg min
c(i)∈C

NM−1∑
k=0

∣∣∣yk −
√
Eshkc

(i)
k

∣∣∣2,
(A.1)

where fN(n) = (1/(2πσ2)NM) exp(−n∗n/2σ2) is the proba-
bility density function of the complex Gaussian vector n. Let
c(i), c( j) be two codewords in C. The conditional probabil-
ity of mistaking c(i) for another codeword, say c( j), is given
by

P
(
c(i) −→ c( j) | h)

=
( NM−1∑

k=0

∣∣∣yk −
√
Eshkc

(i)
k

∣∣∣2 ≥
NM−1∑
k=0

∣∣∣yk −
√
Eshkc

( j)
k

∣∣∣2
)

= P

( NM−1∑
k=0

∣∣nk∣∣2 ≥
NM−1∑
k=0

∣∣∣nk +
√
Eshk

(
c(i)k − c

( j)
k

)∣∣∣2
)
.

(A.2)

Define

A = Es
2

NM−1∑
k=0

∣∣hk∣∣2∣∣c( j)k − c(i)k
∣∣2,

β =
NM−1∑
k=0

Re
[√

Eshk
(
c
( j)
k − c(i)k

)
n∗k

]
,

(A.3)

whereA is a constant and β is a real-valued Gaussian random
variable with zero mean and variance 2Aσ2. Let α ∈ CNM be
the difference vector, that is, α = c(i) − c( j). Let Zα be an
NM×NM diagonal matrix with kth diagonal entry given by
|αk|2. We drop the subscript α where there is no chance of
confusion. Equation (A.2) can be rewritten as

P
(
c(i) −→ c( j) | h) = P(β ≥ A) = Q

(√
A

2σ2

)

≤ e−A/4σ
2 = e−(Es/8σ

2)h∗Zh,

(A.4)

whereQ(x) = (1/
√
2π)

∫∞
x e−y2/2dy and we have used the up-

per bound Q(x) ≤ (1/2)e−x2/2 which is asymptotically tight.
Under the assumption that the matrix R has full rank,

the probability density function of h is well defined and is
given by fH(h) = (1/πn det(R)) exp(−h∗R−1h). Further for
simplicity, assume Z to be invertible. We will show shortly
that this assumption is not necessary. The pairwise error
probability averaged over the channel realizations is given
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Figure 15: Performance comparison of the 16-point constellation
M1 with rate pair (1/4, 3/4) versus 4-PAM with rate 1/2 outer code
on the i.i.d channel, that is, D = 2048, b = 1.

by

P
(
c(i) −→ c( j)

) ≤
∫
e−(Es/8σ

2)h∗Zh fH(h)dh (A.5)

= detR−1

(π)NM

∫
e−h

∗((Es/8σ2)Z+R−1)h dh (A.6)

= det(R−1)
det(R−1 + (Es/8σ2)Z)

×
[
det

(
R−1+(Es/8σ2)Z

)
(π)NM

∫
e−h

∗(Es/8σ2)Z+R−1)h dh
]

(A.7)

= 1
det

(
I + (Es/8σ2)RZ

) . (A.8)

Since Z and R are positive definite, (R + (Es/8σ2)Z−1)−1

is positive definite and hence a valid autocorrelation matrix.
As a result, the term in square brackets in (A.7) integrates out
to 1.

If R does not have full rank, the probability density func-
tion fH(h) is not defined. We show that even in this case the
upper bound on the pairwise error probability given by (A.8)
holds. Let x = (x1, x2, . . . , xn)T and v = (v1, v2, . . . , vn)T be
random vectors defined on the probability space (Ω,F ,P ).
Define ym = x + (1/m)v. Thus,

lim
m→∞ ym = x almost surely. (A.9)

Let f : Cn → R and suppose that there is a real number
M such that | f (s)| ≤ M for all s ∈ Cn. From the bounded

convergence theorem [20, Section 4.2], we have

Eym
[
f
(
ym

)] −→ Ex
[
f (x)

]
, (A.10)

where E[·] denotes the expectation operator.
If we define ym = h + (1/m)v where v is a zero-mean cir-

cularly symmetric complex Gaussian with E[vv∗] = I, then
ym is also zero-mean circularly symmetric complex Gaussian
with positive definite correlation matrix Rm = E[ymy∗m] =
R+(1/m2)I. Thus Rm has full rank irrespective of the rank of
R and hence ym has a well-defined probability density func-
tion. Define f (x) = e(−Es/8σ2)h∗Zxh ≤ 1 for all x ∈ CNM . It
follows from (A.4), (A.8), and (A.10) that

E
[
f
(
ym

)] = 1
det

(
I +

(
Es/8σ2

)(
R +

(
1/m2

)
I
)
Z
) (A.11)

and hence

P
(
c(i) −→ c( j)

) ≤ Eh
[
f (h)

] = lim
m→∞E

[
f
(
ym

)]

= 1
det

(
I +

(
Es/8σ2

)
RZ

) .
(A.12)

Similarly, since the determinant of a matrix is a continuous
function of its entries, a limiting argument can be used to
show that (A.8) holds even if Z does not have full rank.

ACKNOWLEDGMENTS

The first author would like to thank Dr. Helmut Boelcskei
and Dr. Joseph Boutros for their help during various stages
of preparing this manuscript. We also would like to thank the
anonymous reviewers whose comments helped to improve
the quality of this manuscript. This work was supported in
part by the National Science Foundation under Grant NSF-
CCF 0325924 and a Vodafone-US Foundation Graduate Fel-
lowship. The material in this paper was presented in part at
the 2002 and 2004 International Symposium on Information
Theory (ISIT).

REFERENCES

[1] W. Kozek, Matched Weyl-Heisenberg expansions of nonstation-
ary environments, Ph.D. thesis, Vienna University of Technol-
ogy, Vienna, Austria, March 1997.

[2] W. Kozek, “Adaptation of Weyl-Heisenberg frames to under-
spread environments,” in Gabor Analysis and Algorithms: The-
ory and Applications, H. G. Feichtinger and T. Strohmer, Eds.,
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