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The fast fixed-point independent component analysis (ICA) algorithm has been widely used in various applications because of
its fast convergence and superior performance. However, in a highly dynamic environment, real-time adaptation is necessary to
track the variations of the mixing matrix. In this scenario, the gradient-based online learning algorithm performs better, but its
convergence is slow, and depends on a proper choice of convergence factor. This paper develops a gradient-based optimum block
adaptive ICA algorithm (OBA/ICA) that combines the advantages of the two algorithms. Simulation results for telecommunication
applications indicate that the resulting performance is superior under time-varying conditions, which is particularly useful in

mobile communications.
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1. INTRODUCTION

Independent component analysis (ICA) is a powerful statis-
tical technique that has a wide range of applications. It has
attracted huge research efforts in areas such as feature extrac-
tion (1], telecommunications [2—4], financial engineering [5],
brain imaging [6], and text document analysis [7]. ICA can
extract statistically independent components from a set of
observations that are linear combinations of these compo-
nents.

The basic ICA model is X = AS. Here, X is the observa-
tion matrix, A is the mixing matrix, and S is the source sig-
nal matrix consisting of independent components. The ob-
jective of ICA is to find a separation matrix W, such that §
can be recovered when the observation matrix X is multi-
plied by W. This is achieved by making each component in
WX as independent as possible. Many principles and corre-
sponding algorithms have been reported to accomplish this
task, such as maximization of nongaussianity [8, 9], maxi-
mum likelihood estimation [10, 11], minimization of mutual
information [12, 13], and tensorial methods [14-16].

The Newton-based fixed-point ICA algorithm [8], also
known as the fast-ICA, is a highly efficient algorithm. It typ-
ically converges within less than ten iterations in a station-
ary environment. Moreover, in most cases the choice of the
learning rate is avoided. However, when the mixing matrix is
highly dynamic, fast-ICA cannot successfully track the time

variation. Thus, a gradient-based algorithm is more desirable
in this scenario.

The previously reported online gradient-based algorithm
[17, page 177] suffers from slow convergence and difficulty
in the choice of the learning rate. An improper choice of the
learning rate, which is typically determined by trial and error,
can result in slow convergence or divergence. In the adaptive
learning and neural network area, many research efforts have
been devoted to the selection of learning rate in an intelli-
gent way [18-23]. In this paper, we propose a gradient-based
block ICA algorithm OBA/ICA, which automatically selects
the optimal learning rate.

ICA has been previously proposed to perform blind de-
tection in a multiuser scenario. In [2, 24], Ristaniemi and
Joutsensalo proposed to use fast-ICA as a tuning element to
improve the performance of the traditional RAKE or MMSE
DS-CDMA receivers. Other techniques exploiting antenna
diversity have also been presented for interference suppres-
sion [25, 26] or multiuser detection [27]. These ICA-based
approaches have attractive properties, such as near-far re-
sistance and little requirement on channel parameter esti-
mation. In this contribution, the new OBA/ICA algorithm
is applied for baseband interference suppression in diversity
BPSK receivers. Simulation results confirm OBA/ICA’s effec-
tiveness and advantage over the existing fast-ICA algorithm
in highly dynamic channels. Naturally, OBA/ICA is still use-
ful for slowly time-varying or stationary channels.
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FIGURE 1: Diversity BPSK wireless receiver structure with ICA interference suppression.

The rest of the paper is organized as follows. Section 2
presents the system model for diversity BPSK receiver struc-
ture. Section 3 discusses the motivation and basic strategy
of OBA/ICA. Section 4 formulates OBA/ICA, and it is also
shown that OBA/ICA reduces to online gradient ICA in
the simplest case. Section 5 deals with several practical im-
plementation issues regarding OBA/ICA. Section 6 applies
OBA/ICA for interference suppression in mobile communi-
cations assuming two different types of time-varying chan-
nels, and the performance is compared with fast-ICA. Finally,
conclusions are given in Section 7.

2. SIGNAL MODEL FOR DIVERSITY BPSK RECEIVERS

Figure 1 shows the simplified structure of a dual-antenna di-
versity BPSK receiver. We assume the image signal is the pri-
mary interferer to be suppressed. The extension to the cases
of multiple interferers and/or cochannel interference (CCI)
is straightforward, and it is accomplished by the addition of
antenna elements. For each receiver processing chain, the re-
ceived signal is first downconverted from RF to IF, followed
by a bandpass filter to perform adjacent channel suppression.
Then, the IF signal rip(t) is downconverted to baseband and
lowpass filtered. The baseband signal rp(t) is digitized to ob-
tain the signal observation X(n), which is fed into the digital
signal processor (DSP) for further processing.

In our signal analysis, frequency-flat fading is assumed.
For the kth antenna (k = 1,2), the channel’s fading coeffi-
cients for the desired signal s(¢) and the image signal i(t) are
defined as

fo = asel ¥,

fik = eV,

(1)

where ag, aix and Y, Wik are the channel’s amplitude and
phase responses, respectively. The distributions of ag and ajx
are determined by the type of fading channels the signals en-
counter. Since the signals travel random paths, vy and
can be modeled as uniformly distributed random phases over
the interval [0, 27).

The received signal from the kth antenna, rx(f), can be
expressed as

7(t) = 2 Re {s(t) fuel @t 1 (1) fel @t} (2)

where Re{-} denotes the real part of a signal, wy and w; de-
note the frequency of the first and the second local oscillators
(LO). The multiplication by 2 is introduced for convenience.

After the RF-IF downconversion, the bandpass filtered
signal is given by

rieg(t) = s(t) fae %It + s¥ () ff el eI 3)
+i(t) fe T eTI* % (8) fif e/ eI,
where the superscript * denotes complex conjugate, and « is
the phase difference between the received signal and the first
LO signal.

The baseband signal after downconversion to baseband
and lowpass filtering is expressed as

rppk(t) = Re {s(t) fxe /*} + Re {i(t) fue 7*}. (4)

For BPSK signals, s(¢) and i(t) are real-valued, so (4) can be
written as

repk(t) = ars(t) + bi(t), (5)
where the coefficients ax = Re{ fe /%}, and by = Re{ fixe /%}.
Thus, after A/D converter, the baseband observation is

Xi(n) = ars(n) + byi(n). (6)

Each of s(n), i(n), and Xi(n) in (6) represents a one sample
signal. Since the signals are processed in frames of length N,
SN, iy, and Xy  are used to represent frames of N successive
samples. Hence,

(7)

XN,k = aiSN + bkiN.
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Therefore, the baseband signal observation matrix is ex-

pressed as
XN,1 ap by | |sn
X = T = .| =AS 8

In system model (8), X is the 2 by N observation matrix,
A is the unknown 2 by 2 mixing matrix, and S is the 2 by
N source signal matrix, which is to be recovered by ICA al-
gorithm based on the assumption of statistical independence
between the desired signal and the interferer. From the above
derivation process, it is clear that the mixing matrix is de-
termined by the wireless channel’s fading coefficients, which
are often time varying. ICA requires that the mixing matrix
should be nonsingular, and this is guaranteed due to the ran-
domness of the wireless channel. ICA poses no requirement
regarding the relative strength of the source signals, so the
operating range for input signal-to-interference ratio (SIR)
is quite large. However, in practice, if the interference is too
strong, the front-end synchronization becomes problematic.
Therefore, there are practical limitations to the application of
the proposed technique.

ICA processing has the inherent order ambiguity. There-
fore, reference sequences need to be inserted into source sig-
nals for the receiver to identify the desired user. Fortunately,
in most communication standards, such reference sequences
are available.

In this paper, we are primarily concerned about the inter-
ference-limited scenario. Therefore, thermal noise is not ex-
plicitly included in the signal model. However, ICA algo-
rithm is able to perform successfully in the presence of ther-
mal noise. In Section 6, simulation results will be presented
with thermal noise included.

3. BACKGROUND AND MOTIVATIONS

The fast-ICA algorithm is a block algorithm. It uses a block
of data to establish statistical properties. Specifically, the “ex-
pectation” operator is estimated by the average over L data
points, where L is the block size [8]. The performance is bet-
ter when the estimation is more accurate, that is, L is larger.
However, it is very important that the mixing matrix stays
approximately constant within one processing block, that is,
quasistationary. Thus, the problem with convergence arises
when the mixing matrix is rapidly time varying, in which
case a large L violates the assumption of quasistationarity.

On the other hand, the online gradient-based algorithm,
which updates the separation matrix once for every received
symbol, can better track the time variation of the mixing ma-
trix. But it directly drops the “expectation” operator, which
results in worse performance than a block algorithm.

Therefore, an algorithm is needed that can better accom-
modate time variations by processing signals in blocks and
automatically selecting the optimal convergence factor. In the
following section, such a technique is developed, which is de-
noted OBA/ICA.

The idea is to tailor the learning rates in a gradient-based
block algorithm to each iteration and every coefficient in the

separation matrix, in order to maximize a performance func-
tion that corresponds to a measure of independence. In [28],
Mikhael and Wu used a similar idea to develop a fast block-
LMS adaptive algorithm for FIR filters, which proved to be
useful, especially when adapting to time-varying systems.

4. FORMULATION OF OBA/ICA

The algorithm developed here is used for estimating one
row, w, of the demixing matrix W. The algorithm is run
for all rows. The performance function adopted is the abso-
lute value of kurtosis. Other ICA-related operations, such as
mean centering, whitening, and orthogonalization, are iden-
tical as fast-ICA. First, the following parameters are defined:

(i) j:iteration index,

(ii) M: number of observations,

(iii) L:length of the processing block,

(iv) w(j) = [w1(j),w2(j),...,wm(j)]T: the current row
of the separation matrix for the jth iteration. (i =
1,2,...,M),

(v) x1i(j): the ith signal in the /th observation data vector
for the jth iteration. (/ = 1,2,...,L),

(vi) )_(,@ = [x11(j), x12(j)> ., x10 ()]s Ith signal obser-
vation for the jth iteration,

(vii) [G]; = [(X1(j) X2(j),. .., X1 (j)]*: observation matrix
for the jth iteration.

The Ith kurtosis value for the jth iteration is

kurty(j) = E{[WTU)XI(]')F} 3, )

where it is assumed that the signals and w(j) both have been
normalized to unit variance.
Then, the kurtosis vector for the jth iteration is

kurt(j) = [ kurt; (j),kurty(j),.... kurt, ()], (10)

Now the updating formula can be written in a matrix-vector
form as

w(j — 1) = w(j) - [MU];V5(j), (11)
where
- ofkurt” (j)kurt(j)}
Vi(j)= aw(j)
Cp[otkurt (kurt()}  9fkurt”(jkurt(j)} ]
‘E[ ow1(j) own(j) }
(12)
ppi(j) -+ 0
MU]; = (13)

0 -+ usm(j)
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Note that in (11), a “+” sign is used instead of “—” as in the
steepest descent algorithm. Because our performance func-
tion is the absolute value of kurtosis rather than error signal,
we wish to maximize the function to achieve maximal non-
Gaussianity.

To evaluate (12), we have

o{kurt” (j)kurt(j)}
owi(f)

AE{[WT ()1 ()11} - 3]
. owi(j)

Il
M=

(14)

L
=8> [wl()Xi(j)] kurti(j)x(j).
=1

In the derivation of (14), the expectation operator was
dropped.
The block gradient vector can be written as

L
Vi(j) = %[Z [wT ()Xi(j)] kurty(j)xg, (G) - - -

=1
L T
s [WT(j)Xz(j)]3kurtz(j)Xz,M(j)} (15)
=1

= JGITICIkart(j),

where
WHX(G) -0
[C]j: (16)
0 WI(DX()

is a diagonal matrix.
From (15), the updating formula (11) becomes

w(j+1) = w(j) + %[MU]j[G]]T[cﬁkurt(j). (17)

Now, the primary task is to identify the matrix [MU];
in an optimal sense, so that the total squared kurtosis
kurt” ( j)kurt(j) is maximized. In order to do that, we express
the Ith kurtosis value in the (j + 1)th iteration by Taylor’s se-
ries expansion:

kurt;(j + 1) = kurt;(j)

Z akurtl(])

owi(j) Awi(j)
M M a2kurt1(]) ‘ ‘
mzlnzi oW (j)own () Awm () Awn(j)
teee, =12,
(18)

where

Awi(j) =wi(j+1) —wi(j), i=12,...,M. (19)
In (18), the complexity of the terms increases as the order of
the derivative increases. However, if Aw;(j) is small enough,
higher-order derivative terms can be omitted. In our experi-
mentation, it is found that this is indeed the case.

The expectation operator in (9) is dropped. Thus,

kurti() e
i) = 4, (W (DX (20)

Then, (18) becomes

M
= kurty(j) + 4[w” (NX(G)] D x4 Awi(j)
i-1
= kurt;(j) + 4[WT(]')X1(]')]3[XIT(j)Aw(j)].
(21)

kurt;(j +1)

Writing (21) for every [, the matrix-vector form of the Taylor
expansion becomes

kurt(j +1) = kurt(j) + 4[C]}[G];Aw(}). (22)

From (17),
Aw(j) = [MU] [G]] [CI kurt(j). (23)

Substituting (23) into (22), one obtains

kurt(j +1)

= kurt(j) + 3L—2[C];[G]j[MU]j[G]}[cﬁkurt(]‘).
(24)

Defining M and [R]; as

(j) = [GIT[C) kurt(j) = (D] (25)

[R]; = [GI][ClS[G]; =

[Q1(J), A
[Rmn(j)]>

l1<m,n=<M.
(26)

The total squared kurtosis for the (j + 1)th iteration can be
written as

kurt’(j+ Dkurt(j +1) = $; + S, + S5, (27a)
where
S; = kurt” (j)kurt(j), (27b)
M
s:= 7 Samt) (27)
8y = 1922 4T(j)[MUJ;[R];[MU] 9(j). (27d)

L2

In order to identify [MU]; optimally, the following condition
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must be met:
of{kurt” (j + 1)kurt(j + 1)}
oui(j)

=0, i=12,...,.M. (28)

Combining (27a) and (28) yields
asl. N 882. N E)S;. _
oupi(j)  ousi(j)  ousi(j)
Substituting (27b), (27¢), and (27d) into (29), and using the

symmetry property of the matrix [R]; given in (26), the fol-
lowing is obtained:

0. (29)

< L
> Db (D] = =35aiG) - (BO)
k=1

where * denotes the optimal value.
Writing (30) for every i, the following matrix-vector
equation is obtained:

(R MUT} q() = - 5590 6D

From (31), we have

IMUI7 () = 53 BT} g0 62

From (25), (32), and (17), the OBA/ICA algorithm is ob-
tained:

. 8 L. .
w(j+1) = w(j) + 7 (= 33)IRI;'q(j) (33)

= w(j) — 0.25[R];'q(j),

where [R]; and g(j) are given by (25) and (26).

Now we show that online gradient-based ICA can be ob-
tained as a special case of the more general OBA/ICA formu-
lation presented above. Let L = 1 and let up(j) = pp2(j) =
- = upm(j) = pgp(j), then OBA/ICA simplifies to

w(j+1) = w(j) — 02505 (HX () W' (X ()] kurt(j),
(34)

where
1
W (XD [XT(HXG)]

us (j) = (35)

If we let u = 0.25u5(j)| kurt(j)|, the online gradient-
based ICA is obtained [17, page 177]:

w(j+1) =w(j) - y(sign [kurt(j)]X(j)[WT(j)X(j)]S).
(36)
5. IMPLEMENTATION ISSUES
5.1. Elimination of the matrix inversion operation

OBA/ICA algorithm, (33), gives the optimal updating for-
mula to extract one row of the separation matrix W. The

update equation, (33), involves the inversion of the [R] ma-
trix, whose dimensionality is equal to the order of the system
M. This operation could be inefficient in the case of a high-
order system. This is because the computational complexity
of the matrix inversion operation is O(M?). When M is large,
an estimate of [R] can be used. The method proposed here is
to use a diagonal matrix [R]p which contains only the diago-
nal elements of [R]. Thus, the complexity of the inverse oper-
ation becomes O(M). From extensive simulations, it is found
that the adaptive system repairs itself from this approxima-
tion and converges to the right solution in a few additional
iterations.

5.2. Computational complexity

Having eliminated the inversion problem, the dominant fac-
tor determining the computational complexity is the block
size L for most applications of ICA. L is typically larger than
the order of the system M. It is easily seen that the number of
multiplications and divisions of OBA/ICA is O(L) per itera-
tion, which is equivalent to fast-ICA.

5.3. Anoptional scaling constant

In practice, a parameter k can be introduced in (33) to fur-
ther optimize the algorithm performance if a priori informa-
tion is available regarding the speed of time variation of the
channel. Also, since the high-order derivative terms in (18)
are dropped in our formulation, an additional adaptation pa-
rameter can help to ensure reliable convergence. However,
the value of k is not critical, and the algorithm successfully
converges over a wide range of k, as is confirmed by our sim-
ulations.

Therefore, the optimized updating formula is obtained
based on (33) as

w(j +1) = w(j) — 0.25k[R];"q(j), (37)

where the choice of k is made according to the convergence
property and the speed of mixing matrix’s time variation.

5.4. Types of time variations

In our simulations two types of time variations are studied,
which correspond to two scenarios that can arise in mobile
communication applications.

In the first case, the change of the channel is modeled as a
continuous linear time variation in the mixing matrix’s coef-
ficients. In this case, the ICA algorithm seeks a compromise
separation matrix that recovers the source signals with mini-
mum error.

The second type of time variation arises when the user
is experiencing handover between two service towers. In this
scenario, the mixing matrix’s coefficients are modeled by an
abrupt change. Note that the ICA processing will only be af-
fected when the abrupt change occurs within one processing
block. This is the case studied in our simulation.
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When an abrupt change occurs within a processing block,
the performance for the block degrades significantly, espe-
cially when the block size is large. This is because the con-
verged demixing vector is a compromise between two com-
pletely different channel parameters. In order to deal with
this situation, we propose to locate the position of the abrupt
change within the block. This technique will improve the
performance if the performance degradation is due to an
abrupt change within the block.

In the search procedure, the demixing matrices obtained
through the previous block W1 and the subsequent block W2
are utilized.

First, the block is evenly divided into two subblocks. W1
is used to process the first subblock, while W2 is used to pro-
cess the second subblock.

If the separation performance for the second subblock is
better, it is concluded that the abrupt change occurs within
the first subblock. Otherwise, it is concluded that the abrupt
change occurs within the second subblock.

Thus, the location of the abrupt change is narrowed
down to a subblock. The search process can be continued by
dividing that subblock evenly and using W1 and W2 to pro-
cess the two subblocks, respectively. This procedure can be
repeated until the location of the abrupt change is narrowed
down to a very small range.

Once the location is identified, the symbols before the
abrupt change are processed by W1, and the symbols after
the abrupt change are processed by W2.

6. APPLICATION IN MOBILE TELECOMMUNICATIONS

To study the performance of OBA/ICA, computer simu-
lations are performed. The performance measures are the
signal-to-interference ratio (SIR) and the number of itera-
tions to convergence N,.. SIR represents the average ratio of
the desired signal power to the power of the estimation error,
defined as

- 1 & (k)
SIR = 10log,, (Z k; 7[5(@ 5 y(k)]2>, (38)

where s(k) is the kth sample of the desired signal, y(k) is the
estimate of the s(k) obtained at the output of the ICA pro-
cessing unit.

For continuous linear time variation, the mixing matrix
simulated is chosen as

1+IA 05
A:[ 0.7 2+ZA]’ (39)

where I = 1,2,...,L, and A is the parameter reflecting the
speed of channel variation. Here, it is assumed that the chan-
nel’s transfer function is frequency-flat over the signal band.
Also, the sampling interval of the receiver’s A/D converter is
negligible compared with 1/A, which represents the rate of
the channel’s time variation.
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FIGURE 2: Signal-to-interference ratio (SIR) achieved in dB versus
the processed block size employing fast-ICA and OBA/ICA (k=0.5)
when channel conditions vary linearly with time: A = 0.01 in (39).
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FiGgure 3: Convergence speed of fast-ICA and OBA/ICA (k=0.5)
versus the processed block size when channel conditions vary lin-
early with time: A = 0.01 in (39).

In our simulations, the block size is varied from 50 sym-
bols to 1000 symbols, with a step size of 50. For each L, SIR
and N, are computed and averaged over 100 simulation runs.

Figures 2 and 3 show the performance and convergence
speed of OBA/ICA and fast-ICA for relatively slow time-
varying channel condition, that is, A = 0.01. The additional
scaling factor k in OBA/ICA (37) is 0.5. It is seen that the
two algorithms have similar performance except for longer
blocks, in which case OBA/ICA has better performance. This
indicates OBA/ICA has better capability in dealing with time
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FiGure 4: SIR achieved in dB versus the processed block size em-
ploying OBA/ICA when channel conditions vary linearly with time.
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FIGURE 5: Bit error rate (BER) versus SNR employing OBA/ICA.

variation within one processing block. Also, fast-ICA con-
verges very slowly for long blocks, while OBA/ICA always
converges within 20 iterations regardless of the block size.

For faster time variation, that is, A = 0.1,0.5,1, fast-
ICA fails to converge within one thousand iterations, which
makes it impractical to use. On the other hand, OBA/ICA
always converges within 20 iterations. This is why only the
OBA/ICA results are given. The performance for OBA/ICA
is given in Figure 4. The optimal k values are given for every
A. Tt is observed that a larger k should be used for faster time
variation, as expected.
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F1GURE 6: SIR achieved by OBA/ICA (k = 0.5) and fast-ICA when
channel conditions change abruptly.
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Figure 7: Convergence of OBA/ICA (k = 0.5) and fast-ICA when
channel conditions change abruptly.

To study the performance of OBA/ICA under noisy con-
ditions, simulations are performed with A = 0.01 and ther-
mal noise added. The resulting bit error rate (BER) is plot-
ted versus signal-to-noise ratio (SNR) in Figure 5. As a refer-
ence, the BER with additive noise only, known as the AWGN
(additive white Gaussian noise) bound, is also shown for
comparison. It is clearly seen that OBA/ICA successfully
achieves interference suppression in noisy conditions, and
the obtained BER is close to the AWGN bound, which cor-
responds to the interference-free scenario. The convergence
of OBA/ICA under noisy conditions requires about 7 to 16
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F1GURE 8: SIR achieved by OBA/ICA for three blocks when channel
conditions change abruptly in time without finding the location of
the sudden change (block size = 512).

iterations, compared to 7 to 10 iterations in the noiseless case.
Therefore, a slight increase in the processing time may be re-
quired for OBA/ICA in the presence of thermal noise.

Next, fast-ICA and OBA/ICA are compared under ab-
ruptly changing channel conditions. To simulate this condi-
tion, an abrupt change of the mixing matrix is introduced
within the processing block. Figures 6 and 7 compare fast-
ICA and OBA/ICA in terms of average SIR and convergence
speed without any knowledge about the abrupt change. As
expected, the performance of both algorithms degrades when
compared to the case of continuous time variation. However,
OBA/ICA converges much faster than fast-ICA.

Following the detection of an abrupt change within
a certain block, the binary search technique described in
Section 5.4 is simulated to detect the location of the abrupt
change. As before, one hundred simulation runs are per-
formed and the average performance is given. The block
size is chosen to be 512 samples. Figure 8 shows the perfor-
mance of OBA/ICA for three consecutive blocks when a sud-
den channel change is simulated at the middle of the sec-
ond block. Since the adaptive algorithm tries to converge to
a compromising demixing matrix for two completely differ-
ent mixing matrices, the performance for the second block
degraded significantly. Figure 9 describes the performance of
OBA/ICA after the application of binary search for the sec-
ond block. As seen, the technique successfully identified the
position of the abrupt change denoted by “a,” and the re-
sulting performance for the second block is substantially im-
proved compared to Figure 8.

In addition to these simulation results, in Figures 10
and 11 the residue interference power and the SIR value are
shown as a function of the iteration index. Although the
whole block is processed with a converged demixing ma-

trix, the two figures illustrate the convergence process of
OBA/ICA algorithm.
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F1GURe 9: SIR achieved by OBA/ICA for three blocks when channel
conditions change abruptly in time after finding the location of the
sudden change (block size = 512).
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FIGURE 10: Residue interference power averaged over a hundred
simulation runs versus iteration number for OBA/ICA assuming
block size = 100. *Without finding the location of the abrupt
change within the block.

7. CONCLUSIONS

In this paper, a gradient-based ICA algorithm with optimum
block adaptation (OBA/ICA) is developed, which tailors the
learning rate for each coefficient in the separation matrix and
updates those rates at each block iteration. The computa-
tional complexity of OBA/ICA for each iteration is equiva-
lent to the fast-ICA. When the channel is time varying, the
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Figure 11: Output SIR averaged over a hundred simulation runs
versus iteration number for OBA/ICA assuming block size = 100.
*Without finding the location of the abrupt change within the
block.

proposed technique is superior to the fast-ICA, especially in
terms of convergence properties. This is true for changes that
are linear or abrupt in nature.
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