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In this contribution we propose an analogue receiver that can perform turbo detection inMIMO systems. We present the case for a
receiver that is built from nonlinear analogue devices, which perform detection in a “free-flow” network (no notion of iterations).
This contribution can be viewed as an extension of analogue turbo decoder concepts to include MIMO detection. These first
analogue implementations report reductions of few orders of magnitude in the number of required transistors and in consumed
energy, and the same order of improvement in processing speed. It is anticipated that such analogue MIMO decoder could bring
about the same advantages, when compared to traditional digital implementations.
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1. INTRODUCTION

Turbo codes andmore general turbo principles (turbo equal-
isation, turbo multiuser detection, etc.) are bound to have a
substantial impact on the next-generation wireless systems.
The turbo principle requires exchange of the so-called soft
information, which is a probabilistic measure. In current
implementations (e.g., turbo coding) this information is
sampled then quantised (digitised) and handled by digital
signal processors. The amount of digital information to be
processed by DSPs and FPGAs is enormous and represent a
“bottleneck” for high speed digital systems. However, the soft
information, being analogue in nature, is best represented in
analogue domain (e.g., electric currents or voltages). More
interestingly, it can be processed in this form by analogue
networks as well. The analogue decoding paradigm formu-
lated in [1, 2] takes this stand.

First analogue implementations of binary decoders were
reported in the literature in [3–5]. Those implementations
reported reductions of 1–3 orders of magnitude in number
of required transistors and in consumed energy, and the same
order of improvement in processing speed. More ambitious
CMOS-only implementation of analogue decoders was re-
cently reported in [6, 7].

In truth, it was the neural networks community that
first used analogue VLSI circuits to build simple artificial
neural networks [8]. Both neural networks and communi-
cations engineering are by and large examples of computa-
tion, and as a result the fundamental building blocks are the
same in both cases. Some fundamentals of analogue com-
putations stem directly from the universal Turing machine

paradigm worked out by Alan Turing nearly 70 years ago [9].
Subsequently, they were used in many versions of analogue
and mixed-mode (micro-) processors built over the last few
decades.

In this contribution we extend the concept of analogue
detection and we attempt to layout multiple-input multiple-
output (MIMO) analogue decoder. As aforementioned, the
state-of-the-art implementations of analogue computation
networks realise binary codes. Equalisation in analogue net-
works was envisaged in [10]. All are examples of probabil-
ity propagation principle that can be achieved using simple
sum-product algorithm. In this contribution we will also be
exchanging probabilities, which can be viewed as a form of
sum-product algorithm.

The proposed analogue MIMO decoder calculates sets of
marginal posterior probabilities (MPPs). Themajor ideamay
be conveyed in Figure 1. The mesh represents support for
the joint posterior distribution. Each dot in the figure repre-
sents a possibility from a finite number of combinations. The
thicker dots correspond to the possibilities with higher pos-
terior probabilities. The thick dots on the lines along the axis
represent the MPPs of interest. The only way to calculate the
exact MPPs in a MIMO system is to enumerate over the joint
posterior probability, and then marginalise out. Marginali-
sation over discrete sets amounts to repeated summations.
By Kirchhoff ’s current law, analogue summation can eas-
ily be achieved, and the speed improvement is due to fully
parallel manner in which calculations of the joint posterior
probability and marginalisation occur. We concentrate on
analogue implementations and do not deal with solutions of
the digital-to-analogue and analogue-to-digital conversions.
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Figure 1: Joint posterior and marginal posterior probabilities in a
MIMO system.

The paper is organised as follows. Section 2 describes the
studied system and the detection aims. In Section 3 we review
basics of the transistor physics and we make a connection
with a probabilistic detection. Sections 4 and 5 describe de-
tails of analogue implementations of the channel andMIMO
decoders, respectively. Section 6 presents SPICE simulation
results, and in Section 7 we draw conclusions.

2. SYSTEMDESCRIPTION ANDDETECTION AIMS

The object of our study is a MIMO system. The system com-
municatesN bits bn, bn ∈ {0, 1}. The stream of bits is first en-
coded to K > N coded bits, ck, ck ∈ {0, 1}, interleaved (a ran-
dom permutation) π, cπ(k) = π(ck). We assume that modu-
lation and encoding onto NT transmit antennas take place in
one operation, space-time modulation encoding, where D =
NT log2(M) portion of coded bits cπ(k) (M is cardinality of
the digital modulation; D is a total number of bits transmit-
ted in one time instant). We will assume the simplest form
of space-time signalling, essentially a serial-to-parallel con-
verter, which is known as BLAST (spatial-multiplexing) [11].
The resulting (NT×1)-dimensional vector x = (x1, . . . , xNT )

T

is transmitted from all NT antennas at a time instant t. We
will assume that the signal is transmitted over a narrowband
channel H of size NR × NT , where each entry hj,i defines a
channel connecting ith transmit with jth receive antenna.
The system is conventionally modelled as

y = Hx + n, (1)

where y is the receive NR × 1 vector and n is the ubiquitous
white Gaussian noise, that is, n ∼ CN (0, σ2nI). Typically, it is
assumed that hj,i are i.i.d. random variables hj,i ∼ CN (0, 1);
however this is not required here, except that hj,i should
be known to the receiver. The ultimate goal is to detect the
transmitted information bits given the received signal and
the channel. To be more specific we are looking for a set
of point estimates that maximise the set of marginal poste-
rior distributions: { f (b1 | y1:T ,H), . . . , f (bN | y1:T ,H)} (i.e.,
maximum a posteriori estimates (MAP)), where 1 : T is a

Matlab notation for a set {1, 2, . . . ,T}. In general, this task
is computationally not tractable, and instead it is conven-
tional to use a suboptimal procedure, so-called turbo detec-
tion. The resulting system with such detector is known as
TurboBLAST (turbo spatial multiplexing). More details on
many aspects of MIMO can be found, for example, in [11].
Essentially, the turbo detection is an iterative process where
the so-called softMIMOdetector computes, for each time in-
stant t, { f (x1 | yt ,H), . . . , f (xNT | yt ,H)}, and the soft binary
channel decoder computes { f (b1 | c1:K ), . . . , f (bN | c1:K )}.

The main aim of this contribution is to discuss how those
tasks can be carried out in the analogue circuits. Since the
detection of binary codes using analogue VLSI has been de-
scribed in the aforementioned references, we will concentrate
on the MIMO detection block. The MPPs of interest are cal-
culated as follows:

f
(
xi | y

) =
∑

x−i
f
(
x1:NT | y

)∝
∑

x−i
f
(
y | x1:NT

)
f
(
x1:NT

)
,

(2)
where x−i is a shorthand for {x1, . . . , xi−1, xi+1, . . . , xNT}, that
is, “all except i.” The observations are independent given the
symbols and it is reasonable to assume that the extrinsic in-
formation (which becomes the prior for the decoder) is also
separable, that is,

f
(
xi | y

)∝
∑

x−i

NR∏

j=1
f
(
yj | x1:NT

) NT∏

i=1
f
(
xi
)
. (3)

In general any further simplifications (i.e., factorisations)
are not possible. If one wants to calculate any marginal, the
only way is to calculate the joint posterior distribution and
marginalise out the variables (i.e., no message-passing tricks
would help). Given our assumption about the noise, the like-
lihood is Gaussian:

f
(
yj | x1:NT

)∝ exp
(
− 1
σ2n

∣
∣yj − hTi,:x

∣
∣2
)
. (4)

All operations in (4) can be carried out explicitly in the ana-
logue domain. In this paper we opt for an alternative ap-
proach that also computes the exact values of the marginals
of interests. Arguably, this will lead to a simpler implementa-
tion of at least the analogue part of the MIMO decoder. First,
we assume that the digital part of the receiver calculates the
QR decomposition of the channel matrix, that is, H = QR,
where R is upper triangular and QHQ = I. Left multiplica-
tion of the received signal by Q produces a signal model:

ỹ = Rx + ñ (5)

(note that the noise statistics do not change). However, the
analogue layout of the decoder is different since our model
is now causal (R is triangular). (The QR decomposition has
been used in the past with various MIMO detectors.) The
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decomposition now looks as

f
(
xi | y

)∝
∑

x−i

NR∏

j=1
f
(
yj | x1: j

) NT∏

i=1
f
(
xi
)
. (6)

For example, in the case of a 3 × 3 MIMO system the likeli-
hood factors as

f
(
y1, y2, y3 | x1, x2, x3

)

= f
(
y1 | x1

)
f
(
y2 | x1, x2

)
f
(
y3 | x1, x2, x3

)
.

(7)

Notice that when implemented in the digital domain there is
no real difference between the two approaches, as both boil
down to enumerating entire state space of the joint distribu-
tion and marginalisation in the second step.

3. TRANSISTOR PHYSICS AND PROBABILISTIC
DETECTION

The concept of shifting some of the decoding tasks (typi-
cally carried out in the digital domain) to the analogue world
stems largely from an excellent match between transistor
physics and probabilistic decoding operations. Indeed, the
natural and easy way in which probability calculations can
be mapped into analogue networks makes us think that tran-
sistors actually “like” to work with probabilities. In fact, the
nonlinear properties of these devices, far from representing
a problem, can be exploited to perform complex operations
by using simple well-known analogue structures. Those con-
nections have been previously pointed out in [2, 3, 10].

One example of a nonlinear characteristic is given by the
properties of the current flowing across the collector IC of a
bipolar transistor, which is given by

IC = IS exp
(
VBE

VT

)
, (8)

where IS is the saturation current, VT is the thermal voltage,
and VBE is the voltage difference between the base and the
emitter. Perhaps the simplest arrangement of two transistors
is a differential pair; see Figure 2.

From (8) we can obtain the currents flowing across both
transistors: I1 = IS exp((V1 − V)/VT) and I2 = IS exp((V2 −
V)/VT), (ΔV = V2 −V1);

I1
I
= IS exp
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)
/VT

)

IS
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+ exp
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I
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/VT

)
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(
exp

((
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+ exp

((
V2 −V

)
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= exp
(
ΔV/VT

)

1 + exp
(
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) .

(9)
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V
I

Figure 2: Bipolar differential pair.

I1 I2

ΔV

Figure 3: Diode-connected transistor pair.

Those expressions can be readily recognised as conver-
sions between the so-called L-values (logarithm of a ratio of
probabilities or likelihoods) and probabilities/likelihoods, by
associating L(x) = ΔV/VT and P(xi) = Ii/I . The recipro-
cal transformation is also achievable with just two transis-
tors connected in a diode configuration (Figure 3). The
difference of voltage between the two emitters is VBE1 =
VT log(I1/IS) and VBE2 = VT log(I2/IS), hence ΔV = VBE1 −
VBE2 = VT log(I1/I2).

Another very useful operation is obtained by comparing
the difference of currents in the differential pair of Figure 2:

I1 − I2 = I

(
exp

(
ΔV/VT

)

1 + exp
(
ΔV/VT

) − 1
1 + exp

(
ΔV/VT

)

)

= I

(
exp

(
ΔV/2VT

)− exp
(−ΔV/2VT

)

exp
(
ΔV/2VT

)
+ exp

(−ΔV/2VT
)

)

= I tanh

(
ΔV

2VT

)

.

(10)

The above operation is indeed very useful, since a pos-
terior expectation of a binary random variable (in AWGN
channel) is given by a hyperbolic tangent, that is, EX|Y{X} =
tanh((1/σ2n)y).

4. ANALOGUE IMPLEMENTATION OF A LOW-DENSITY
PARITY-CHECK CHANNEL DECODER

This work is concerned with an analogue implementation of
a MIMO decoder. However, a channel decoder will typically
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Check nodes

Bit nodes

Figure 4: Bipartite graph of the LDPC rate-6/15 code.

be an integral part of a MIMO system. It should be clear that
it makes perfect sense to implement both the MIMO and the
channel decoder operations in one analogue circuitry. In this
section we outline the design of an analogue Low-Density
Parity-Check (LDPC) decoder.

The code of choice is a LDPC code of rate 6/15. This is a
very short length code for a LDPC code, whose parity-check
matrix is not really “low density.” However we will keep re-
ferring to it as a LDPC code for the clarity of presentation.
LDPC codes are conveniently described by bipartite graphs.
A bipartite graph represents pictorially the parity-check ma-
trix of a LDPC code. It is also useful in the detection, since
the sum-product algorithm operations can be described on
such graph; see, for example, [12]. The bipartite graph of the
chosen 6/15 code is shown in Figure 4. The layout of the ana-
logue decoder for this code is shown in Figure 5. The squares
in Figure 5 are the check-node analogue processors and the
circles are the bit-node analogue processors. It is basically
an unfolded version of the bipartite graph. All operations
within the check and bit nodes are performed in the voltage-
domain. For further details of implementation of similar bi-
nary decoders and a discussion on current/voltage-domain
implementation trade-offs, we refer to an excellent mono-
graph [3].

Figure 6 depicts a response of the analogue decoder and
outputs of “digitally implemented” sum-product algorithm
with a high level of noise (Eb/N0 = 0 dB) for a given re-
ceived sequence. In this case, the iteration-based (digital) and
the analogue decoder give amazingly similar results. Figure 6
shows actually a close-up of the first microseconds of the
analogue response and the first iterations of the digital one
to illustrate how the error correction is performed mainly at
these first steps of the decoding process. The message sent
was 001100, encoded as 111110100001100. However, the re-
ceived values would be initially hard decoded as 001010 (i.e.,
with errors in the bits 4 and 5). Considering the digital de-
coder, the two errors are corrected in the first and third it-
erations, respectively, while with the analogue decoder they
are corrected after a transient of 0.99 and 1.87 microsec-
onds. Both responses are incredibly similar, almost as if the
L-values at each iteration of the digital decoder were the sam-
pled points of the contiguous time waveforms of the ana-
logue decoder. This, however, is just a mere observation and
it is presented here more as a curiosity and not as a re-
sult.

5. ANALOGUE IMPLEMENTATION DETAILS OF
THEMIMOA POSTERIORI PROBABILITY
DECODER

As indicated in (4), the fundamental operations required to
be implemented are multiplication, summation, and nega-
tive exponential function, that is, exp(−x). In this section we
discuss how those basic blocks can be implemented in ana-
logue circuits.

5.1. Multiplier

The most important function that has to be implemented
with analogue circuits is multiplication of two input voltages,
both of which can be positive or negative. A four-quadrant
multiplier circuit is therefore needed to achieve this. This ba-
sic block is used most often in the analogue MIMO detec-
tor. The Gilbert multiplier circuit [8] performs multiplica-
tion using the output from a differential pair as the input for
another two differential pairs; see Figure 7. The circuit is ar-
ranged in such a way that the output current is given by the
combination of all four upper currents:

(
I13 + I24

)− (I14 + I23
)

= Ib tanh
k
(
V1 −V2

)

2
tanh

k
(
V3 −V4

)

2
.

(11)

The output current and voltage of the Gilbert multiplier fol-
low a tanh(x) rule, which for small input voltage differences
can be approximated by tanh(x) ≈ x. Additionally, this ba-
sic circuit has a limitation on the inputs: max(V3,V4) >
min(V1,V2).

Multiplication is typically performed on random volt-
ages. Hence, it is difficult to make any assumptions about
the range of the input signals. A wide-range multiplier [8]
is required in order to ensure that the circuit works prop-
erly for both high and low input voltage levels. One possible
choice is the wide-range Gilbert multiplier circuit, shown in
Figure 8. The wide-range multiplier isolates the bottom dif-
ferential pair from the upper differential pairs using current
mirrors. This allows the range of V3 and V4 to be indepen-
dent of V1 and V2 allowing the circuit to work properly for
input voltages close to the supply voltage. The SPICE simu-
lated output of the wide-range Gilbert multiplier is shown in
Figure 9. The figure shows Vout as a function of V1, for dif-
ferent choices of V2. The observed voltage is closely approxi-
mated by ΔVout = V1V2/Vref (with Vref = 10mV). For high
input values the tanh(x) behaviour starts being noticed, de-
grading the output characteristic of the circuit. For moderate
input values, up to 30–60mV, the linearity is high enough to
multiply the two inputs with great accuracy.

5.2. Summation

The summation operation is most conveniently performed
in the current domain. By Kirchhoff ’s current law, it is
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Figure 7: Gilbert multiplier basic cell.
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Figure 8: Wide-range Gilbert multiplier.

enough just to connect the wires in a node. Indeed, such
summers are used in the MIMO decoder in the “margina-
liser” block. A voltage summation is also required to avoid
excessive number of voltage-current-voltage transforma-
tions. A circuit [13] capable of performing voltage summa-
tion is shown in Figure 10. By simple analysis of the circuit,
the output voltage can be obtained as a function of the gate-
source voltages of the transistors [13]:

ΔVOS =
√

(W/L)1
(W/L)2

((
VGS1 −VGS2

)
+
(
VGS3 −VGS4

))

=
√

(W/L)1
(W/L)2

(
ΔV1 + ΔV2

)
,

ΔVOS = VO1 −VO2, ΔV1 = V11 −V12,

ΔV2 = V21 −V22,
(12)

where W and L are the width and length of a transistor
respectively. Figure 11 shows the simulated response for
(W/L)1 = (W/L)2 (W = 16 μ and L = 1.6 μ).

5.3. Negative exponential

The last building block needed to implement the analogue
MIMO detector is a circuit with a negative exponential
response in the voltage domain, that is,

ΔVout = KVref exp
(
− ΔVin

Vref

)
, (13)

whereVref is a reference voltage,ΔVin andΔVout are the input
and output differential voltages, respectively, and K is a nor-
malisation constant that has no effect on the response of the
system, since we are using this block to obtain the elements of
a probability density function. To keep the transistor count as
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Figure 9: Output characteristics of the wide-range Gilbert mul-
tiplier. The plots correspond to the second input set at ±90mV,
±60mV, ±30mV, and 0V.

low as possible we use a simple approximation for the nega-
tive exponential function. A simplified equation for the drain
current through a saturated nMOS transistor in the strong
inversion region is

ID = K

2
W

L

(
VGS −VT

)2
, (14)

where K is a technology-dependent factor, W and L are
width and length of the transistor, VGS is the gate-source
voltage applied, and VT is the threshold voltage. We can ap-
proximate the negative exponential by a function of the type
f (x) = A−B√x using a single transistor fed with a current Id
that we obtain from a transconductance stage. For small in-
put values such approximation is good enough for our pur-
poses. However, if the input grows bigger, the approximation
function can become negative where the true exponential
would not. Therefore, it is required to clip the output voltage
to ensure it never becomes negative. The final circuit is de-
picted in Figure 12. Transistors M9—M17 form a transcon-
ductance amplifier [8] that converts the input voltage into a
current. This current is passed to a transistor M1 that per-
forms the approximation function. Transistors M2 and M3
restrict the output to positive values, and finally, M4–M8 are
used to shift the output voltage to an adequate level for inter-
connection with other building blocks.

Figure 13 depicts simulation results of this circuit. The
ideal response shown corresponds to (13) with K = 1.8 and
Vref = 10mV. The thick line is the error between the ideal
response and the approximation.

The one remaining operation |x|2 is simply achieved by
a four-quadrant multiplier realising x · x.

M7

M3

V12

V11

V22

V21

Vdd

M8

M4

M5 M6
VO1 VO2

M1 M2

m9 m10

Vg Vg

Vss Vss

Figure 10: Voltage differential adder circuit.
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Figure 11: Output characteristics of the differential adder circuit.
The plots correspond to the second input set at±400mV,±200mV
and 0V.

6. ANALOGUEMIMODECODER EXAMPLE
AND RESULTS

We have simulated in the SPICE software an analogueMIMO
decoder with 3 transmit and 3 receive antennas. All transis-
tor models used here are basic models (standard BSIM 3v3
MOS model) supplied with nearly all SPICE software pack-
ages. A BPSK modulation was assumed. Six bits of data are
encoded to 15 (coded) bits by the LDPC code of Section 4.
The MIMO decoder consists of 5 identical modules, each
providing MPPs for 3 coded bits. The outputs of the MIMO
decoder are wired directly to the analogue LDPC decoder.
One of the modules is presented in Figure 14. The layout
of the module corresponds to a factor graph that describes
(6) for the case of NT = 3, that is, (7). Each of the square
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Figure 12: Block diagram of the negative exponential MOS circuit.
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Figure 13: Output characteristic obtained from SPICE and the ideal response.

blocks performs analogue computations corresponding to
(4).

The outputs of the modules are fed to the marginaliser
block. The marginaliser consists of triple output cascode
current mirrors and appropriately connected wires to ob-
tain current summations. Table 1 depicts results of a com-
parison between the analogue LDPC decoder and a stan-
dard sum-product detection (software simulation of a dig-
ital decoder). An error is defined as a difference in poste-
rior probability estimates of a given bit being zero, that is,
Error = PrAPP (b = 0) − PrAnalogue (b = 0). A great accu-
racy of the analogue decoder can be observed. Table 2 depicts
comparison results between the analogue MIMO decoder
and a simulated exact a prosteriori probability (APP) MIMO
decoder (full enumeration without any approximations). A
good accuracy of analogue MIMO decoder can be observed,
albeit inferior to that of the LDPC decoder. The inaccuracies
are introduced mainly by the approximation in the exponen-
tial function and variations in the currents due to the non-
ideal behaviour of the transistors.

7. CONCLUSIONS

In this contribution we have proposed an analogue detector
for aMIMO system. It is expected that such decoder will offer
similar advantages to those reported by analogue binary de-
coders, that is, significant improvements in processing speed,
reduction in transistor count, power efficiency, and heat dis-
sipation. On the downside, since the decoder mimics the full
complexity APP decoder (albeit very efficiently), the transis-
tor count (not the processing speed) increases exponentially.
SuchMIMO decoder may still be feasible for aMIMO system
with small number of transmit antennas and simple modu-
lation formats. However, one of the major challenges seems
to be the design of reduced-complexity high-performance al-
gorithms that could be executed in analogue VLSI networks.

It is very difficult to envisage modern receivers com-
pletely deprived of DSP/FPGAs. Wireless receivers per-
form many other logical operations (apart from the de-
tection) that can efficiently be executed only in software
programmable processors. Therefore, a reasonable approach
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Figure 14: Layout of the basic module of the analogue APP MIMO decoder.

Table 1: Analogue LDPC decoder comparison results.

Eb/N0 (dB) Mean (absolute value (error)) Variance (error)

0 2.90e −03 5.92e −05
1 5.00e −03 1.86e −04
2 4.90e −04 1.24e −05
3 1.08e −08 2.36e −15
5 2.91e −09 1.62e −16
7 4.37e −10 1.07e −17

would be a mixed-mode architecture, where the analogue
decoder would act as a highly specialised and very efficient
“subcontractor,” that is, a coprocessor working together with

Table 2: Analogue MIMO decoder comparison results.

Eb/N0 (dB) Mean (absolute value (error)) Variance (error)

0 0.020 60 0.000 86

1 0.026 50 0.001 50

2 0.020 90 0.001 10

3 0.018 20 0.000 95

5 0.014 20 0.000 73

7 0.012 70 0.000 93

9 0.013 00 0.001 30

a digital main processor. At the very least, in this paper we
have shown that such architecture deserves further research
as it may offer substantial benefits.
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