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Methods for providing good spectral efficiency, without disadvantaging the delivered quality of service (QoS), in time-varying
fading channels are presented. The key idea is to allocate system resources according to the encountered channel. Two approaches
are examined: variable-size burst construction, and adaptive modulation. The first approach adapts the burst size according to
the channel rate of change. In doing so, the available training symbols are efficiently utilized. The second adaptation approach
tracks the operating channel quality, so that the most efficient modulation mode can be invoked while guaranteeing a target QoS.
It is shown that these two methods can be effectively combined in a common framework for improving system efficiency, while
guaranteeing good QoS. The proposed framework is especially applicable to multistate channels, in which at least one state can
be considered sufficiently slowly varying. For such environments, the obtained simulation results demonstrate improved system
performance and spectral efficiency.
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1. INTRODUCTION

Achieving high spectral efficiency is an important goal in
communication. However, it is equally important that the
quality of service (QoS), quantified by the bit error rate
(BER), will not deteriorate as a result of this goal. We propose
strategies that allocate resources for improving the spectral
efficiency, while maintaining good QoS, for burst-by-burst
communication systems. In these systems, data are transmit-
ted in bursts or blocks, possibly with training and other types
of symbols to aid data recovery at the receiver. Over any such
burst, the channel is assumed to be sufficiently constant or
stationary, that is, a single channel environment is approxi-
mately experienced by the entire data burst (also known as a
quasi-static or block-fading channel). The rationale for em-
ploying burst transmission is that since the channel is ap-
proximately the same over the entire received burst, it can be
estimated, and a single time-invariant equalizer can be used
to mitigate interferences for all data symbols within a single
burst. In other words, the various data bursts can be indepen-
dently processed at the receiver, on a burst-by-burst basis.

Unfortunately, with the advent of the systems employ-
ing high-frequency carriers and used in high-speed envi-
ronments, the quasi-static channel assumption is becoming
more questionable. Essentially, the channel can be regarded

as constant over a burst if the burst duration is less than the
channel coherence time TC . However, the channel coherence
time is itself actually a statistical measure, whose precise for-
mula depends on the definition criterion. Loosely speaking,
[1, 2],

TC ≈ 1
fm

(1)

or alternatively, defined as the time over which the time cor-
relation function is above 0.5 [1, 2],

TC ≈ 9
16π fm

, (2)

where fm is the maximum Doppler shift given by

fm = vm
λ
= vm fc

c
(3)

with vm being the mobile speed, λ the wavelength, fc the car-
rier frequency, and c the speed of light. The relationship with
the burst duration can also be viewed using the normalized
Doppler shift fmTS, where TS is the symbol duration. Then,
using (1), a burst is within a coherence time if the number of
symbols in the burst, that is, the burst size BS, is

BS <
1

fmTS
. (4)
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Figure 1: Received envelopes over fading channels at carrier frequency fc = 3.5GHz: (a) mobile speed vm = 100 km/h, or normalized
maximum Doppler shift fmTS = 5.55× 10−4; (b) vm = 10 km/h, or fmTS = 5.55× 10−5.

Regardless of which definition, (1) or (2), is used, the co-
herence time TC is inversely proportional to the both car-
rier frequency fc and the mobile speed vm. Hence, with an
increase of the carrier frequency fc in modern systems, TC

tends to become shorter. In practice, the burst duration is
chosen to be significantly less than TC in order to justify
the quasi-static assumption. For example, in GSM [1, 2], a
burst duration is 0.577ms, while TC ≈ 11ms (using (1) with
fc = 960MHz, v = 100 km/h).

With an increased carrier frequency, for example, fc < 3.5
GHz in the developing IEEE802.20 standard, the coherence
time reduces to TC ≈ 3.6ms, and with target bitrates on the
order of 1Mbps, the symbol duration TS ≈ 2μs (assuming
2 bits/symbol, e.g., using 4-QAM [2, 3]). Hence, the normal-
ized Doppler shift is fmTS ≈ 5.55 × 10−4, and a coherence
time contains at a maximum 1/( fmTS) = 1800 symbols.

For visualization purposes, Figure 1 shows typical fading
envelopes versus the symbol index for the above calculated
normalized Doppler shift fmTs ≈ 5.55 × 10−4, and also for
fmTs ≈ 5.55 × 10−5. Here, the time variations are described
by the Jakes power spectral density (see (7)). The smaller nor-
malized Doppler shift corresponds to a more slowly varying
channel.

In coping with the reduced coherence time TC , a num-
ber of approaches can be considered. First, the channel in-
variance assumption can be eliminated, and new receiver
structures can be designed. However, suppose that such
changes are not permissible, for example, due to existing
infrastructure or hardware constraints. Then, the question is
whether basic burst-by-burst techniques can still be used in
rapidly time-varying channels. We examine techniques for
achieving reliable communications in such channels, while

still using the same basic burst-by-burst receiver methodol-
ogy.

Ultimately the goal is to shorten the burst duration in
some manner, so that it remains within the coherence dura-
tion. Following are example methods that can be considered.

(S1) Reduce the number of data symbols per burst

To reduce the overall burst duration, the symbol duration
TS must not be increased. With this solution, the transmis-
sion efficiency, that is, the ratio of useful data symbols over
all symbols in a burst, can be severely affected, especially in
rapidly varying channels.

(S2) Reduce the burst duration

Alternatively, the same number of symbols in a burst can be
maintained, but the symbol duration TS is reduced. While
the transmission efficiency is maintained, if the symbol du-
ration is too short relatively to the channel delay spread, the
channel becomes highly frequency selective, with severe in-
tersymbol interference (ISI). The use of a high-complexity
equalizer would be needed for acceptable QoS.

(S3) Use a variable-size burst approach

A key bottleneck in the previous two methods is the assump-
tion of a fixed-size burst, chosen to satisfy the worst case
scenario. This is inefficient when the encountered channel is
slowly changing, for example, when the mobile speed is low.
The idea of a variable-size burst [4] is to use a shorter burst
when the channel is changing quickly. Conversely, durations
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over which the channel is slowly changing will be exploited
to use a larger burst. As will be seen in Section 3, this enables
a better use of the available training symbols for improved
transmission efficiency and QoS. Moreover this construction
can be achieved entirely at the receiver.

If the channel quality is further known for each burst, it
is also possible to adapt the modulation mode for the data
symbols on a burst-by-burst basis. When the channel is be-
nign or of good quality, a higher-order modulation constel-
lation, for example, 16-QAM, can be used for efficiency while
still maintaining a good QoS, defined by a target BER. How-
ever, when the channel is hostile or of poor quality, a lower-
order modulation mode, for example, BPSK, is selected to
maintain an acceptable QoS. Known as adaptive modula-
tion [3, 5], this methodology permits an overall improve-
ment in spectral efficiency. Thus, adaptive modulation plays
a key role in balancing the system’s integrity and efficiency in
a time-varying environment.

As will become evident in the remainder of the paper,
the overall conclusion of this work is the following: if the
underlying time-varying channel can be modeled as multi-
state, where at least one state is slowly varying, then reliable
communication is still possible using conventional burst-by-
burst techniques when coupled with a variable-size burst ap-
proach. Furthermore, the spectral efficiency can be enhanced
with the use of adaptive modulation. When combined to-
gether, these two strategies deliver an attractive framework,
with minimal modifications of existing systems, for reliable
and efficient communication over time-varying channels.

When there is no slow state in the underlying channel,
the transmission efficiency is poor since the burst size needs
to be very small. By combining variable-size burst construc-
tion with basis-expansion modeling (BEM) of the channel
[6, 7], the transmission efficiency can be improved. However,
in this case, the system complexity is increased due to more
complicated estimation and equalization procedures. With
some performance loss, the complexity can be reduced sig-
nificantly using time-varying FIR equalization [8]. But more
importantly, even with the addition of basis-expansion mod-
eling, the variable-size burst methodology remains applica-
ble [6]. This is because, under certain conditions, BEM es-
sentially allows a rapidly varying channel to be treated as an
equivalent slow fading channel. In fact, at the cost of system
complexity, the BEM modification only improves the flexi-
bility of variable-size burst construction, making it applica-
ble to a wider range of time-varying channels [6]. In the in-
terest of brevity and clarity, this work will thus focus on burst
construction, and the integration with adaptive modulation,
all using conventional channel modeling.

The rest of this paper is organized as follows. After de-
scribing a mobile channel model with multistate consider-
ations in Section 2, a variable-size burst structure is pre-
sented in Section 3. Channel equalization technique and es-
timation techniques are then outlined in Section 4. These
techniques are subsequently incorporated into a channel-
tracking framework for constructing variable-size bursts in
Section 5. And to further improve the spectral efficiency,
an adaptive modulation method coupled with variable-size

burst construction is discussed in Section 6. Next, to demon-
strate the performance of the proposed methods, simulation
results are obtained in Section 7. Lastly, conclusions aremade
in Section 8.

2. CHANNELMODEL

2.1. Mobile fading channels

In this paper, time-varying frequency-selective mobile fading
channels are assumed. Under the well-known wide-sense sta-
tionary uncorrelated scatterers, (WSSUS) assumptions [2, 9],
such channels can be viewed as equivalent time-varying FIR
filters, with impulse response

h(t, τ) =
P−1∑

p=0
αp(t)δ

(
τ − τp

)
, (5)

where P is the number of observable paths, as will as τp and
αp(t), respectively, the delay and gain of the pth path.

The time variations, due to the Doppler effect as men-
tioned in Section 1, are described for each of the P paths by
the autocorrelation function [9]:

rp(τ) = σ2pJ0
(
2π fmτ

)
(6)

or, equivalently, in the frequency domain, by the Jakes power
spectral density:

Sp( f ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

σ2p

π fm
√
1− ( f / fm

)2 , | f | < fm,

0, | f | > fm,

(7)

where σ2p is the average power of the pth path, J0(·) the zero-
order Bessel function of the first kind, and fm the maximum
Doppler shift. Note that the coherence time TC from (2) is
defined based on (6).

The channel frequency selectivity is described by specify-
ing the average power for each of the path coefficients αp(t),
resulting in the power-delay profile. For example, a typical
urban (TU) COST207-type [3, 9] channel power-delay pro-
file with four observable paths is shown in Figure 2, with pa-
rameters summarized in Table 1.

2.2. Multistate extension

While the above mobile channel model is both time and fre-
quency selective, it essentially describes one single channel
state or environment, where a state is characterized by a par-
ticular fm. From Section 1, fm is dependent on the mobile
velocity vm for a fixed carrier frequency fc. Hence, as a user
changes his or her mobile activities, the perceived operating
environment is also effectively modified. In the context of a
variable-size burst, it is beneficial to model such activities
explicitly, since the goal is to exploit low-mobility activities
for efficiency. To this end, we consider a multistate channel
model, where each state is defined by an associated Doppler
shift fm or mobile speed vm. Evidently, the more states con-
sidered, the more accurate is the approximation of the user’s
mobile activities, at the cost of complexity.
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Figure 2: Normalized power-delay profile for a 4-path typical ur-
ban (TU) COST207-type channel, with parameters summarized in
Table 1.

Table 1: Normalized power-delay profile for a typical urban (TU)
COST207-type channel, as depicted in Figure 2.

Delay position (μs) Path power
0 0.7236

1.54 0.1554
2.31 0.0720
2.69 0.0490

Suppose the user’s mobile activities are such that there
are κ distinguishable states: {k1, k2, . . . , kκ}. Denote the prob-
ability of the user being in the ki state as p(ki), so that

κ∑

i=1
p(ki) = 1. (8)

To fully describe the user’s mobile behavior as a function
of time, the joint probability mass function (pmf) needs to
be specified as a function of the current state, and the past
state(s), that is, memory consideration. However, for sim-
plicity, we assume in this paper a memoryless model. Then,
the channel states for various time instants can be considered
discrete i.i.d random variables, with the pmf specified by

p(ki), i = 1, . . . , κ. (9)

Note that when considering a quasi-static channel approxi-
mation, the probability of the channel for any burst being in
a certain state is specified by (9), that is, on a burst-by-burst
basis.

2.3. A Two-state channel example

As an example of a channel with two states, when using a
Gauss-Markov approximation to the Jakes model, consider
the following composite Gauss-Markov channel, used previ-
ously in [4]. Denote the channel taps for the nth time instant
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Figure 3: Quasi-static channel approximation for fmTS = 1× 10−3

using: (a) fixed-size bursts of 100 symbols; (b) fixed-size bursts of
400 symbols.

as hn. Let the two states be s-state and f -state. Then the chan-
nel changes between time instants as

hn = ν
(
ηs hn−1 + us

)
+
(
1− ν

)(
η f hn−1 + u f

)
, (10)

where ν is a Bernoulli random variable, ηs, η f the correlation
coefficients for each state, and us, u f the noise terms. Hence,
by appropriately assigning values to ηs and η f , the channel
can be considered as composing of a slow and a fast state,
with state probabilities specified by the Bernoulli rv ν.

For the above composite Gauss-Markovmodel, each state
is specified by parameters relating to the associated Doppler
shift fm, for example, s-state by ηs. In this paper, each channel
state is described more generally using (6) and (7).

3. VARIABLE-SIZE BURST STRUCTURE

A variable-size burst structure, based on a conventional
fixed-size burst, is described in this section.

3.1. Motivation

As mentioned in Section 1, the idea of using a burst trans-
mission system originates from approximating the channel as
constant or quasi-static over some interval, which should be
less than the coherence time. In the context of a time-varying
mobile channel, Figure 3 illustrates this approximation on
a channel with normalized Doppler shift fmTS = 1 × 10−3

for two different fixed-size bursts: (a) a smaller burst of 100
data symbols; and (b) a larger burst of 400 data symbols. For
this scenario, the smaller burst approximates more accurately



F. M. Bui and D. Hatzinakos 5

Training Data Guard interval

G1 G2 = G3 G4 = G5 = G6 G7 = G8

H1 H2 H3 H4

(a)

Transmitted
burst

Received
burst

(b)

Received
burst

Received
burst

Received
burst

Received
burst

(c)

Figure 4: Variable-size burst structure with preamble training sym-
bols: (a) quasi-static channel approximations for each burst, where
some channels may be the same, for example, G2 = G3 ≡ H2;
(b) fixed-size burst system, assuming all channels are different; (c)
variable-size (received) burst system, exploiting knowledge of chan-
nel similarities.

the channel using a total of 24 fixed data bursts. The larger
burst approximates the same channel using fewer data bursts,
a total of 6 in this case. With a fixed overhead of train-
ing symbols per burst, it is more desirable to use the larger
burst, since the transmission efficiency (which is propor-
tional to the spectral efficiency) would be higher. However, as
illustrated by Figure 3(b), the larger-burst approximation is
quite inaccurate at certain times, for example, the deep fade
around symbol 1000 is missed entirely. On the other hand,
the smaller burst is rather redundant at certain times, for ex-
ample, over the symbol range 1200–1500, a single-burst ap-
proximation suffices. Hence, a compromise between the two
different burst sizes, using a variable-size burst, is advanta-
geous in terms of efficiency.

3.2. Accumulated received burst structure

Figure 4 shows a potential variable-size burst structure. The
key idea here is to realize the distinction between a transmit-
ted and a received burst: regardless of what the transmitter
sends, the receiver ultimately can make a choice on what it
considers a received burst (used for further processing, such
as channel estimation). Then, the transmitter simply trans-
mits fixed-size fundamental bursts. At the receiver, a variable-
size burst is constructed by combining consecutive trans-
mitted fundamental bursts appropriately. For this scheme to
function, as in a fixed-size burst system, the fundamental
bursts need to satisfy the quasi-static channel conditions. The
difference is that, by tracking the channel, the receiver can de-
tect a slowly changing duration, and accordingly adapts the
burst size by combining the consecutive fundamental bursts

within this duration. The result is a larger accumulated burst,
composed of fundamental bursts, with an enlarged set of
training symbols delivering a more accurate channel estima-
tion.

3.3. Example construction

To illustrate the described procedure, Figure 4(a) shows an
example scenario, where the channels for eight consecutive
fundamental bursts are designated: G1,G2, . . . ,G8. A fixed-
size burst receiver simply assumes that these channels are all
different and constructs received bursts of the same size as
the transmitted bursts as shown in Figure 4(b). However, if
the underlying channels are not all different, then a variable-
size burst can combine appropriate consecutive fundamental
bursts to form larger accumulated bursts, while still satisfying
the quasi-static assumption. For example, if G2 = G3, G4 =
G5 = G6, G7 = G8 (see Figure 3, e.g., of how this may arise),
then the unique channels can be re-designated asH1,H2,H3,
H4, from which there would be four enlarged variable-size
accumulated bursts as in Figure 4(c).

3.4. Comparisons to a fixed-size burst

From a transmitter perspective, there is essentially no differ-
ence in terms of the burst structure. The fundamental burst
size is still specified by the highest-speed fm. However, in
rapidly time-varying channels, the variable-size burst struc-
ture is more attractive, because it has the potential to main-
tain good spectral efficiency.

Indeed, consider using solution (S1), from Section 1, to
reduce the number of data symbols per burst. Then, to main-
tain the same transmission efficiency, the number of train-
ing symbols must also be reduced. However, estimation and
equalization depend on the raw number of training sym-
bols (and not the transmission efficiency). Hence, a fixed-
size burst, which in general has insufficient training symbols
in rapidly time-varying channels, will suffer from significant
performance degradation due to unsuccessful channel esti-
mation and equalization. By contrast, a variable-size burst
has the potential to regain the performance loss by making
the best use of the available training symbols.

The effect of training-symbol assignment or placement is
not investigated here. While optimal training placement can
have a significant impact on the overall performance [10],
the present paper has a different perspective: given a train-
ing regime (e.g., preamble, midamble, or superimposed), the
problem is how to combine the available training symbols
from different bursts in an advantageous manner, notably
by tracking the channel. This is based on the assumption
that more training symbols would yield better overall per-
formance.

4. CHANNEL EQUALIZATION AND ESTIMATION

The proposed variable-size burst scheme requires the re-
ceiver to correctly detect the channel changes. Such channel-
tracking capability is designed by modifying conventional
quasi-static channel equalization and estimation techniques.
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First, we will describe the ideal minimum mean-square
(MMSE) equalizer, assuming knowledge of the channel.
Then, using training symbols, a maximum-likelihood (ML)
estimator provides an estimate of the channel. Through-
out this section, it is assumed that the accumulated burst
is already received under quasi-static channel conditions.
In Section 5, the channel estimation and equalization tech-
niques described here will be incorporated in a framework
for constructing a quasi-static accumulated burst.

4.1. MMSE equalization

Consider the typical equivalent baseband signal representa-
tion

y[n] =
L−1∑

l=0
h[n; l]x[n− l] + v[n], (11)

where x[n] is the transmitted symbol at instant n, y[n]
the received symbol, h[n; l] the channel impulse response, L
the channel length (assumed known), and v[n] the additive
white Gaussian noise (AWGN) with variance σ2v . When the
channel is time invariant as in a burst-by-burst system, the
dependence of h[n; l] on n is suppressed:

y[n] =
L−1∑

l=0
h[l]x[n− l] + v[n] = h[n]� x[n] + v[n], (12)

where� denotes convolution. In this case, a matrix formula-
tion can be obtained. At the instant n, for the potential recov-
ery of the nth symbol x[n], N consecutive received symbols
are collected as

y(n) = Hx(n) + v(n) (13)

with y[n] = [y[n], . . . , y[n−N+1]]T , v[n] = [v[n], . . . , v[n−
N + 1]]T , x[n] = [x[n], . . . , x[n−N − L + 2]]T ,

H =

⎡
⎢⎢⎢⎢⎣

h[0] · · · h[L− 1] · · · 0

. . .

0 · · · h[0] · · · h[L− 1]

⎤
⎥⎥⎥⎥⎦
, (14)

where (·)T denotes matrix transpose, and H has dimensions
N × (N + L− 1).

Using the minimum mean-squared error (MMSE) cri-
terion, a linear equalizer f = [ f [0], f [1], . . . , f [N − 1]]T is
found by minimizing the cost function

JMSE(f) = E
(∣∣fHy(n)− x[n− δ]

∣∣2), (15)

where E(·) denotes the expectation operator, (·)H the Her-
mitian transpose, and δ is a delay, with permissible values
δ = 0, . . . ,N + L − 1 (see (18) and (19) for the effect of δ).
The solution to (15) is [11]

f = R−1p, (16)

where R = E(y(n)yH(n)), p = E(x∗[n− δ]y(n)) are known,
respectively, as the autocorrelation and cross-correlation.
Making the independence assumption of data symbols at dif-
ferent instants, then

R = σ2xHHH + σ2v IN , p = σ2xH1δ+1, (17)

where σ2x = E(|x[n]|2) is the symbol energy, σ2v the noise
variance, IN the N × N identity matrix, and 1δ an all-zero
vector except for the δ element, which is equal to 1 (hence, in
(17), 1δ+1 extracts the (δ + 1)th column ofH).

Given a fixed channel matrixH [11],

MMSE(δ − 1) = σ2x
(
1− 1Hδ H

HΔ−1H1δ
)
, (18)

where Δ = HHH + σ2v /σ
2
x IN . Hence, the optimal δ can be

found by evaluating

Ξ = diag
(
σ2x
(
IN −HHΔ−1H

))
(19)

from which (δ−1) corresponds to the row number of Ξ with
the minimum value (e.g., if the first row element is the min-
imum, the delay is δ = 0).

4.2. ML channel estimation

The channel h[n] can be estimated using an ML estimator,
with training symbols. This is ultimately where the variable-
size burst advantage is realized: a larger accumulated burst
provides more training and thus better channel estimate.

Consider the first fundamental burst in an accumulated
burst, with M consecutive training symbols located by the
index set I1 = {k, . . . , k+M−1}, that is, x[k], . . . , x[k+M−1]
are known symbols. The received signal is

yI1 = xI1h + vI1 , (20)

where yI1 = [y[k + L − 1], . . . , y[k +M − 1]]T , vI1 = [v[k +
L− 1], . . . , v[k +M − 1]]T , h = [h[0], . . . ,h[L− 1]]T ,

xI1 =

⎡
⎢⎢⎢⎢⎣

x[k + L− 1] · · · x[k]

...
...

x[k +M − 1] · · · x[k +M − L + 1]

⎤
⎥⎥⎥⎥⎦
. (21)

Note that when preamble training and zero-padding guard
intervals are used (see Figure 4), then the dimensions of the
above quantities can be enlarged for better estimation. If
x[k−L+1], . . . , x[k−1] correspond to the guard symbols and
are thus known to be all equal to zero, then the received signal
can be formed as yI1 = [y[k], . . . , y[k +M − 1]]T , with ap-
propriate modifications of the related quantities from (20).

Similarly, the second fundamental burst has training
symbols with the index set I2 = B ⊕ I1, where ⊕ denotes
element-wise addition with a scalar B, which is the number
of symbols in a fundamental burst. Then, yI2 = xI2h + vI2 .
Thus, if there are μ fundamental bursts in the accumulated
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burst,
⎡
⎢⎢⎢⎢⎣

yI1
. . .

yIμ

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

xI1
. . .

xIμ

⎤
⎥⎥⎥⎥⎦
h +

⎡
⎢⎢⎢⎢⎣

vI1
. . .

vIμ

⎤
⎥⎥⎥⎥⎦

(22)

or

yΣ = xΣh + vΣ. (23)

The ML channel estimate is

hML = x†ΣyΣ, (24)

where (·)† denotes the Moore-Penrose pseudoinverse [11].

5. CHANNEL TRACKING FOR VARIABLE-SIZE BURST

In this section, the described quasi-static estimation and
equalization methods will be incorporated into a threshold-
based scheme for detecting channel changes. A receiver pro-
cedure for processing variable-size bursts is also presented.

5.1. Threshold-based change detection

The variable-size burst construction problem can be stated
iteratively. Suppose that, at the current iteration, the accu-
mulated burst Bcurrent is composed of μ consecutive funda-
mental bursts, Bcurrent = {bk, . . . , bk+μ−1}, and that the chan-
nel is the same over the entire Bcurrent. Then, upon the recep-
tion of the candidate fundamental burst bk+μ, the choices are
the following.

(H1) Add bk+μ to the current accumulated burst, forming
Bpotential = {bk, . . . , bk+μ}. Continue with bk+μ+1 as the
next candidate.

(H2) Reject bk+μ, terminate Bcurrent, and accept it as the best
choice. Reinitialize with bk+μ as the start of a new ac-
cumulated burst.

To decide whether to accept (H1) or (H2), the following pro-
cedure is performed.

(1) In (24), estimate the channel using Bcurrent, returning
an estimate hC .

(2) Similarly, estimate the channel using Bpotential, return-
ing an estimate hP .

(3) Compute the squared norm of the estimation differ-
ence:

ρed =
∣∣hC − hP

∣∣2. (25)

(4) Compare to a threshold ρth for detection decision:

ρed − ρth
H2

�
H1

0. (26)

In the above, ρed is a second-order measure of the channel
change in the following sense. Suppose that the underlying
channel of Bcurrent is h, and that hC is a close estimate of
the true channel. Then if bk+μ experiences the same h, the

resulting estimation difference

hed = hC − hP (27)

is small (in some norm). But if the channel has changed for
the candidate bk+μ, the estimation difference hed is large. In
(25), a squared norm is used to quantify this difference. The
utility of this choice is made evident by examining (29) and
(30), as explained next.

5.2. Threshold function selection

Let the true channel be h, then depending on the detection
decision (i) or (ii), the channel estimation error hce is either
hce,C = h − hC or hce,P = h − hP . The channel estimation
error is unknown, since the true h is not available. However,
an upperbound for its squared norm can be approximated
as follows. Noting that |hed|2 = |hce,C −hce,P|2 and assuming
independence of the estimation errors, so that E(h∗ce,Chce,P) =
E(hce,Ch∗ce,P) = 0,

E
(∣∣hed

∣∣2) ≈ E
(∣∣hce,C

∣∣2) + E
(∣∣hce,P

∣∣2) ≥ E
(∣∣hce

∣∣2)

(28)

which means that by keeping the estimation difference hed
small as in (26), the resulting channel estimation error hce
should also be statistically small.

Next, consider the effect of a channel estimation error,
with impulse response hce[n], at the equalizer input. From
(12),

y[n] = h[n]� x[n] + v[n]

= (h[n]− hce[n]
)
� x[n] +

ṽ[n]
︷ ︸︸ ︷
hce[n]� x[n] + v[n]

= h̃[n]� x[n] + ṽ[n] + v[n],

(29)

where h̃[n] is the estimated channel impulse response (i.e.,
corresponds to either hC or hP depending on the detection
decision). Hence for an equalizer using the estimated chan-

nel h̃[n], the second term ṽ[n], due to the channel estima-
tion error, can be viewed as an additional noise source. For a
particular channel realization, this estimation noise error has
variance:

E
(∣∣hce[n]� x[n]

∣∣2
)
= σ2x

L−1∑

l=0

∣∣hce[l]
∣∣2 = σ2x ρce, (30)

where σ2x is the average symbol energy. From (29), when
noise is significant (low SNR), a small estimation error does
not necessarily deliver significant performance gain. How-
ever, at high SNR, the channel estimation error becomes the
bottleneck. In fact, it is well known that channel estimation
error can result in an error floor at high SNR [11]. Hence,
with a fixed average symbol energy σ2x , the channel estima-
tion error variance (30) should be proportional to the chan-
nel noise variance σ2v for optimal performance tradeoff.

The above implies that the optimal threshold ρth in (26)
needs to be function of the noise variance. Since the pri-
mary goal of this paper is to demonstrate the performance
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ρth: threshold for decision.
Ntotal : total number of fundamental bursts to be processed.
bsizemax: max. number of fundamental bursts in the
accumulated burst.
s: fundamental burst defining start of the current
accumulated burst.

(I) Initialization
(1) Set s = 1

(II) Iteration
for i = 2, 3, . . . ,Ntotal

if (i− s + 1 ≥ bsizemax) or (i = Ntotal),
(1) Set current accumulated burst =

all fundamental bursts from s to i,
(2) Equalize the current accumulated burst,
(3) Reset s = i + 1,

else if (ρed > ρth),
(1) Set current accumulated burst =

all fundamental bursts from s to i− 1,
(2) Equalize the current accumulated burst
(3) Reset s = i,

end
end

Algorithm 1: Variable-size burst receiver with channel tracking.

improvement compared to a fixed-size burst in time-varying
environments, the effect of threshold optimization will not
be explored. Instead, in Section 7, a sensibly predetermined
threshold function ρth, weighted against the noise variance
σ2v , will be used to assess potential improvement.

5.3. Receiver processingwith a variable-size burst

Implicit in the tracking procedure is the requirement of a
buffer for computing the intermediate h1 and h2, which in-
troduces additional complexity and also latency. To allevi-
ate the incurred penalties, a maximum burst size can be im-
posed. Fortunately, as evidenced in Section 7, a modest burst
size can yield significant performance gain. In fact, when the
receiver already has sufficient training to equalize the chan-
nel accurately, that is, approaching the MMSE lower-bound,
enlarging the accumulated burst does not produce further
appreciable improvement. Also, constraining the burst size
minimizes the propagation of estimation errors. At low SNR,
with inaccurate channel estimates, tracking can erroneously
accumulate more fundamental bursts than possible, thus vi-
olating the quasi-static requirement.

Accounting for the above factors, Algorithm 1 shows a
conceptual receiver procedure for processing variable-size
bursts. Essentially, while the accumulated burst has not ex-
ceeded the maximum size, the receiver iteratively considers
consecutive candidate fundamental bursts for inclusion, us-
ing a threshold-based change detection scheme.

5.4. Constrained optimization interpretation

Let the objective F(μ) = Mμ be the total number of training
symbols as a function ofM, the number of training symbols

in a fundamental burst (see (20)), and μ, the number of fun-
damental bursts in the accumulated burst (see (22)). Note
that M is typically a fixed constant, defined by the training
density. Also, let hi be the channel associated with the ith fun-
damental burst in the accumulated burst. Then variable-size
burst construction is equivalent to a mixed-integer optimiza-
tion problem: [12].

Lemma 1. There exists a unique solution to the following burst
construction problem:

maximize F(μ) =Mμ

subject to μ ∈ Z(an integer); μ ≤ bsizemax,

h1 = h2 = · · · = hμ (channel invariance).

(31)

Proof. The result follows trivially by noting that F(μ) is
a strict monotonic increasing function of μ. Hence, con-
strained to a bounded domain, there exists a unique maxi-
mum.

Remarks

If, instead, the objective function is the training density,
where the number of training symbols can be adapted per
burst, then the optimization problem is not necessarily
mixed integer (and M represents essentially a step-size pa-
rameter). However, in this case the transceiver design would
be more complicated, with some form of feedback required.

Since the existence of a unique solution is guaranteed by
Lemma 1, an iterative search for the solution can be imple-
mented. Here, the main difficulty is ensuring that the chan-
nel invariance constraint in (31) is maintained. The channels
hi are not known, and estimates ĥi must be used. Then in
the presence of noise and estimation error, with probabil-
ity one, ĥ1 	= ĥ2 	= · · · 	= ĥμ, for all μ. Hence, consider in-
stead the equivalent form of the constraint |hi+1 − hi|2 = 0,
i = 1, . . . ,μ− 1 yielding the squared norm relaxation [12]

∣∣hi+1 − hi
∣∣2 < ρth, i = 1, . . . ,μ− 1, (32)

where ρth is a small constant, allowing for some flexibility
in accommodating channel estimation error. Essentially, this
entails choosing ρth as in Section 5.2.

Also, at the kth iteration, instead of simply checking |ĥk−
�hk−1|2 against the threshold, |hC − hP|2 as defined by (25) is
used to guarantee the constraint. This allows for improved
estimation consistency since more training symbols are used
for estimation with more iterations.

Algorithm 1 implements the described strategy to itera-
tively search for μ, which approaches the optimal solution in
the squared norm sense.

6. ADAPTIVEMODULATION

The basic scheme of closed-loop burst-by-burst adaptive
modulation can be summarized as follows [3, 13].
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(1) At the receiver, perform a channel-quality measure-
ment, returning a channel metric.

(2) Relate this channel metric to a suitable modulation
mode, which yields the highest throughput while
maintaining the required level of QoS.

(3) Signal the selected modulation mode to the transmit-
ter to be used in the next transmission burst.

Note that the average transmitted symbol energy σ2x can
be kept the same, regardless of the modulation mode in use.
This alleviates the need of power control, which is typical for
alternative systems operating in fading channels. The QoS
is nonetheless guaranteed, by using the suitable modulation
mode for an operating channel quality. In addition, the sym-
bol rate is maintained constant so that the required band-
width is unchanged, regardless of the selected modulation
mode.

6.1. Channel metric

The most accurate metric for quantifying the channel qual-
ity is the BER. However, since the BER is often difficult to
estimate directly, alternatives are often used instead. For a
frequency-non selective or flat-fading channel, the short-
term signal-to-noise ratio (SNR) is an appropriate metric
[3, 13]. For a frequency-selective channel, the short-term
SNR is inadequate, since the influence of ISI must be taken
into account. Moreover the BER performance for frequency-
selective channel is a complicated function of many factors,
including channel length, power-delay profile, and even the
form of equalizer used, for example, the number-taps in a
linear equalizer, and the value of the equalizer delay. In the
following, we outline three possible approaches for comput-
ing a channel metric, which can be used to guarantee a target
QoS by selecting the appropriate modulation mode.

(1) Exact residual ISI

Given enough side information, the exact probability of er-
ror can be computed. Consider the overall equalized channel
impulse response:

g[n] = f ∗[n]� h[n], (33)

where f [n] and h[n] are the impulse responses of the equal-
izer and the channel, respectively. Following [14], consider
the equalizer output at instant n

z[n] = f ∗[n]� y[n]

= g[δ]x[n− δ] +
∑

k 	=δ
g[k]x[n− k] +

N−1∑

k=0
f ∗[k]v[n− k],

(34)

where the first term is the desired signal component, the
second term the residual ISI, and the last term the equal-
ized noise. Note that g[n] is effectively an FIR filter of length
N+L−1. Hence, for a particular input sequence xJ ofN+L−1

symbols, the corresponding residual ISI term is

DJ =
∑

k 	=δ
g[k]xJ[n− k]. (35)

When usingM-PAM, the resulting probability of error is [14]

PM
(
DJ
) = 2(M − 1)

M
Q

⎛
⎜⎝

√√√√
(
g[δ]−DJ

)2

σ2n

⎞
⎟⎠ , (36)

where σ2n is the variance of the equalized noise

σ2n = σ2v

N−1∑

n=0

∣∣ f [n]
∣∣2. (37)

Hence, for a particular channel, input sequence and M, the
exact probability of error can be found. A channel metric can
then be defined as

ΓISI = DJ , (38)

and the appropriate modulation mode, that is, the value of
M, can be determined from (35) for a desired QoS. Unfortu-
nately, this exact metric is not practical, since knowledge of
N +L− 1 data symbols surrounding the desired symbol x[δ]
is required (which implies knowledge of the entire sequence
of data).

Alternatively, an average and an upper-bound probability
of error can be found, respectively, as [14]

PM =
∑

xJ

PM
(
DJ
)
P
(
xJ
)
, (39)

PM
(
D∗J
)
, D∗J = (M − 1)

∑

k 	=δ

∣∣g[k]
∣∣, (40)

where (39) is an average over all possible xJ , and (40) is due
to the worst-case residual ISI. Unfortunately, the former is
computationally expensive, while the latter tends to be rather
loose. In addition, for a fading environment, averaging over
all fading-channel realizations is required. Thus the exact
residual ISI metric is only appropriate for channels with very
short length.

(2) Pseudo-SNR

The pseudo-SNR is basically the SNR at the equalizer output:

pseudo-SNR = wanted signal power
residual ISI + noise power

, (41)

and is defined in terms of the coefficients of a decision-
feedback equalizer in [3]. Using a linear MMSE equalizer
with delay δ,

ΓpSNR = σ2x
∣∣g[δ]

∣∣2

σ2x
∑

k=δ
∣∣g[k]

∣∣2 + σ2n
(42)

for a particular channel realization, where σ2n is found using
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(37). Note that as in [3], a Gaussian approximation of the
residual ISI term is made, and independence of the residual
ISI and noise is assumed. Then the BER formula in an AWGN
channel can be used. For example, the BER for a particular
channel realization with 4-QAM:

P
(
ΓpSNR

) = P
(awgn)
4-QAM

(
ΓpSNR

) = Q
(√

ΓpSNR
)
, (43)

and more importantly the BER over a mobile fading channel
can be found, for a specificm-QAMmode, as

P(mf)
m-QAM(γ̄) =

∫∞

0
P
(awgn)
m-QAM

(
ΓpSNR

)
p
(
ΓpSNR, γ̄

)
dΓpSNR,

(44)

where γ̄ is the average channel SNR:

γ̄ = E
(∣∣h[n]� x[n]

∣∣2)

E
(∣∣v[n]

∣∣2) , (45)

P
(awgn)
m-QAM(·) the AWGN BER expressions for the m-QAM

mode (e.g., can be found in [3, 14]); and p(ΓpSNR, γ̄) the pdf
of the pseudo-SNR ΓpSNR over all fading channel realizations,
at a certain average channel SNR γ̄. In general, the closed-
form pdf is not available, and the (discretized) pdf needs
to be computed numerically, at each γ̄ of interest [3]. With
ΓpSNR as a channel metric, the appropriate m-QAM mode is
selected from (44) for a target QoS.

(3) MSE-basedmetric

The pseudo-SNR metric requires knowledge of the channel
h[n]. For methods that find the equalizer f directly without
estimating h[n], a channel metric can be defined based on the
MSE computed at the equalizer output [5]. In the sequel, the
relationship between the MSE-based metric and the pseudo-
SNR is established.

At the equalizer output (34),

z[n] = f ∗[n]� y[n] = x[n− δ] + e[n], (46)

where x[n− δ] is the desired component, and e[n] the over-
all residual equalization error, which, combines residual ISI,
equalized noise, and also scaling. Then, the MSE is the equal-
ization error variance,

σ2e = E
(∣∣e[n]

∣∣2) = E
(∣∣x[n− δ]− z[n]

∣∣2), (47)

and can be estimated using training symbols [5]. A corre-
sponding channel metric is

ΓMSE = σ2x
σ2e

. (48)

Table 2: Threshold-based switching rules for adaptive modulation.

Switching criterion Modulation mode
0 ≤ ΓC < t1 V1

t1 ≤ ΓC < t2 V2

...
...

tQ−1 ≤ ΓC <∞ VQ

Making the assumption of independence between data
symbols, residual ISI, and noise,

ΓpSNR = σ2x
∣∣g[δ]

∣∣2

σ2e − σ2x
∣∣g[δ]− 1

∣∣2 . (49)

Comparing (48) and (49), the twometrics are identical when
g[δ] = 1, which occurs when the ISI is completely suppressed
by the equalizer (at high SNR).

In general, the relationship between the probability of er-
ror and MSE is not expressible in a simple closed form. But
an upperbound can be obtained [15],

Pe
(
σ2e
) ≤ exp

(
− 1− σ2e /σ

2
x

σ2e

)
. (50)

Then, the same approach as (44) applies, using the pdf of
ΓMSE, which is close to the pdf ΓpSNR at high SNR.

6.2. Threshold-basedmode adaptation

Consider a general channel metric ΓC , for example, ΓC =
ΓpSNR, which quantifies in some manner the operating chan-
nel quality. A threshold-based scheme can be constructed
as follows [3, 5]. Designate the choice of available mod-
ulation modes by Vq, q = 1, . . . ,Q, where Q is the total
number of available modulation modes; V1 is the constella-
tion with the least number of points (most robust); and VQ

the highest (most efficient). Then Table 2 shows the switch-
ing rules, based on a set of thresholds (t1, . . . , tQ−1), where
t1 < t2 < · · · < tQ−1 are chosen to guarantee some required
level of QoS [3].

6.3. Thresholds selection

For a set of thresholds (t1, . . . , tQ−1), the mean throughput
(number of bits per symbol) [3, 16]

B(γ̄) = BV1

∫ t1

0
p
(
ΓC , γ̄

)
dΓC

+
Q−1∑

q=2
BVq

∫ tq

tq−1
p
(
ΓC , γ̄

)
dΓC

+ BVQ

∫∞

tQ−1
p
(
ΓC , γ̄

)
dΓC ,

(51)

where BVq is the throughput associated with the Vq mode
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Ntotal : total number of fundamental bursts to be processed.
s: starting fundamental burst of current accumulated burst.
γC : a channel quality metric (e.g., ΓpSNR).

(I) Initialization

(1) Set s = 1,
(2) Measure channel metric γC using sth fundamental

burst,
(3) Request QAM-mode(γC) to transmitter for

the rest of current accumulated bursts.

(II) Iteration
for i = 2, 3, . . . ,Ntotal

Track channel starting from sth fundamental burst
(using tracking strategy from Section 5,
Algorithm 1)

...
if (channel change detected at ith fundamental burst)

(1) Set current accumulated burst =
all fundamental bursts from s to i− 1,

(2) Decode the current accumulated burst,
(3) Reset s = i (i.e., start of new accumulated, burst)
(4) Measure channel metric γC using sth

fundamental burst,
(5) Request QAM-mode(γC) to Tx for

the rest of the new accumulated burst.
end

end

Algorithm 2: Adaptive modulation with variable-size burst.

(e.g., throughput of 16-QAM is 4 bps). In a fading channel,
the average BER for adaptive modulation

P(mf)
AM (γ̄) = 1

B(γ̄)

[
BV1

∫ t1

0
P
(awgn)
V1

(
ΓC
)
p
(
ΓC , γ̄

)
dΓC

+
Q−1∑

q=2
BVq

∫ tq

tq−1
P
(awgn)
Vq

(
ΓC
)
p
(
ΓC , γ̄

)
dΓC

+ BVQ

∫∞

tQ−1
P
(awgn)
VQ

(
ΓC
)
p
(
ΓC , γ̄

)
dΓC

]
.

(52)

Hence, with (52), the thresholds can be optimized to produce
a desired QoS, for example, using a cost function based on
desired BER and average throughput [3, 16].

6.4. Integrationwith variable-size burst construction

A two-layer strategy is used for adaptation: variable-size
burst construction in the first layer, and adaptive modula-
tion method in the second. Feedback is required only in the
second layer. A conceptual algorithm for this strategy is sum-
marized in Algorithm 2.

Note that the channel quality is measured once per accu-
mulated burst, that is, the metric obtained with the starting
fundamental burst selects the modulation mode for the en-
tire accumulated burst. This is valid because, with channel
tracking, the same channel condition, that is, same channel
quality, applies to the entire burst.

6.5. Proof of optimality

Let the objective G(q) = log2 q be the throughput (num-
ber of transmitted bits per symbol) as a function of the
modulation mode q. For simplicity, let us assume that there
are four modulation modes, that is, q = 0 (no transmis-
sion), 2 (BPSK), 4 (4-QAM), 16 (16-QAM). Then adaptive
modulation with variable-size burst is equivalent to

maximize G(q) = log2 q,

subject to μ ∈ Z(an integer), μ ≤ bsizemax,

h1 = h2 = · · · = hμ (channel invariance),

BER(μ, q),≤ BERmax, q ∈ {0, 2, 4, 16},
σ2x = constant,

(53)

where BERmax specifies the maximum acceptable bit-error
rate for a desired QoS, and σ2x = E(|x[n]|2) is the symbol
energy.

Proposition 1. Under the constraints in (53), the given joint
optimization problem of burst construction and adaptive mod-
ulation has a unique solution. Moreover, the joint optimization
is actually separable, that is, burst construction and adaptive
modulation can be performed separately in a two-layer strat-
egy.

Proof. (i) The objective G(q) is a strict monotonic increasing
function of q.

(ii) When channel estimation is performed using train-
ing symbols, BER is also a function of μ. Under the first
three constraints, essentially those from (31), the accumu-
lated burst constructed has more training symbols and also
satisfies quasi-static channel requirements. Then, BER is a
strict monotonic decreasing function of μ.

(iii) Under the last constraint of constant symbol energy,
BER is a strict monotonic increasing function of q since in-
creasing q decreases the minimum distance between constel-
lation points.

(iv) From (i), (ii), and (iii), a unique solution exists on a
bounded domain.

(v) Moreover, to optimally satisfy the fourth BER con-
straint, μ needs to be as large as possible (for any q). This
means that optimization of burst size (which depends on the
underlying channel, not on the modulation-mode) can be
performed first, followed by the modulation mode search
(recall that burst construction deals with channel rate of
change, while adaptive modulation addresses the channel
quality).

(vi) In other words, a two-layer strategy can be utilized.
Once the optimal μ is found as the solution of (31), the
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optimal q can then be searched from the given mode choices,
producing the largest q that satisfies the BER constraint.

Remarks

The channel invariance constraint is crucial. Otherwise, if the
channel changes between bursts, then increasing the num-
ber of training symbols or the modulation mode may or
may not improve estimation, depending on the operating
channel SNR. In other words, without this constraint, the
monotonicity of BER(μ, q) may no longer hold. As such,
nonunique local maxima may exist on the BER surface over
the bounded domain, and the problem would no longer be
separable.

Proposition 2. For each modulation mode q, there is a bi-
jection (one-to-one and onto mapping) between the (pseudo-
SNR) channel metric and the BER.

Proof. This should be quite obvious by construction of any
channel metric, because otherwise the constructed metric is
not a good metric at all. For the specific case of ΓpSNR, the
pseudo-SNR metric, the key is to realize that both ΓpSNR and
BER are continuous and strict monotonic decreasing func-
tions of the average channel SNR γ̄, evident from (42), (44),
and (45).

In other words, there exist φ,ψ : BER = φ(γ̄),ΓpSNR =
ψ(γ̄), where φ,ψ are both bijective (for φ, see (44)). Being
bijections, φ,ψ have bijective inverses: γ̄ = φ−1(BER), γ̄ =
ψ−1(ΓpSNR). Then, ΓpSNR = ψ(φ−1(BER)).

Theoretically, Proposition 2 implies that, when using the
channel metric ΓpSNR to maintain the BER constraint in (53),
the equivalent condition is ΓpSNR(μ, q) ≤ tq(BERmax), where
tq(·) = ψ(φ−1(·)), for each q. However, note that the above is
a purely existential construction, since it is usually difficult to
compute the inverses in closed form, for example, comput-
ing γ̄ from BER using (44). Therefore, in practice, the opti-
mal thresholds are usually determined empirically for adap-
tive modulation [3, 16], as discussed in Section 6.3.

With the above considerations, Algorithm 2 implements
a two-layer strategy that iteratively searches for the opti-
mal (μ, q). The switching thresholds (with guaranteed op-
timal existence by Proposition 2) are empirically approxi-
mated and used according to Table 2 for adaptive modula-
tion.

Remarks

Due to the particular forms of the objective and constraints
considered here, the optimization can be decoupled as two
separate layers. However, this is not always possible. Chang-
ing the objective function, for example, addition of delay
cost, may necessitate cross-layer optimization. In addition,
with more extensive solution spaces (larger bsizemax and
more mode choices), an exhaustive search quickly becomes
prohibitively complex due to the combinatorial nature of the

mixed-integer problem. For all these cases, suboptimal tech-
niques, such as convexification and relaxation [12], may be
applied to reduce complexity.

6.6. Metric errors

It is important to realize that optimality of the above tech-
niques is only guaranteed under ideal situations. In practice,
estimation errors lead to constraint violations and therefore
suboptimal solutions. In particular, with respect to adaptive
modulation, not only can metric errors occur due to insuffi-
cient training, delays in transceiver feedback also mean that
transmitter mode switching may be too slow.

Algorithm 2 implements closed-loop metric signalling
[3], and thus has a minimum latency of one fundamental
burst. In other words, even without feedback delay, the met-
ric estimated using the current burst is not used to update the
modulation mode until the next transmitted burst, during
which time, depending on the Doppler frequency, the chan-
nel quality may have changed significantly. In real applica-
tions, with feedback delay, the actual latency is even higher.
Especially when the channel is changing rapidly, this latency
can cause incorrect modes to be invoked by the transmitter
receiving outdated metrics.

Under certain conditions, it may be possible to predict
the upcomingmetrics, thusmitigating the latency effect. Var-
ious important considerations in practical implementations
of adaptive modulation are surveyed in [3]. In Section 7.5,
the effect of latency in the metric estimation will be evalu-
ated by simulation.

7. SIMULATION EXAMPLES

Simulation parameters used are: carrier frequency fc =
3GHz, symbol duration TS = 2 μs, fundamental burst size
= 80 symbols, training density = 10% (i.e., 8 symbols per
fundamental burst), normalized data symbols with σ2x = 1,
4-QAM for fixed-modulation simulations, number of equal-
izer taps N = 50. The power-delay profile is exponential
(same shape as Table 1), with delay positions [0, 4, 6, 7]×TS,
so that the channel length L = 8.

The maximum accumulated burst size bsizemax equals 4
fundamental bursts. The threshold function ρth is defined
piece-wise over the SNR-range η ∈ [0, 40] dB:

ρth(η) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4σ2v , η ≤ 20,

2σ2v , 20 < η ≤ 30,

σ2v , 30 < η ≤ 40,

(54)

where σ2v is the channel noise variance. This threshold func-
tion fulfills the criterion for avoiding potential error floors at
high SNR as discussed in Section 5.2: allows larger channel
estimation error at low SNR, while forcing smaller estima-
tion error at high SNR.
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Figure 5: BER performance over fading channel with fmTs = 1 ×
10−4 or mobile speed vm = 18 km/h.

7.1. Variable-size burst in a slow-fading channel

Here, the channel is characterized by one Doppler state, with
fmTs = 1 × 10−4 or mobile speed vm = 18 km/h. Figure
5 shows the resulting BER performances for the following
schemes.

(1) MMSE

Obtained using a fixed-size burst equal to the fundamental
burst, and with a priori knowledge of the channel. This is the
lower-bound for other cases.

(2) Quasi-static burst

Also obtained using a fixed-size fundamental burst, but with
an estimated channel. There is insufficient training for accu-
rate estimation, manifested by a large performance gap from
the lower bound.

(3) Fixed small burst

Obtained using a fixed-size burst equal to two fundamental
bursts. More training symbols are available compared to the
quasi-static burst, resulting in performance improvement.

(4) Fixed big burst

Obtained using a fixed-size burst equal to four fundamental
bursts. This scheme approaches the MMSE performance at
low SNR, but suffers from an error floor at high SNR due
to quasi-static violation being a bottleneck in the absence of
noise.
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Figure 6: BER performance over fading channel with fmTs = 9 ×
10−4 or mobile speed vm = 162 km/h.

(5) Variable-size burst

Inherits the best characteristics of the previous two fixed-size
burst schemes, with good performance at low SNR and no
error floor at high SNR.

7.2. Variable-size burst in a fast-fading channel

Here, fmTs = 9 × 10−4, corresponding to vm = 162 km/h.
Figure 6 shows the resulting performances. Due to construc-
tion, the MMSE and quasi-static burst have identical perfor-
mances as before. In this more rapidly varying scenario, both
fixed-size burst schemes suffer from error floors. By contrast,
the variable-size burst is able to compensate for the faster
channel changes, without being affected by an error floor due
to quasi-static violations. Although not as significant as in a
slow fading scenario, the variable-size burst still delivers bet-
ter performance compared to a quasi-static burst.

7.3. Variable-size burst in a two-state
fading channel

As described in Section 2.2, the channel here has two
Doppler states: a slow state k1 with fmTs = 1 × 10−4, and
a fast state k2 with fmTs = 9 × 10−4. In other words, this
channel is a combination of the previous two scenarios. The
state probabilities are p(k1) = 0.8 and p(k2) = 0.2. This
channel is characteristic of a user who spends most of the
time in a low-mobility environment, for example, around the
vm = 18 km/h range. Figure 7 shows the results.

Although the fast channel state occurs less frequently, it
seriously deteriorates the overall performance for the two
fixed-size burst schemes, resulting in poor QoS with severe
error floors. On the contrary, the variable-size burst delivers
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Figure 7: BER performance over fading channel with 2 Doppler
states: k1 with fmTs = 1 × 10−4 and k2 with fmTs = 9 × 10−4; the
state probabilities are p(k1) = 0.8 and p(k2) = 0.2.

performance gain by exploiting the slower channel state,
without being affected by an error floor due to the fast state.

7.4. Average burst length of the variable-size burst

Figure 8 shows the average burst length in the previous chan-
nel settings. In a slow fading channel, the burst is closer to
the maximum admissible length (bsizemax = 4). But in a fast
fading channel, the burst length tends to be shorter in order
to satisfy the quasi-static assumption. In a two-state channel,
the average burst length is somewhere in between, regulated
essentially by the threshold function ρth.

7.5. Adaptivemodulation: BER performance

The previous simulations show that the two fixed-size burst
schemes severely fail in a two-state channel, even with fixed
modulation. Hence, we will focus on the MMSE, quasi-static
and variable-size bursts for adaptive modulation.

The pseudo-SNR metric ΓpSNR is used with thresholds
and associated modulation modes summarized in Table 3.

Transmission blocking (no transmission) is invoked for
very poor conditions. The highest-throughput mode is 16-
QAM, transmitting 4 bits/symbol. To illustrate the effect of
metric errors as discussed in Section 6.6, two cases are con-
sidered: (i) no feedback delay, resulting in (minimum) la-
tency of 1 burst; (ii) feedback delay of 2 bursts, causing over-
all latency of 3 bursts. Figure 9 shows the resulting BER per-
formances.

Without feedback delay, the MMSE scheme is able to
limit the maximum BER to 10−4, for the SNR range greater
than 15 dB. By modifying the thresholds, this range can be
changed accordingly, but at the loss of throughput efficiency
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Figure 8: Average burst length (in terms of number of fundamental
bursts) of a variable-size burst.

Table 3: Switching thresholds for adaptive modulation.

Channel metric (dB) Modulation mode
0 ≤ ΓpSNR < 8 No transmission

8 ≤ ΓpSNR < 12 BPSK

12 ≤ ΓpSNR < 20 4-QAM

20 ≤ ΓpSNR <∞ 16-QAM

(Figure 10). The obtained results reveal variable-size burst as
superior to the fixed-size scheme, guaranteeing a better QoS
quantified by the BER.

With delay, the overall QoS is lowered for all cases. This
reduction is more noticeable at low SNR since an erroneous
metric here implies incorrect invocation of a higher-order
mode. By contrast, at high SNR where a higher-order mod-
ulation mode is usually already appropriate, an incorrect
invocation causes less degradation. And as mentioned in
Section 6.6, in certain cases, it may be possible to perform
metric prediction to mitigate latency [3].

7.6. Adaptivemodulation: throughput performance

A complete comparison of various burst schemes, when us-
ing adaptive modulation, also requires examining the corre-
sponding throughputs (number of bits per symbol), depicted
in Figure 10.

For throughput, as found in [3], the effect of latency
is less significant, with only small performance difference
from the ideal case. At low SNR, the MMSE has the lowest
throughput. In fact, transmission blocking needs to be the
dominant mode here to maintain QoS. Fewer instances of
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Figure 9: Adaptivemodulation BER performance over fading chan-
nel with 2 Doppler states: k1 with fmTs = 1 × 10−4 and k2 with
fmTs = 9 × 10−4; the state probabilities are p(k1) = 0.8 and
p(k2) = 0.2.
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Figure 10: Adaptive modulation throughput performance corre-
sponding to Figure 9.

transmission blocking are observed for the variable-size and
quasi-static bursts. The reason is that, at low SNR, an accu-
rate channel metric is not available for optimal modulation
mode selection. At high SNR, all schemes have nearly iden-
tical throughputs, since the estimation of channel metric is
more accurate without noise.

The combined BER and throughput performances dem-
onstrate the superiority of a variable-size burst compared

to its fixed-size counterpart. It maintains almost identical
throughput, but supports much improved QoS.

8. CONCLUDING REMARKS

In this work, two approaches for efficient and reliable com-
munications in time-varying mobile environments are pre-
sented: variable-size burst construction and adaptive mod-
ulation. It has been shown that, when the underlying time-
varying channel is dominated by a slower state, reliable and
efficient communication is still possible using a conventional
burst-by-burst receiver methodology.

If the channel is dominated by a fast channel state, the
variable-size burst performance approaches that of the quasi-
static burst, with poor QoS and efficiency. For these sce-
narios, as mentioned in Section 1, the variable-size burst
methodology can be combined with basis-expansion chan-
nel models to deliver improved performance at the cost of
complexity [6].
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