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We first consider the q-extension of the generating function for the higher-order generalized
Genocchi numbers and polynomials attached to χ. The purpose of this paper is to present a
systemic study of some families of higher-order generalized q-Genocchi numbers and polynomials
attached to χ by using the generating function of those numbers and polynomials.

1. Introduction

As a well known definition, the Genocchi polynomials are defined by
(

2t
et + 1

)
ext = eG(x)t =

∞∑
n=0

Gn(x)
tn

n!
, |t| < π, (1.1)

where we use the technical method’s notation by replacing Gn(x) by Gn(x), symbolically,
(see [1, 2]). In the special case x = 0, Gn = Gn(0) are called the nth Genocchi numbers. From
the definition of Genocchi numbers, we note that G1 = 1, G3 = G5 = G7 = · · · = 0, and even
coefficients are given by G2n = 2(1 − 22n)B2n = 2nE2n−1(0) (see [3]), where Bn is a Bernoulli
number and En(x) is an Euler polynomial. The first few Genocchi numbers for 2, 4, 6, . . . are
−1, 1,−3, 17,−155, 2073, . . .. The first few prime Genocchi numbers are given by G6 = −3 and
G8 = 17. It is known that there are no other prime Genocchi numbers with n < 105. For a real
or complex parameter α, the higher-order Genocchi polynomials are defined by

(
2t

et + 1

)α

ext =
∞∑
n=0

G
(α)
n (x)

tn

n!
(1.2)
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(see [1, 4]). In the special case x = 0, G(α)
n = G

(α)
n (0) are called the nth Genocchi numbers

of order α. From (1.1) and (1.2), we note that Gn = G
(1)
n . For d ∈ N with d ≡ 1(mod 2),

let χ be the Dirichlet character with conductor d. It is known that the generalized Genocchi
polynomials attached to χ are defined by

(
2t

∑d−1
a=0 χ(a)(−1)aeat

edt + 1

)
ext =

∞∑
n=0

Gn,χ(x)
tn

n!
(1.3)

(see [1]). In the special case x = 0, Gn,χ = Gn,χ(0) are called the nth generalized Genocchi
numbers attached to χ (see [1, 4–6]).

For a real or complex parameter α, the generalized higher-order Genocchi polynomials
attached to χ are also defined by

(
2t

∑d−1
a=0 χ(a)(−1)aeat

edt + 1

)α

ext =
∞∑
n=0

G
(α)
n,χ(x)

tn

n!
(1.4)

(see [7]). In the special case x = 0, G(α)
n,χ = G

(α)
n,χ(0) are called the nth generalized Genocchi

numbers attached to χ of order α (see [1, 4–9]). From (1.3) and (1.4), we derive Gn,χ = G
(1)
n,χ.

Let us assume that q ∈ Cwith |q| < 1 as an indeterminate. Then we, use the notation

[x]q =
1 − qx

1 − q
. (1.5)

The q-factorial is defined by

[n]q! = [n]q[n − 1]q · · · [2]q[1]q, (1.6)

and the Gaussian binomial coefficient is also defined by

(
n

k

)

q

=
[n]q!

[n − k]q![k]q!
=

[n]q[n − 1]q · · · [n − k + 1]q
[k]q!

(1.7)

(see [5, 10]). Note that

lim
q→ 1

(
n

k

)

q

=

(
n

k

)
=

n(n − 1) · · · (n − k + 1)
k!

. (1.8)

It is known that

(
n + 1

k

)

q

=

(
n

k − 1

)

q

+ qk
(
n

k

)

q

= qn+1−k
(

n

k − 1

)

q

+

(
n

k

)

q

, (1.9)
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(see [5, 10]). The q-binomial formula are known that

(
x − y

)n
q =

(
x − y

)(
x − qy

) · · ·(x − qn−1y
)
=

n∑
i=0

(
n

i

)

q

q

(
i

2

)
(−1)ixn−iyi,

1(
x − y

)n
q

=
1(

x − y
)(
x − qy

) · · · (x − qn−1y
) =

∞∑
l=0

(
n + l − 1

l

)

q

xn−lyl,

(1.10)

(see[10, 11]).
There is an unexpected connection with q-analysis and quantum groups, and thus

with noncommutative geometry q-analysis is a sort of q-deformation of the ordinary analysis.
Spherical functions on quantum groups are q-special functions. Recently, many authors have
studied the q-extension in various areas (see [1–15]). Govil and Gupta [10] have introduced
a new type of q-integrated Meyer-König-Zeller-Durrmeyer operators, and their results are
closely related to the study of q-Bernstein polynomials and q-Genocchi polynomials, which
are treated in this paper. In this paper, we first consider the q-extension of the generating
function for the higher-order generalized Genocchi numbers and polynomials attached to χ.
The purpose of this paper is to present a systemic study of some families of higher-order
generalized q-Genocchi numbers and polynomials attached to χ by using the generating
function of those numbers and polynomials.

2. Generalized q-Genocchi Numbers and Polynomials

For r ∈ N, let us consider the q-extension of the generalized Genocchi polynomials of order r
attached to χ as follows:

F
(r)
q,χ(t, x) = 2r tr

∞∑
m1,...,mr=0

⎛
⎝ r∏

j=1

χ
(
mj

)
⎞
⎠(−1)

∑r
j=1 mj e[x+m1+···+mr]qt =

∞∑
n=0

G
(r)
n,χ,q(x)

tn

n!
. (2.1)

Note that

lim
q→ 1

F
(r)
q,χ(t, x) =

(
2t

∑d−1
a=0 χ(a)(−1)aeat

edt + 1

)r

ext. (2.2)

By (2.1) and (1.4), we can see that limq→ 1G
(r)
n,χ,q(x) = G

(r)
n,χ(x). From (2.1), we note that

G
(r)
0,χ,q(x) = G

(r)
1,χ,q(x) = · · · = G

(r)
r−1,χ,q(x) = 0,

G
(r)
n+r,χ,q(x)(
n+r

r

)
r!

= 2r
∞∑

m1,...,mr=0

⎛
⎝ r∏

j=1

χ
(
mj

)
⎞
⎠(−1)

∑r
j=1 mj [x +m1 + · · · +mr]nq .

(2.3)
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In the special case x = 0, G(r)
n,χ,q = G

(r)
n,χ,q(0) are called the nth generalized q-Genocchi numbers

of order r attached to χ. Therefore, we obtain the following theorem.

Theorem 2.1. For r ∈ N, one has

G
(r)
n+r,χ,q

( n+r
r )r!

= 2r
∞∑

m1,...,mr=0

(
r∏
i=1

χ(mi)

)
(−1)

∑r
j=1 mj [m1 + · · · +mr]nq . (2.4)

Note that

2r
∞∑

m1,...,mr=0

(
r∏
i=1

χ(mi)

)
(−1)

∑r
j=1 mj [m1 + · · · +mr]nq

=
2r(

1 − q
)n

n∑
l=0

(
n

l

)
(−1)l

d−1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ
(
aj

)
⎞
⎠

(−ql)∑r
i=1 ai

(
1 + qld

)r .

(2.5)

Thus we obtain the following corollary.

Corollary 2.2. For r ∈ N, we have

G
(r)
n+r,χ,q

( n+r
r )r!

=
2r(

1 − q
)n

n∑
l=0

(
n

l

)
(−1)l

d−1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ
(
aj

)
⎞
⎠

(−ql)∑r
i=1 ai

(
1 + qld

)r

= 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)m

d−1∑
a1,...,ar=0

(−1)
∑r

i=1 ai

(
r∏
i=1

χ(ai)

)[
r∑
i=1

ai +md

]n

q

.

(2.6)

For h ∈ Z and r ∈ N, one also considers the extended higher-order generalized (h, q)-Genocchi
polynomials as follows:

F
(h,r)
q,χ (t, x) = 2r tr

∞∑
m1,...,mr=0

q
∑r

j=1(h−j)mj

(
r∏
i=1

χ(mi)

)
(−1)

∑r
j=1 mj e

[x+
∑r

j=1 mj ]
q
t

=
∞∑
n=0

G
(h,r)
n,χ,q(x)

tn

n!
.

(2.7)
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From (2.7), one notes that

G
(h,r)
0,χ,q(x) = G

(h,r)
1,χ,q(x) = · · · = G

(h,r)
r−1,χ,q(x) = 0,

G
(h,r)
n+r,χ,q(x)

( n+r
r )r!

= 2r
∞∑

m1,...,mr=0

q
∑r

j=1(h−j)mj

(
r∏

i=1

χ(mi)

)
(−1)

∑r
j=1 mj [x +m1 + · · · +mr]nq

=
2r(

1 − q
)n

n∑
l=0

(
n

l

)
qlx(−1)l

d−1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ
(
aj

)
⎞
⎠q

∑r
j=1(h−j)aj (−1)a1+···+ar ql(a1+···+ar)

×
∞∑

m1,...,mr=0
(−1)m1+···+mrqd(m1+···+mr)+d(

∑r
j=1(h−j)mj )

=
2r(

1 − q
)n

n∑
l=0

( n
l )q

lx(−1)l ∑d−1
a1,...,ar=0

(∏r
j=1χ

(
aj

))
q
∑r

j=1(h−j)aj(−ql)∑r
j=1 ai

(−qd(h−r+l); q)r ,

(2.8)

where (−x; q)r = (1 + x)(1 + xq) · · · (1 + xqr−1).

Therefore, we obtain the following theorem.

Theorem 2.3. For h ∈ Z, r ∈ N, one has

G
(h,r)
n+r,χ,q(x)

( n+r
r )r!

= 2r
∞∑

m1,...,mr=0

q
∑r

j=1(h−j)mj

(
r∏
i=1

χ(mi)

)
(−1)

∑r
j=1 mj [x +m1 + · · · +mr]nq

=
2r(

1 − q
)n

n∑
l=0

( n
l )
(−qx)l ∑d−1

a1,...,ar=0

(∏r
j=1χ

(
aj

))
q
∑r

j=1(h−j)aj(−ql)∑r
j=1 ai

(−qd(h−r+l); q)r ,

G
(h,r)
0,χ,q(x) = G

(h,r)
1,χ,q(x) = · · · = G

(h,r)
r−1,χ,q(x) = 0.

(2.9)

Note that

1(−qd(h−r+l); q)r =
1(

1 + qd(h−r+l)
) =

∞∑
m=0

(
m + r − 1

m

)

q

(−1)mqd(h−r+l)m. (2.10)

By (2.10), one sees that

1(
1 − q

)n
n∑
l=0

( n
l )(−1)lql(x+

∑r
i=1 ai)(−qd(h−r+l); q)r

=
∞∑

m=0

(
m + r − 1

m

)
q

(−1)mqd(h−r)m 1(
1 − q

)n
n∑
l=0

(
n

l

)
(−1)lql(x+

∑r
i=1 ai+dm)

=
∞∑

m=0

(
m + r − 1

m

)

q

(−1)mqd(h−r)m
[
x +

r∑
i=1

ai + dm

]n

q

.

(2.11)
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By (2.10) and (2.11), we obtain the following corollary.

Corollary 2.4. For h ∈ Z, r ∈ N, we have

G
(h,r)
n+r,χ,q(x)

( n+r
r )r!

= 2r
∞∑

m=0

(
m + r − 1

m

)

q

(−1)mqd(h−r)m
d−1∑

a1,...,ar=0

⎛
⎝ r∏

j=1

χ
(
aj
)
⎞
⎠q

∑r
j=1(h−j)aj

[
x +

r∑
i=1

ai + dm

]n

q

(2.12)

By (2.7), we can derive the following corollary.

Corollary 2.5. For h ∈ Z, r, d ∈ N with d ≡ 1 (mod 2), we have

qd(h−1)
G

(h,r)
n+r,χ,q(x + d)(

n+r

r

)
r!

+
G

(h,r)
n+r,χ,q(x)(
n+r

r

)
r!

= 2
d−1∑
l=0

χ(l)(−1)l
G

(h−1,r−1)
n+r−1,χ,q(

n+r−1
r−1

)
(r − 1)!

,

qx
G

(h+1,r)
n+r,χ,q(x)(
n+r

r

)
r!

=
(
q − 1

)G(h,r)
n+r+1,χ,q(x)(
n+r+1

r

)
r!

+
G

(h,r)
n+r,χ,q(x)(
n+r

r

)
r!

.

(2.13)

For h = r in Theorem 2.3, we obtain the following corollary.

Corollary 2.6. For r ∈ N, one has

G
(r,r)
n+r,χ,q(x) =

2r(
1 − q

)n
n∑
l=0

(
n

l

)(−qx)l d−1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ
(
aj

)
⎞
⎠q

∑r
j=1((r−j)aj+laj )(−1)a1+···+ar(−qdl; q)r

= 2r
∞∑

m=0

(
m + r − 1

m

)

q

(−1)m
d−1∑

a1,...,ar=0

⎛
⎝ r∏

j=1

χ
(
aj

)
⎞
⎠q

∑r
j=1(r−j)aj

[
x +

r∑
i=1

ai + dm

]n

q

.

(2.14)

In particular,

G
(r,r)
n+r,χ,q−1(r − x)

( n+r
r )r!

= (−1)nqn+( r2)
G

(r,r)
n+r,χ,q(x)

( n+r
r )r!

. (2.15)

Let x = r in Corollary 2.6. Then one has

G
(r,r)
n+r,χ,q−1

( n+r
r )r!

= (−1)nqn+( r2)
G

(r,r)
n+r,χ,q(r)

( n+r
r )r!

. (2.16)
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Let w1, w2, . . . , wr ∈ Q+. Then, one has defines Barnes’ type generalized q-Genocchi
polynomials attached to χ as follows:

F
(r)
q,χ(t, x | w1, w2, . . . , wr) = 2r tr

∞∑
m1,...,mr=0

(
r∏
i=1

χ(mi)

)
(−1)m1+···+mre[x+

∑r
j=1 wjmj ]qt

=
∞∑
n=0

G
(r)
n,χ,q(x | w1, w2, . . . , wr)

tn

n!
.

(2.17)

By (2.17), one sees that

G
(r)
n+r,χ,q(x | w1, . . . , wr)

( n+r
r )r!

= 2r
∞∑

m1,...,mr=0

(
r∏
i=1

χ(mi)

)
(−1)

∑r
j=1 mj

⎡
⎣x +

r∑
j=1

wjmj

⎤
⎦

n

q

. (2.18)

It is easy to see that

2r
∞∑

m1,...,mr=0

(
r∏
i=1

χ(mi)

)
(−1)m1+···+mr

⎡
⎣x +

r∑
j=1

wjmj

⎤
⎦

n

q

=
2r(

1 − q
)n

n∑
l=0

( n
l )
(−qx)l ∑d−1

a1,...,ar=0

(∏r
j=1χ

(
aj

))
(−1)

∑r
j=1 aj ql

∑r
j=1 wiai

(
1 + qdlw1

) · · · (1 + qdlwr
) .

(2.19)

Therefore, we obtain the following theorem.

Theorem 2.7. For r ∈ N, w1, w2, . . . , wr ∈ Q+, one has

G
(r)
n+r,χ,q(x | xw1, w2, . . . , wr)

( n+r
r )r!

= 2r
∞∑

m1,...,mr=0

(
r∏
i=1

χ(mi)

)
(−1)

∑r
j=1 mj [x +w1m1 + · · · +wrmr]nq

=
2r(

1 − q
)n

n∑
l=0

( n
l )
(−qx)l ∑d−1

a1,...,ar=0

(∏r
j=1χ

(
aj

))
(−1)

∑r
j=1 aj ql

∑r
i=1 wiai

(
1 + qdlw1

) · · · (1 + qdlwr
) .

(2.20)
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