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Static spectrum allocation is a major problem in recent wireless network domains. Generally, these allocations lead to inefficient
usage creating empty spectrum holes or white spaces. Thus, some alternatives must be ensured in order to mitigate the current
spectrum scarcity. An effective technology to ensure dynamic spectrum usage is cognitive radio, which seeks the unutilized
spectrum portions opportunistically and shares them with the neighboring devices. However, since users generally have a limited
knowledge about their environment, we claim that cooperative behavior can provide them with the necessary information to solve
the global issues. Therefore, in this paper, we develop a novel approach for spectrum allocation using a multiagent system that
enables cognitive radio devices to work cooperatively with their neighboring licensed (or primary user) devices in order to utilize
the available spectrum dynamically. The fundamental aspect of our approach is the deployment of an agent on each device which
cooperates with its neighboring agents in order to have a better spectrum sharing. Considering the concurrent, distributed, and
autonomous nature of the proposed approach, Petri nets are adopted to model the cooperative behaviors of primary and cognitive
radio users. Our simulation results show that the proposed solution achieves good performance in terms of spectrum access,

sustaining lower communication overhead.

1. Introduction

The deployment of modern day wireless devices follows
the static spectrum usage, where spectrum is assigned to
a licensed user for longer durations. This static spectrum
assignment is considered to be extremely favorable in order
to avoid the device-level collisions; however, it leads to radio
spectrum shortage problem creating empty spectrum holes.
According to [1], in both rural and urban areas, spectrum
usage can go as low as 10-15%, resulting in huge amount
of spectrum to be wasted. As a result, the newly arriving
unlicensed devices are forced to use unlicensed bands leading
to inefficient and crowded spectrum utilizations.

Cognitive radio (CR), firstly coined by Mitola [2], is
considered to be an efficient technology to enable dynamic
and opportunistic spectrum sharing. Generally, a CR (or
secondary) user senses the nearby empty spectrum portions
and is capable of sharing them with the neighboring devices,
without interrupting the working of licensed (or primary)
users. It continuously monitors the environmental radio

frequency (RF) signals and alters its transmission and
reception parameters in order to better perform its functions.
However, one of the key issues in CR networks is to avoid
device level collisions and interferences while maintaining
efficient spectrum usage. We argue that a noncooperative
node can cause harmful interference to its neighbors and
hence can reduce the overall spectrum usage.

One effective solution to enable interdevice cooperation
and information exchange is multiagent system [3]. Basically,
a multiagent system (MAS) is composed of groups of
autonomous agents working together by having frequent
interactions with each other, in order to solve the tasks
which are beyond the capabilities of a single agent [4].
Each agent works dynamically to fulfill its user needs and
has partial knowledge and imperfect information about the
nearby environment. In addition, an efficiently designed CR
device, with an agent embarked on it, is capable of interacting
with neighboring radios to form a dynamic and collaborative
network and provides a rationale to conceptualize new
spectrum sharing techniques for CR networks. This rationale
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is particularly attractive and equally important to create
spectrum sharing solutions that can work in dynamic,
distributed, and open wireless networks domains.

Therefore, in this paper, an MAS-based approach is pro-
posed, where the primary and secondary users are equipped
with agents. The secondary user (SU) agents coexist and
cooperate with the legacy PU agents using the message-
passing and decision-making mechanisms of contract net
protocol (CNP) [5]. The whole environment is ad hoc
with the frequent changes in the neighborhoods of primary
and secondary users. Moreover, in order to capture the
agents’ interactions under mobile conditions, Petri net (PN)
modeling is used [6]. The graphical and analytical nature of
PN allows us to visualize the detailed feasibility analysis of
agents’ internal behaviors when they have to make spectrum
sharing deals/agreements. While passing through several
cooperative stages, we study the interagent message exchange
in order to make cooperative decisions. In this context,
our previous works [7, 8] have focused on proposing a
cooperative spectrum sharing framework and analyzing its
behavior. Unlike our previous contributions, in this paper
we deploy our primary and secondary users according to
Poisson distributions [9] and monitor their arrivals and
departures under ad hoc conditions. These distributions help
us in identifying the exponential time periods (or holding
times) for which the users utilize the available spectrum.

The rest of the paper is organized as follows. Prior
works related to dynamic spectrum sharing are summarized
in Section 2. Section 3 formulates the problem statement.
In Section 4, we propose our cooperative framework. Petri
net model along with some important properties of our
design is presented in Section 5. Section 6 depicts simulation
results. Finally, Section 7 concludes our paper with the future
perspectives.

2. Related Work

In the recent past, several dynamic spectrum sharing
approaches have been proposed using different techniques
such as game theory and auctions and medium access control
protocols. In fact, some researchers have also drawn their
focus towards multiagent-based approaches for spectrum
sharing. In [10], an MAS is used for managing spectrum
resources across several wireless LANs (WLANSs), collocated
in a geographical area. Each access point (AP) located
in a WLAN contains an agent which interacts with the
neighboring AP agents (located in other WLANS) to form
an MAS. The internal architecture of an agent consists of
two parts: predictive parameter estimation, which generates
parameter estimates using the signal characteristics received
from WLAN environments, and resource management opti-
mization, which decides the suitable spectrum bands to be
selected. The proposed approach is explained conceptually,
but none of the analysis and experiments are shown. On
the contrary, the works proposed in [11, 12] consider
market-based auctions for dynamic spectrum sharing. The
SUs working as consumer agents submit their bids to the
PUs (or auctioneer agents) which shows their willingness

for spectrum sharing. The auctioneer agents then share the
spectrum based on the received bids. The ultimate aim of
using auctions is to provide an incentive for SUs to maximize
their spectrum usage (and hence the utility), while allowing
network to achieve Nash Equilibrium. However, considering
the competitive nature of market-based approaches, it is hard
to develop agents with unselfish behaviors.

According to Weib and sen [13], agents should have
the ability to learn from their past states in order to better
perform their following actions/moves. This MAS learning
can provide significant contribution to spectrum allocation
in CR networks, if the devices have the knowledge of their
past sharing patterns and neighborhood movements. In
vicinity, the solutions based on MAS learning are presented
in [14, 15]. Basically, the SUs periodically share the relative
traffic information on the sensed channels (they are likely to
be used in near future), with the neighboring devices. Based
on this information exchange, multiagent learning (i.e., delay
sensitive and Q-learning) algorithms are proposed which
allow the CR users to dynamically and autonomously opti-
mize their transmission power on a selected channel and to
avoid the inter-device interferences. Conversely, sometimes
these learning algorithms can create a situation, where the
agents have weak assumptions about other agents’ spectrum
usage making the task of getting accurate information more
difficult.

A different cooperative approach named DSAP (dynamic
spectrum access protocol) is presented in [16]. This approach
is based on the concept of centralized server which is
responsible for leasing spectrum to the requesting users in a
small geographical region. The server also maintains a global
view of the network’s channel conditions through a series
of frequent information exchanges with its clients. However,
centralized server can become a huge bottleneck in diverse
network conditions.

Game-theoretical solutions are considered to be a perfect
match of nature for dynamic spectrum allocations. Mostly,
in these approaches [17, 18], to efficiently utilize the scarce
spectrum resource, PUs adopt the roles of the leaders, by
selecting a subset of neighboring SUs and granting them
spectrum access. In return, SUs work as the followers, by
paying PUs the relative price for spectrum utilization and
maximizing their utilities in terms of spectrum access for a
specific time period. Yet, each user focuses on maximizing
its individual usage without taking into account the others,
showing selfish behaviors. As a result, in order to allow
players to work interdependently, cooperative games are pro-
posed [19, 20]. In cooperative games, the SUs’ transmission
powers and spectrum usage are common knowledge, and
their utility functions are chosen in order to maximize the
global utility. At the same time, cooperative approaches
require a feedback from each player to be sent to the
centralized server about its utility function, increasing the
overall algorithmic complexity.

A local bargaining approach is presented in [21], where
the CR users self-organize into small bargaining groups.
The group formation process starts by the initiator CR
node, sending a group formation request to its neighbors
for a subset of spectrum portions. The interested neighbors
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acknowledge the request, and the bargaining group is formed
ensuring minimum spectrum allocation to each group mem-
ber. The experimental results prove that local bargaining
performs similar to greedy approach [22] incurring less
communication overhead.

Aside from local bargaining and game-theoretical
approaches, some authors suggest that the spectrum sharing
problems are similar to MAC issues [23], where several
users try to access the same channel and their access
should be coordinated with the neighboring users to avoid
interferences. In MAC-based spectrum sharing [24, 25],
when an SU is using a specific channel, both the transmitter
and the receiver synchronize themselves by sending a busy
tone signal through the associated control channel, such
that the signal interferences should be avoided. Nevertheless,
sending frequent busy tones can interrupt the neighboring
devices, because each time they have to stop their normal
working flow in order to listen to the busy tone on the control
channel.

Our proposed approach is different from the above as
we consider a framework where PU agents are working
together with the SUs in order to enable dynamic spectrum
allocations. The agents’ internal behaviors are cooperative
and unselfish, which allow them to help maximizing each
others’ utility functions. To the best of our knowledge, the
idea of deploying a cooperative MAS over CR networks
under ad hoc conditions along with the modeling of users’
spectrum sharing process using Petri nets and detailing
their internal message structures has not been previously
addressed. Therefore, we think that our work will provide a
novel contribution to the current dynamic spectrum access
literature.

3. Problem Description

Before formulizing our problem statement, let us consider
an ad hoc network scenario in Figure 1(a scenario of two
PUs and one SU is shown just as an example for depicting
the deployment of cooperative agents under ad hoc network
setting). The figure depicts an emergency situation during
an accident in a very remote area, where the user is in a
noncovered zone (i.e., the radio resources at this moment
are not available) or the radio access technology requires
an energy that the terminal (a mobile, a laptop, or a PDA)
does not own. In this case, an SU should observe the nearby
PUs (PU; and PU,) and sense their transmission signals to
identify the available spectrum bands. Then, its agent can
cooperate with the conforming primary user agents to make
dynamic spectrum sharing agreements.

We now formulize our problem. Let G = (N, A) be a
directed network consisting of a set of mobile nodes N such
that (SU U PU) € N and a set of directed arcs A. Each
directed arc (i, j) € A connects a secondary user SU; to
a primary user PU;. Similarly, we can denote the directed
arc (j, i) € A to connect PU; to SU;. The secondary users
are cooperating with the neighboring primary users to have
a spectrum sharing agreement. We assume that s;; is the

@ .

amount of spectrum that a secondary user “” is desiring to

SU agent
- Observe An SU involved in multiple
- Sense I spectrum sharing agreements
- Cooperate

PU agent 1 PU agent 2

FIGURE 1: Spectrum sharing under an ad hoc network.

get from a primary user “j”. Similarly, ; is the amount of

«:»

time for which “4” wants to utilize the spectrum, and p;; is
the price it is willing to pay to “4”. On the other hand, for a
primary user %, s;; is the amount of spectrum it is willing
to share with “”, ¢;; is the respected time limit, and pj; is
the price it is expecting to get after sharing its spectrum. We

can formulate the above model for each secondary user “i” as
follows:

Maximize > s;jt;j (1)
(ij)eA
subject to
Minimize > p; VSUEN. (2)
(i,j)eA
Similarly, for primary users,
Maximize z pji (3)
(ji)eA
subject to
Minimize Z sjitii VPUEN, (4)
(js)eA
lj,‘ < Sji < Ujis (5)

where [;; and u;; are the lower and upper bounds of available
spectrum of “j” This means that “/” cannot ask for an

amount of spectrum above this limit.

4. Cooperative Spectrum Allocation Framework

In this section, we explain the internal architectures of
primary and secondary users along with their working
behaviors. Basically, our design (as shown in Figure 2) is
based on five different interlinked parts that embody the
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working of our cooperative approach:

(i) dynamic spectrum sensor,
(ii) spectrum characterizer,
(iii) secondary user interface,
(iv) agent’s knowledge module, and

(v) agent’s cooperation module.

The working of these modules is described, in the following.
Obviously, the primary user does not contain the cognitive
radio module, while the agent module is common in both
the primary and secondary users. Note that, in essence,
spectrum sensing and characterizing is beyond the scope of
our work; thus, our focus will be on agent module which is
the key functionary to enable cooperation between primary
and secondary users.

4.1. Dynamic Spectrum Sensor. The function of dynamic
spectrum sensor (DSS) is the sensing of radio spectrum holes
by continuously monitoring the neighboring PU signals.
Several techniques such as PU’s weak signal and its energy
detection [26] and cooperative detection [27] can be used
to perform spectrum sensing. For DSS, it is also necessary
that the sensing is performed by considering a real-time
dynamic environment, because it is not obvious at what time
a spectrum band is occupied or when it is free. Thus, all the
factors such as PU’s signal power with the respected noise,
spectrum traffic (by calculating the number of current users
and taking into account the application type), sampling time,
and intervals must be kept in consideration.

4.2. Spectrum Characterizer. Spectrum characterizing can be
considered as a subfunction of spectrum sensing. Basically,
our spectrum characterizer (SC) module functions as to
arrange/divide the spectrum holes information (received
through DSS) according to capacity. In a simple way, to create
a capacity-based descending ordered list of neighboring PUs,
SC uses the Shannon Theorem:

C = Blog, (1 + SNR), (6)

where C is the capacity in bits per second, B is the bandwidth
measured in hertz and SNR is the respected signal-to-noise
ratio in watts. For more details, the complete derivation and
formulation of the above equation is found in [28].

4.3. Secondary User Interface. The third part, secondary user
interface (SUI) sends a request message to the agent module,
whenever a user wants to have a portion of spectrum (for
internet surfing, watching high quality videos, etc.). The
message is of the form req (s,t), where s is the amount of
spectrum needed by the SU depending upon its application
in use, for a time duration t. In reality, the user’s request
depends upon the application to be used. For example, if a
user runs a Skype-based multimedia application on its PDA
or cell phone on daily bases, then each time this application
is executed, its request for spectrum utilization will remain
the same.

4.4. Agent’s Knowledge Module. Agent’s knowledge module
(AKM) gets PUs’ characterization information from SC
module which serves as a motivation for agents that sub-
sets of neighbors having unutilized spectrum portions are
available. This list is not permanent, rather it is updated and
maintained on regular time intervals. Secondary user’s AKM
(or SU-AKM) also gets the req message from SUI module,
and, based on the inputs from both the modules, it prepares
a call for proposal (CfP) message:

CfP(SUID;, s, t,d), (7)

where SUID is the secondary user’s ID (or its agent’s
identification) and it is used to help PU to reply back to
the corresponding SU, s is the amount of spectrum needed
by the SU, t is the desired time limit (or holding time) for
the spectrum utilization, and d is the deadline to receive the
PUS’ responses (proposals). Parallel to CfP creation, SU-AKM
maintains the neighboring PUs’ information that is received
via frequent interactions between the agents, along with a
list of previously received proposals (if there exist any). This
information includes the leaving and joining of neighboring
nodes in a network and their current spectrum status, and
it helps an SU to create a more precise CfP. Uniformly, the
PU-AKM module functions almost in the same manner by
maintaining the neighboring SUs’ arrivals and departures
information and a list of their previous spectrum demands.

4.5. Agent’s Cooperation Module. Agent’s cooperation mod-
ule (ACM) manages the cooperation between primary and
secondary users. After the reception of a CfP message
from SU-AKM, the SU-ACM sends the received CfP to
the neighboring and currently available PU agents. The
PUs are considered to be available if they still exist in
the corresponding SU’s neighborhood with their spectrum
portions. Besides, SU-ACM also performs the main decision
for an SU by selecting the appropriate proposal. In much the
same way, PU-ACM chooses the most suitable CfP for a PU
and sends the proposal in response. Finally, the appropriate
agreement for both the primary and secondary users is the
one which is profitable and maximizes their utility values.

On average, the utility for a PU is the price paid by SU
agents for their spectrum utilization divided by the amount
of spectrum it has shared for the respected time period. An
SU agent’s utility is represented as its spectrum usage for the
required time divided by the corresponding price paid to the
PUs.

Accordingly, Figures 3 and 4 delineate the behavioral
working of secondary and primary users, respectively. Both
the behaviors show the same characterizing, analyzing,
sending, receiving, and deciding steps mentioned before.
The spectrum sharing process for an SU starts by getting
the characterization results and the user requirements and
continues until the sending of CfPs and receiving of the
proposals. The process ends either by having an agreement or
disagreement. For a PU, the process follows the same pattern
by first analyzing the received CfPs, sending the proposals as
responses, and finally ending the process either by receiving
an accept or a reject message from the conforming SU.
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FIGURE 2: Various functioning modules for primary and secondary users.

5. Petri Net Model for the Cooperative Approach

Petri Net (PN) [6] is a graphical tool for the formal
description of the flow of activities in complex systems.
Generally, PNs are used to represent the logical interactions
among nodes, devices, and parts of a system. Their discrete
and distributed nature makes them highly suitable to
model interagent interactions and capture the dynamics of
decentralized environments. A simple PN model is shown in
Figure 5. Basically, it contains two types of nodes, namely,
a set of places P = {py, p2,..., pn} and a set of transitions
T = {ti,t2,...,tu}. A place is represented by a circle, and a
transition can be shown by a bar (or a box). Further, a PN
consists of a set of inputs I, outputs O, and the markings M
(assignment of tokens to the places). The marking of a PN is
a vector, the components of which are positive integer values.
The dimension of this vector is equal to the number of places.
A token (represented by a small filled circle) is moved from
one place to another when a transition is fired. For example,
in Figure 5, firing of transitions t, f, t3, and #; can allocate
several resources from one agent to another, and these firings
can be represented by removal of tokens from input places
and their addition to the output places.

5.1. Modeling Spectrum Sharing Agreement/Disagreement
Using PN. A cooperative spectrum sharing model between
a primary and a secondary user is a five-tuple N =
{P,T,1,0, M}, where P is the finite set of places, T is a finite
set of transitions, I and O are the input and output functions
which specify the input and output places of transitions, and
M = {M,, My} is the set of markings such that M, and My
denote the sets of initial and final markings, after firing all
the transitions. We also denote by

(i) *t the set of input places p of a transition : (p,t) € I;

(ii) t* the set of output places p of a transition #: (t, p) €
(05

(iii) * P the set of input transitions ¢ of a place p: (, p) €
I

(iv) p* the set of output transitions ¢ of a place p: (p, ) €
O.

Places represent several states of primary and secondary
users during a spectrum sharing agreement/disagreement.
A transition t € T is enabled when an event is about to
occur (e.g., a CfP is ready to be sent), and it is fired when
the event occurs (i.e., a CfP has been successfully sent).
Firing a transition will remove token(s) from each *t and
will add them to #*. Formally, firing transitions consists of
transforming the m, € M, into my € M;  as follows [29]:

m,(p) — firedtoken(s), if p € *t,
mys(p) = 1 mo(p) + firedtoken(s), if p € t¥, (8)
m(p), otherwise.

The cooperation process of an SU with two neighboring
PUs to make a spectrum sharing agreement is shown
in Figure 6, while the description of various states and
transitions is summarized in Tables 1 and 2. The spectrum
sharing process starts with places p;, ps, and ps, where SU;
is ready to send CfPs and PU,; and PU, are ready to receive
them. Firing transition #; removes a token from place p;
and adds it to p,, p3, and ps. Thus, when transition #; is
fired, the CfPs are sent from SU; to PU; and PU,. Both the
tokens from p, and ps enable transitions #, and f3, and firing
of these two transitions adds one token each to p; and ps,
showing the reception of CfPs by PU; and PU,. Similarly,
the remainder of the message passing process follows the
same pattern (of fokens removal and addition), where SU;
accepts PU; for spectrum sharing and it rejects PU, due to its
unsatisfactory proposal. The states and transitions involved
in these message exchanges are

proposals = {po, P10, P11> P12, t» t5, te }
aCCEPt = {p4) PIS: PlS) p167 PZO) t7) t91 (tlz or t13)}) (9)

reject = {p1, P14 Ps» P17> P1s» tss to, (f1a OF £15) .

After the reception of an accept message, the spectrum
sharing is started between SU; and PUj, and it continues
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Send reject to others

until the spectrum is completely utilized and the respected
price is paid. A successful spectrum sharing contains the rest
of the states and transitions of Figure 6. The primary users
will behave in the same manner when they have to deal with
multiple CfPs at a time. Moreover, if a secondary user receives
more than one proposal which is equally satisfactory, then
the decision will be made on the FIFO bases. Finally, Table 3
depicts the initial and final markings of tokens after firing all
the transitions. It is clear that the value of My becomes “3”
only when a spectrum portion is shared or the price is paid.

5.2. Some Definitions. By analyzing our proposed model
along with Tables 1 and 2, we can conclude the following few
definitions.
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FIGURE 5: A simple PN with initial marking M, = {1, 1,2,1} [29].

Definition 1. For a secondary user SU; € SU, the Petri net
N; = {P;, T}, I;, O, M;}, for an empty part of the spectrum s;
for time t;, is a working model if and only if the movement
from initial marking M, to final marking Mg, after firing
all transitions, results in the maximization of its utility
function Uy, such that Ug; = (s; X t;)/ci, where ¢; is the
corresponding price SU; that is asked to pay for its spectrum
utilization. Similarly, for a primary user PU; € PU, a
Petri net N; = {P}, T},1;,0j,M;}, for an empty spectrum
portion s; with the associated price ¢j, the movement
from initial marking M,,; to final marking M;y,;, results
in the maximization of its utility function U,,; such that
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FIGURE 6: Spectrum sharing process between an SU and two PUs.

Upuj = c¢j/(s; X tj). Both the primary and secondary
users work cooperatively to maximize each other’s utility
functions. Especially, the primary users send the proposals
which are in their own profit as well as of the requesting
secondary users.

Definition 2. A Petri net N {P,, Ty, I, O;, M}, for an
empty part of the spectrum s, is said to be unsuccessful if
moving from M,s to My results in no change in the utility
functions of both the participating secondary and primary
users such that

Uwi =0, Upj=0, V{SU, PU;} € {SU,PU},
(10)
where {Usu,-, UPM]} e R.

In our proposed model, the PN between SU; and PU,
proved to be unsuccessful, because, after performing all
the cooperation steps, the utility functions of both of the
users remain unchanged, resulting in spectrum sharing
disagreement.

5.3. Behavioral Properties. To verify the efficiency of our
approach, we provide the behavioral properties of the
proposed PN model. These properties, when interpreted in
the context of the modeled system, allow the system designer
to understand the working of the considered network. By
behavioral properties we mean the properties which are
dependent on all the markings of a PN; that is, the initial
and final markings are interlinked. Thus, we provide here the
most important behavioral properties such as reachability,
boundness, and liveness [30].

Reachability. In order to find out the reachability of the
proposed model, it is necessary to locate a sequence of events
or transitions which would transform an initial marking to
a final marking by representing the required functioning
behavior of the network. This transformation is similar to
real networks, where a sequence of steps (i.e., sending and
receiving of messages, accepting requests) would allow the
network to achieve its required goals. The reachability also
indicates the presence of the real network-related facts, which
reflect the behavior of participating nodes. For our proposed
model in Figure 6, let m, be the initial marking for a state p,
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TaBLE 1: Spectrum sharing states.

)2 SU;: ready to send CfP
P2 PU;: PU agent’s cache (CfP arrives)
p3 PU,: PU agent’s cache (CfP arrives)
Pa PU;: ready to receive CfP
ps PU,: ready to receive CfP
Pe SU;: CfP sent and wait for proposals
p7 PU;: CfP received
Ds PU,: CfP received
po SU;: SU agent’s cache (proposals arrive)
Pio PU,: proposal sent and wait for the final response
P PU,: proposal sent and wait for the final response
P12 SU;: proposal received
P13 PU;: PU agent’s cache (accept arrives)
Pia PU,: PU agent’s cache (reject arrives)
Pis PU;: temporary waiting phase
Pie PU;: further CfP receiving stopped
P17 PU,: reject received and temporary waiting phase
Pis PU,: further CfP receiving stopped
P19 PU;: ready to share the acquired spectrum
P2 SU;: ready to utilize spectrum
P2 SU;: spectrum utilized and ready to pay price
J2 PU;: spectrum shared and ready to receive price
P23 SU;: price paid
Do PU;: price received

TaBLE 2: Various transitional phases.
4 SU;: send CfP
t PU;: receive CfP
t3 PU,: receive CfP
ty PU,: send proposal
t5 PU,: send proposal
ts SU;: receive proposal
t SU;: send accept
fg SU;: send reject
to PU;: receive response (accept)
to PU,: receive response (reject)
ti PU;: start sharing the spectrum
to PU;: continue receiving further CfPs
3 PU;: stop receiving further CfPs
tia PU,: stop receiving further CfPs
tis PU,: continue receiving further CfPs
tie SU;: start utilizing the acquired spectrum
tiy SU;: pay price
tis PU;: receive price

then the final marking m reachable from m, can be written
as

my=mg+v, (11)

EURASIP Journal on Wireless Communications and Networking

where v is the vector containing the firings related to p. v can
be denoted as

v= Pltp) = D Oltp)- (12)
p

te* tep*

Here, ¢, and o0, are the number of tokens added and
consumed from p. For all p € P, (11) can be written as

My =M,+V, (13)

where M, and My are the initial and final marking sets for all
p € Pand V is a vector containing all v related to all p.

Reachability is very important for our proposed model
as it helps us in calculating the final markings reachable from
initial markings and shows the flow of tokens from place to
place. To prove this property from our proposed PN let us
give an example. As mentioned before, Table 3 shows all the
initial and final markings with the addition and subtraction
of tokens for Figure 6. From this table, we can calculate V and
M, as follows:

VI=(00000000000 —100 -11-11010111),

MI=(111111112111111111121211).
(14)

Using (14), equation (13) becomes

M{=(111111112110110202131322)
(15)

Thus, in our PN, the addition of vector V with initial
marking set M, enables us to reach the final marking set M.

Boundness. A place p; of a PN model is said to be k-bounded
if the number of tokens in p; always remain less than or equal
to k; that is, x(p;) < k for all p € P, where k an integer value
>0 and x(p;) are the number of tokens in place p;. p; is always
bounded when it is k-bounded. Boundness is an important
property in order to check the design errors in a PN model.
For instance, some tokens may permanently stay in places
and create serious bottlenecks for the whole PN. In Figure 6,
boundness holds for all the places as the number of tokens
in each place is within 0 < x(p) < k for all p € P, where
k=1{1,2}.

In contrast to reachability which is verified using marking
sets, boundness can be easily verified using coverability graph
[29]. Coverability graph represents all the possible markings
of a PN model in the form of a simple tree where M,
represents the root node, all the markings reachable from M,
are the nodes, and the arcs represent the firing of transitions.
Therefore, for simplicity, we construct a coverability graph
in Figure 7 for the initial part of Figure 6 that is, for states
(P1> P25 P35 Pas P5> Po> P75 Ps> Po> P10, P11, p12) and transitions
(t1, 2, 13, s, 15, 1, t5). From the graph, we notice that states
(p1> P2> P3> P4> P35> Pe> P7> Ps»> Pro> 11> P12) are 1-bounded and
state pg is 2-bounded. Thus, the graph remains k-bounded
for all the states, and value of k never becomes 0. Boundness
can similarly be verified for all the remaining states and
transitions of Figure 6.
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TaBLE 3: Initial and final markings.
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Liveness

Definition A. In wireless networks, different tasks are per-
formed at several time instances and similar is the case with
Petri net models, where many transitions are ready to fire at
distinct times. Generally, a PN is live when there exists at least
one transition ¢t € T which is ready to be fired at a particular
time instance. Formally,

el = 1,

teT

(16)

where I' is the time instance and ¢ is the function indicating
either a transition t is ready to fire or not [31]. Our PN
remains live during a spectrum sharing process because at
least one t € T always remains ready to be fired. For example,
when PU,; and PU, receive the CfPs, the transitions #, and t5
are in their ready states and they are fired when PU; and PU,
send their proposals to SU;. Then, at the next time instance,
transition #, is ready to fire and is fired when SU; sends its
responses to PU; and PU, and similar is the case with the
other transitions. Thus, the PN remains live for the whole
process of spectrum sharing.

Definition B. A PN is said to be live if and only if, from
any node in its reachability graph, it is possible to find a
directed path having this node as origin. In other words, the
PN is live when each node of its directed graph is the origin
of at least one arc. If we consider the coverability graph of

Figure 7, we notice that each node contains at least one arc as
origin; thus, this coverability graph is live. Likewise, for the
proposed PN model of Figure 6, we can clearly see that each
transition contains at least one arc to reach its next state until
the spectrum sharing process arrives to its end. Therefore, we
can conclude that the proposed PN is live.

6. Experimental Results

6.1. Setup. In this section, we present various numerical
results to evaluate the working of the proposed cooperative
approach, based on the following simulation setup. Multiple
sets of primary and secondary users are randomly placed
according to Poisson distribution [9] in a noiseless and
mobile ad hoc network with the continuous change in their
neighborhoods. The SUs cooperate with the PUs in order to
make spectrum sharing deals/agreements. According to the
studies presented in [17, 32], we set the elapsed simulation
time Tg to 90 minutes. All the simulations are conducted
in Java Application Development Environment (JADE) [33],
over a PC with 2.4 GHZ dual processor and 4 GB memory.
The parameter selection is shown in Table 4. As men-
tioned in [34], we set the bandwidth of each spectrum
portion to 3.75MHz. The simulation is conducted for a
total of 10 runs (i.e., ry = 10) (we have also verified our
simulation with different values of elapsed time for several
runs (i.e., ry = 20, 30, 40, 50, .. .), and nevertheless the agents
behaviors remain the same), and the average values are taken
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Figure 7: Coverability graph for some states and transitions of
Figure 6.

TaBLE 4: Fixed values of parameters.

Parameters Value
Size of a Spectrum portion (B) 3.75 MHz
Distribution of SU (A) 5
Distribution of PU (1,) {3,4,5}
Total simulation runs (ry) 10
Elapsed simulation time (TF) 90 minutes
PUs’ mean spectrum usage 40%
Maximum number of PUs (N max) 50
Maximum number of SUs (N mayx) 50

for plotting the graphs. According to [35], the fractional
percentage of the time for which the spectrum is being used
by the PUs (or holding time) in an urban environment
follows the exponential distribution with mean y, and is
measured as approximately 40 to 45%; thus, we set the mean
spectrum usage of PUs to 40%. Considering the capacity
of a single machine, the maximum number of primary and
secondary users is 100 in total. Moreover, the rates A, and A,
denote the Poisson distributions of primary and secondary
users. For simplicity, we fix the value of A; to 5 and compare
our parameters at various values of A, (i.e., A, = 3, 4, and 5).
This variation factor helps us in understanding the behaviors
of SUs when they have to deal with different numbers of
PUs. Additionally, during a simulation run of 90 minutes,
we also observe distinct values of our parameters over five
different time intervals of 18 minutes each, ensuring that the
parameters can be compared across several time instants. We
calculate a primary user’s utility as the price paid by SUs
for spectrum utilization divided by the amount of spectrum
it has shared for the respected time period. Likewise, a
secondary user’s utility is represented as its spectrum usage
for the required time divided by the price paid by the
PUs. Finally, the number of nonallocated spectrum portions
measures the overall percentage of spectrum deficit (Lgef).

6.2. Obtained Results. Firstly, we show the histograms of PUs’
spectrum usage at several values of A, in Figure 8. All three

histograms depict the spectrum usage probability of PUs at
different instances of time. At early stages, this probability is
high, but, later, the spectrum is mostly unutilized, and, thus,
the SUs can have a higher percentage of successful spectrum
sharing agreements during these periods.

Successful Agreements. We now plot the average number of
successful spectrum sharing agreements between primary
and secondary users. By a successful agreement, we mean
that an SU has utilized the assigned spectrum according to
its requirement. Formally for an agreement k,

s
Successful, when —_uilized — 1
k = trequested (]7)
Unsuccessful, otherwise.

And, if we denote a successful agreement by kgyccess, We can
write the summation as

A(s) = Z ksucceSS) (18)

where A, represents the number of successful agreements
and fij,eq and fiogueqea are the time values for which
spectrum is being utilized and requested by the secondary
user. Of course, due to the cooperative nature of agents,
the secondary user pays the agreed price (for its spectrum
utilization) to the respected primary user.

Figures 9(a) and 9(b) show three curves of A, plotted
using several numbers of SUs (N;) at various time values.
From the figures, the differences in A; at A, = 3, 4, and
5 are clearly observable. For small Nj, the values of A, are
marginally the same, because most of the PUs are busy
during the early time periods and it is difficult for SUs to
find the required PUs with the available spectrum portions.
When Nj reaches higher values with simulation time greater
than 50 minutes, the distinction between A, is much clearer.
This distinction also shows that fewer successful agreements
are made when A, = 3, because the number of available PUs
are less. But, when we increase A, to 4 and 5, the values of A,
almost reach their maximum positions. Furthermore, we can
observe that for bigger values of A,, the cooperation between
the primary and secondary users is still very effective, as more
SUs have made successful spectrum sharing agreements.

Percentage Utility. Figure 10 compares the average percent-
age utility of SUs at different time values. Particularly, the
utilities are within 20 to 55% when A, = 3, while they
can reach 70% (80% resp.) when A, = 4 (4, = 5
resp.). The graph is in conjunction with Figures 8 and 9,
where at, time values greater than 50 minutes, the SUs can
find more available PUs for spectrum sharing. Moreover,
it is noticeable that the utility values can augment up to
80% (with 1, = 5) showing higher efficiency in terms of
spectrum utilization. Nevertheless, complete satisfaction is
not achieved, considering that the environment is ad hoc
and the PUs are hesitant to share their spectrum portions
for longer time durations. In contrast, Figure 11 shows that
the average percentage utility of PUs is almost 90% for all
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FIGURE 9: Successful agreements with (a) number of SUs and (b) elapsed simulation time.

three values of 1, since the PUs are always less (or equal)
in number compared to SUs and there is relatively a higher
chance that they can easily find SUs to share their unutilized
spectrum.

We now compare the average percentage utility values of
primary and secondary users achieved through simulations
to the optimal value. Optimal value can be achieved when
the average percentage utilities of primary and secondary
users are fully satisfied (i.e., 100%). Figure 12 summarizes
the results. We observe that the values achieved through
experiments are very close to the optimal value and they can
reach almost 90% showing good utility-based performance
of our approach.

Another way of showing above results is to compare the
number of SUs with spectrum demands and those which are
served in the end. For this depiction, we fix the maximum
number of SUs to 50 and observe the results for different

FIGURE
stances.

Average percentage
utility of secondary users

- B IR D “
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—e-Xp=5

10: Percentage utility values of SUs at different time in-
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Figure 12: Comparison to the optimal value.

values of PUs, in Figure 13. Served SUs are those which
have completely obtained the required spectrum. In all the
three comparisons, even though a large amount of SUs have
been completely served, still a percentage of them remains
unsuccessful. Thus, under ad hoc situations, despite the fact
that the primary and secondary users are equal in numbers,
the results are not fully achieved.

Communication Cost. The number of cooperation messages
for successful spectrum sharing agreements determines the
average communication cost (Mcost). Formally,

A
Zh(:)l mpy

Mcost = A( ) >
s

(19)

where my, is the number of messages sent and received for a
successful agreement h such that 1 < h < A).

Different values of Mo along with several numbers
of successful agreements are plotted in Figure 14. In the
figure, the value of Mo is initially 4, but it climbs to an
average of 8 messages per agreement. This increasing pattern
in Mo is directly relational to number of PUs (N,); that
is, when the available PUs in an SU’s neighborhood are
less in number, the message exchange between the users is
not high. Similarly, when N, increases, the SUs can find
more PUs in their neighborhood causing Mo to increase.

'S
S

5o}
(==}

—_
(=)
T

Number of secondary users (Ns)
o
(e}

(==}
8]
v

30 35 40 45 50
Number of primary users (Np)

m Number of SUs with spectrum demands
= Number of served SUs in the end

FiGure 13: SUs with spectrum demands versus number of served
SUs.
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F1GUre 14: Communication cost.

However, the values of Mcos are not very high, showing the
communication efficiency of our approach.

Explicitly Awarded Spectrum Sharing Agreements. Another
important novelty of our approach is the ability of PUs to
make explicit agreements with the neighboring SUs. The
necessity of explicit agreements arrives in situations, where
the corresponding PU’s spectrum portion is in utilization at
the time of CfP reception and therefore its current spectrum
status is set to “busy.” In our approach, the PUs can still send
their explicit proposals to SUs when they get unoccupied.
Each PU maintains a list of recent CfPs (stored in its cache),
and, accordingly, it sends the proposal to the most suitable
one whose deadline is not yet expired. In relation, Figure 15
delineates the percentage of explicitly awarded spectrum
sharing agreements. It is clearly envisaged that almost 10 to
20% of the agreements have been explicitly awarded by the
PUs.

Spectrum Deficit. Figure 16 depicts the percentage spectrum
deficit (Sqef). One important reason to draw this graph is to
see whether the values of Sy increase with large numbers
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of agents. This observation also shows the performance
degradation of the whole system with an increased amount of
traffic. In the corresponding figure, initially the values of Sqer
are within 60-80%, because at these stages most of the PUs
are occupied. Later, the values of Sgef continue to decrease on
a steady pace, as more PUs become available. Still, there is not
a rapid degradation in overall system performance, showing
the efficiency of our proposed solution.

Comparison with Other Approaches. Finally, we compare
our solution to greedy algorithm [22], cooperative local
bargaining [21], and dynamic spectrum access protocol
(DSAP) [16]. In greedy algorithm, most of the PUs are
self-interested, and they are hesitant to share the available
spectrum, until they get the highest offer maximizing their
individual utility. Local bargaining is cooperative, where the
users exchange messages and they self-organize into bar-
gaining groups for spectrum sharing. DSAP is based on the
concept of centralized licensed server which is responsible for
leasing spectrum to the requesting users. Thus, we compare
our approach to three different solutions showing greedy,
cooperative, and centralized behaviors, respectively. All the
solutions are implemented under our ad hoc scenario, and
the users are deployed according to Poisson processes with
Ap =5and As = 5.

Average percentage utility of SUs

10 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50

Number of SUs

—— Greedy approach
—=— DSAP

—=— Proposed approach
—eo— DBargaining

(a)

Communication cost (Mcost)

5 10 15 20 25 30 35 40 45 50 55
Number of SUs

= Greedy approach
= DSAP

= Proposed approach
= Bargaining

(b)

FiGUure 17: Comparison with greedy, local bargaining, and DSAP
approaches.

Figures 17(a) and 17(b) compare the average achieved
utility values by the SUs and the communication cost asso-
ciated with successful agreements, respectively. We notice
that the utility values and communication cost for greedy
approach is very high considering the selfish nature of the
neighboring PUs. Consequently, most of the time SUs receive
unsatisfactory proposals, and several messages are wasted.
The local bargaining approach is limited to one-to-one
bargaining, where an SU can bargain with only one PU at a
time. Thus, local bargaining achieves similar utility to greedy
approach at a reduced communication cost. Considering
DSAP, the users exchange several kinds of messages including
discover, offer, request, acknowledge, and reclaim, and so
forth making its communication cost higher. However, due
to its centralized nature, where several users cooperate with
only one primary user for their spectrum assignments, DSAP
behaves similar to our approach in terms of communication
cost with lesser utility. On the other hand, our approach
shows improvements in utility values compared to all three
approaches incurring slightly higher communication cost
than local bargaining.
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7. Conclusion and Future Perspectives

In this paper, a cooperative approach to enable dynamic
spectrum sharing is presented. The solution is based on
multiagent cooperation, where the primary and secondary
users exchange bilateral messages to make spectrum sharing
agreements in an ad hoc manner. The behavioral modeling
of our approach based on Petri nets proves its efficiency for
dynamic and distributed environments. Experimental results
show that, compared to greedy, bargaining, and centralized
solutions, our cooperative solution works very effectively
without having higher communication cost.

One important area of our future research corresponds
to unlicensed spectrum sharing, where the spectrum can
be viewed as an open “pool,” and all the devices are of
equal rights and priorities, that is, none of the devices have
exclusive license for spectrum usage. The unlicensed devices
(using multiagent system) can form necessary coalitions in
order to maximize spectrum usage and minimize interfer-
ences. We are also planning to develop mathematical models
for our approach to analyze its working with large numbers
of agents.
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