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We extend the Becker-Stark-type inequalities to the ratio of two normalized Bessel functions of the
first kind by using Kishore formula and Rayleigh inequality.

1. Introduction

In 1978, Becker and Stark [1] (or see Kuang [2, page 248]) obtained the following two-sided
rational approximation for (tanx)/x.

Theorem 1.1. Let 0 < x < π/2; then

8
π2 − 4x2

<
tanx
x

<
π2

π2 − 4x2
. (1.1)

Furthermore, 8 and π2 are the best constants in (1.1).

In recent paper [3], we obtained the following further result.

Theorem 1.2. Let 0 < x < π/2; then

π2 +
(
4
(
8 − π2)/π2)x2

π2 − 4x2
<

tanx
x

<
π2 +

((
π2/3

) − 4
)
x2

π2 − 4x2
. (1.2)

Furthermore, α = 4(8 − π2)/π2 and β = (π2/3) − 4 are the best constants in (1.2).
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Moreover, the following refinement of the Becker-Stark inequality was established in
[3].

Theorem 1.3. Let 0 < x < π/2, and N ≥ 0 be a natural number. Then

P2N(x) + αx2N+2

π2 − 4x2
<

tanx
x

<
P2N(x) + βx2N+2

π2 − 4x2
(1.3)

holds, where P2N(x) = a0 + a1x
2 + · · · + aNx2N , and

an =
22n+2

(
22n+2 − 1

)
π2

(2n + 2)!
|B2n+2| −

4 · 22n(22n − 1
)

(2n)!
|B2n|, n = 0, 1, 2, . . . , (1.4)

where B2n are the even-indexed Bernoulli numbers. Furthermore, β = aN+1 and α = (8 − a0 −
a1(π/2)

2 − · · · − aN(π/2)2N)/(π/2)2N+2 are the best constants in (1.3).

Our aim of this paper is to extend the tangent function to Bessel functions. To achieve
our goal, let us recall some basic facts about Bessel functions. Suppose that ν > −1 and
consider the normalized Bessel function of the first kind Jν : R → (−∞, 1], defined by

Jν(x) = 2νΓ(ν + 1)x−νJν(x) =
∑

n≥0

(−1/4)n
n!(ν + 1)n

x2n, (1.5)

where, (ν + 1)n = Γ(ν + 1 + n)/Γ(ν + 1) is the well- known Pochhammer (or Appell) symbol,
and Jν(x) defined by [4, page 40]

Jν(x) =
∑

n≥0

(−1)n
n!Γ(ν + 1 + n)

(x
2

)2n+ν
, x ∈ R. (1.6)

Particularly for ν = 1/2 and ν = −1/2, respectively, the function Jν reduces to some
elementary functions, like [4, page 54] J1/2(x) = sinx/x and J−1/2(x) = cosx. In view of
that tanx/x = (J1/2(x)/J−1/2(x)), in Section 3 we shall extend the result of Theorem 1.3 to
the ratio of two normalized Bessel functions of the first kind Jν+1(x) and Jν(x).

2. Some Lemmas

In order to prove ourmain result in next section, each of the following lemmaswill be needed.

Lemma 2.1 (Kishore Formula, see [5, 6]). Let ν > −1, jν,n be the nth positive zero of the Bessel
function of the first kind of order ν, and x ∈ R. Then

x

2
Jν+1(x)
Jν(x)

=
∞∑

m=0

σ
(2m)
ν x2m, (2.1)

where m ∈ {1, 2, 3, . . .}, and σ
(2m)
ν =

∑∞
n=1 j

−2m
ν,n is the Rayleigh function of order 2m, which showed

in [4, page 502].
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Lemma 2.2 (Rayleigh Inequality [5, 6]). Let ν > −1, and jν,n be the nth positive zero of the Bessel
function of the first kind of order ν,m ∈ {1, 2, 3, . . .}, and σ(2m)

ν =
∑∞

n=1 j
−2m
ν,n is the Rayleigh function

of order 2m. Then

j2ν,1 <
σ
(2m)
ν

σ
(2m+2)
ν

, (2.2)

σ
(2)
ν =

∞∑

n=1

j−2ν,n =
1

4(ν + 1)
(2.3)

hold.

Lemma 2.3. Let ν > −1, Jν(x) be the normalized Bessel function of the first kind of order ν, jν,n the
nth positive zero of the Bessel function of the first kind of order ν,m ∈ {1, 2, 3, · · ·}, σ(2m)

ν =
∑∞

n=1 j
−2m
ν,n

the Rayleigh function of order 2m, and 0 < |x| < jν,1. Then

E(x) �
(
j2ν,1 − x2

)Jν+1(x)
Jν(x)

= j2ν,1 + 4(ν + 1)
∞∑

m=1

Amx
2m, (2.4)

where Am = j2ν,1σ
(2m+2)
ν − σ

(2m)
ν < 0.

Proof. By Lemma 2.1 and (2.3) in Lemma 2.2, we have

E(x) =
(
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)Jν+1(x)
Jν(x)
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x
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σ
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σ
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σ
(2m)
ν x2m−2 − 4(ν + 1)
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σ
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σ
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[
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∞∑
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Amx
2m,

(2.5)

where Am = j2ν,1σ
(2m+2)
ν − σ

(2m)
ν < 0, which follows from (2.2) in Lemma 2.2.
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3. Main Result and Its Proof

Theorem 3.1. Let ν > −1, Jν(x) be the normalized Bessel function of the first kind of order ν, jν,n
the nth positive zero of the Bessel function of the first kind of order ν, m ∈ {1, 2, 3, . . .}, σ(2m)

ν =∑∞
n=1 j

−2m
ν,n the Rayleigh function of order 2m, N ≥ 0 a natural number, and 0 < |x| < jν,1. Let

λ = (1 − (j2ν,1/4(ν + 1)) −∑N
m=1 Amj

2m
ν,1 )/j

2N+2
ν,1 , and μ = AN+1. Then

R2N(x) + 4(ν + 1)λx2N+2

j2ν,1 − x2
<

Jν+1(x)
Jν(x)

<
R2N(x) + 4(ν + 1)μx2N+2

j2ν,1 − x2
(3.1)

holds, where R2N(x) = j2ν,1 + 4(ν + 1)
∑N

m=1 Amx
2m and

An = j2ν,1σ
(2n+2)
ν − σ

(2n)
ν , n ∈ {1, 2, 3, . . .}. (3.2)

Furthermore, λ and μ are the best constants in (3.1).

Proof of Theorem 3.1. Let

H(x) =

((
E(x) − j2ν,1

)
/4(ν + 1)

)
−∑N

m=1 Amx
2m

x2N+2
. (3.3)

Then by Lemma 2.3, we have

H(x) =
∑+∞

n=N+1 Anx
2n

x2N+2
=

+∞∑

k=0

AN+1+kx
2k. (3.4)

Since An < 0 for n ∈ N
+ by Lemma 2.3,H(x) is decreasing on (0, jν,1).

At the same time, in view of that limx→ j−ν,1E(x) = 4(ν + 1) we have that λ =

limx→ j−ν,1H(x) = (1−(j2ν,1/4(ν+1))−
∑N

m=1 Amj
2m
ν,1 )/j

2N+2
ν,1 by (3.3), and μ = limx→ 0+H(x) = AN+1

by (3.4), so λ and μ are the best constants in (3.1).

Remark 3.2. Let ν = −1/2 in Theorem 3.1; we obtain Theorem 1.3.
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