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For p ∈ R, the generalized logarithmic mean Lp(a, b), arithmetic mean A(a, b), and geometric
mean G(a, b) of two positive numbers a and b are defined by Lp(a, b) = a, for a = b, Lp(a, b) =
[(bp+1 − ap+1)/((p + 1)(b − a))]1/p, for p /= 0, p /= − 1, and a/= b, Lp(a, b) = (1/e)(bb/aa)1/(b−a), for
p = 0, and a/= b, Lp(a, b) = (b − a)/(log b − loga), for p = −1, and a/= b, A(a, b) = (a + b)/2, and
G(a, b) =

√
ab, respectively. In this paper, we find the greatest value p (or least value q, resp.) such

that the inequality Lp(a, b) < αA(a, b) + (1−α)G(a, b) (or αA(a, b) + (1−α)G(a, b) < Lq(a, b), resp.)
holds for α ∈ (0, 1/2)(or α ∈ (1/2, 1), resp.) and all a, b > 0 with a/= b.

1. Introduction

For p ∈ R, the generalized logarithmic mean Lp(a, b) and power mean Mp(a, b) with
parameter p of two positive numbers a and b are defined by

Lp(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, a = b,

[
bp+1 − ap+1

(p + 1)(b − a)

]1/p

, p /= 0, p /= − 1, a /= b,

1
e

(
bb

aa

)1/(b−a)
, p = 0, a /= b,

b − a

log b − loga
, p = −1, a /= b,

(1.1)
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and

Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0,

(1.2)

respectively. It is well known that both means are continuous and increasing with respect to
p ∈ R for fixed a and b. Recently, both means have been the subject of intensive research. In
particular, many remarkable inequalities involving Lp(a, b) andMp(a, b) can be found in the
literature [1–9]. Let

A(a, b) =
a + b

2
, I(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

1
e

(
bb

aa

)1/(b−a)
, b /=a,

a, b = a,

L(a, b) =

⎧
⎪⎨

⎪⎩

b − a

log b − loga
, b /=a,

a, b = a,

(1.3)

G(a, b) =
√
ab, and H(a, b) = 2ab/(a + b) be the arithmetic, identric, logarithmic, geometric,

and harmonic means of two positive numbers a and b, respectively. Then

min{a, b} < H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) = L−2(a, b)

< L(a, b) = L−1(a, b) < I(a, b) = L0(a, b) < A(a, b)

= M1(a, b) = L1(a, b) < max{a, b}
(1.4)

for all a/= b.
In [10], Carlson proved that

L(a, b) <
1
3
A(a, b) +

2
3
G(a, b) (1.5)

for all a, b > 0 with a/= b.
The following inequality is due to Sándor [11, 12]:

I(a, b) >
2
3
A(a, b) +

1
3
G(a, b). (1.6)

In [13], Lin established the following results: (1) p ≥ 1/3 implies that L(a, b) <
Mp(a, b) for all a, b > 0 with a/= b; (2) p ≤ 0 implies that L(a, b) > Mp(a, b) for all a, b > 0
with a/= b; (3) p < 1/3 implies that there exist a, b > 0 such that L(a, b) > Mp(a, b); (4)
p > 0 implies that there exist a, b > 0 such that L(a, b) < Mp(a, b). Hence the question
was answered: what are the least value q and the greatest value p such that the inequality
Mp(a, b) < L(a, b) < Mq(a, b) holds for all a, b > 0 with a/= b.

Pittenger [14] established that

Mp1(a, b) ≤ Lp(a, b) ≤ Mp2(a, b) (1.7)
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for all a, b > 0, where

p1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min

{
p + 2
3

,
p log 2

log
(
p + 1

)

}

, p > −1, p /= 0,

2
3
, p = 0,

min
{
p + 2
3

, 0
}

, p ≤ −1,

p2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max

{
p + 2
3

,
p log 2

log
(
p + 1

)

}

, p > −1, p /= 0,

log 2, p = 0,

max
{
p + 2
3

, 0
}

, p ≤ −1.

(1.8)

Here, p1 and p2 are sharp and inequality (1.7) becomes equality if and only if a = b or
p = 1,−2 or −1/2. The case p = −1 reduces to Lin’s results [13]. Other generalizations of Lin’s
results were given by Imoru [15].

Recently, some monotonicity results of the ratio between generalized logarithmic
means were established in [16–18].

The aim of this paper is to prove the following Theorem 1.1.

Theorem 1.1. Let α ∈ (0, 1) and a, b > 0 with a/= b, then

(1) L3α−2(a, b) = αA(a, b) + (1 − α)G(a, b) for α = 1/2;

(2) L3α−2(a, b) < αA(a, b) + (1 − α)G(a, b) for 0 < α < 1/2, and L3α−2(a, b) > αA(a, b) +
(1 − α)G(a, b) for 1/2 < α < 1, moreover, in each case, the bound L3α−2(a, b) for the sum
αA(a, b) + (1 − α)G(a, b) is optimal.

2. Proof of Theorem 1.1

In order to prove our Theorem 1.1 we need a lemma, which we present in this section.

Lemma 2.1. For α ∈ (0, 1) and h(t) = (6α − 1)t6α−4 − (6α − 1)t6α−5 − (6α − 5)t6α−6 + (6α − 5)t6α−7

one has

(1) If α ∈ [1/6, 1), then h(t) > 0 for t > 1;

(2) If α ∈ (0, 1/6), then h(t) < 0 for t >
√
(5 − 6α)/(1 − 6α), h(t) > 0 for 1 < t <

√
(5 − 6α)/(1 − 6α), and h(t) = 0 for t =

√
(5 − 6α)/(1 − 6α).

Proof. (1) If α = 1/6, then we clearly see that

h(t) = 4t−6(t − 1) > 0 (2.1)

for t > 1.



4 Journal of Inequalities and Applications

If α ∈ (1/6, 1), then

h(t) = (6α − 1)(t − 1)
(

t2 − 1 +
4

6α − 1

)

t6α−7 > 0 (2.2)

for t > 1.
Therefore, Lemma 2.1(1) follows from (2.1) and (2.2).
(2) If α ∈ (0, 1/6), then

h(t) = (6α − 1)(t − 1)

⎛

⎝t +

√

5 − 6α
1 − 6α

⎞

⎠

⎛

⎝t −
√

5 − 6α
1 − 6α

⎞

⎠t6α−7. (2.3)

Therefore, Lemma 2.1(2) follows from (2.3).

Proof of Theorem 1.1.

Proof. (1) If α = 1/2, then (1.1) leads to

L3α−2(a, b) = L−1/2(a, b) =
a + b

4
+

√
ab

2 =
1
2
A(a, b) +

1
2
G(a, b) = αA(a, b) + (1 − α)G(a, b).

(2.4)

(2)We divide the proof into two cases.

Case 1. α = 1/3 or α = 2/3. From inequalities (1.5) and (1.6)we clearly see that

L3α−2(a, b) < αA(a, b) + (1 − α)G(a, b) (2.5)

for α = 1/3, and

L3α−2(a, b) > αA(a, b) + (1 − α)G(a, b) (2.6)

for α = 2/3.

Case 2. α ∈ (0, 1) \ {1/3, 1/2, 2/3}. Without loss of generality, we assume that a > b. Let
t =

√
a/b > 1, then (1.1) leads to

logL3α−2(a, b) − log[αA(a, b) + (1 − α)G(a, b)]

=
1

3α − 2
log

t6α−2 − 1
(3α − 1)(t2 − 1)

− log
[α

2

(
1 + t2

)
+ (1 − α)t

]
.

(2.7)

Let f(t) = (1/(3α − 2)) log[(t6α−2 − 1)/((3α − 1)(t2 − 1))] − log[(α/2)(1 + t2) + (1 − α)t],
then simple computations yield
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lim
t→ 1

f(t) = 0, (2.8)

f ′(t) =
g(t)

(3α − 2)(t6α−2 − 1)(t2 − 1)[(α/2)(1 + t2) + (1 − α)t]
, (2.9)

where

g(t) = (1 − α)(3α − 2)t6α + 3α(α − 1)t6α−1 − 3α(1 − α)t6α−2

− α(3α − 1)t6α−3 + α(3α − 1)t3 + 3α(1 − α)t2

+ 3α(1 − α)t − (1 − α)(3α − 2).

(2.10)

Note that

g(1) = 0, (2.11)

g ′(t) = 6α(1 − α)(3α − 2)t6α−1 + 3α(α − 1)(6α − 1)t6α−2

− 6α(1 − α)(3α − 1)t6α−3 − 3α(3α − 1)(2α − 1)t6α−4

+ 3α(3α − 1)t2 + 6α(1 − α)t + 3α(1 − α),

(2.12)

g ′(1) = 0, (2.13)

g ′′(t) = 6α(1 − α)(3α − 2)(6α − 1)t6α−2 + 6α(α − 1)(6α − 1)

× (3α − 1)t6α−3 − 18α(1 − α)(3α − 1)(2α − 1)t6α−4

− 6α(3α − 1)(2α − 1)(3α − 2)t6α−5 + 6α(3α − 1)t

+ 6α(1 − α),

(2.14)

g ′′(1) = 0, (2.15)

g ′′′(t) = 12α(1 − α)(3α − 2)(6α − 1)(3α − 1)t6α−3

+ 18α(α − 1)(6α − 1)(3α − 1)(2α − 1)t6α−4

− 36α(1 − α)(3α − 1)(2α − 1)(3α − 2)t6α−5

− 6α(3α − 1)(2α − 1)(3α − 2)(6α − 5)t6α−6

+ 6α(3α − 1),

(2.16)

g ′′′(1) = 0, (2.17)

g(4)(t) = 36α(3α − 1)(3α − 2)(2α − 1)(1 − α)h(t), (2.18)

where h(t) is defined as in Lemma 2.1.
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We divide the proof into five subcases.

Subcase A. α ∈ (0, 1/6). From (2.18) and Lemma 2.1(2) we clearly see that g(4)(t) < 0
for t ∈ (1,

√
(5 − 6α)/(1 − 6α)) and g(4)(t) > 0 for t ∈ (

√
(5 − 6α)/(1 − 6α),+∞), then we

know that g ′′′(t) is strictly decreasing in (1,
√
(5 − 6α)/(1 − 6α)) and strictly increasing in

(
√
(5 − 6α)/(1 − 6α),+∞). Now from the monotonicity of g ′′′(t) and (2.17) together with the

fact that limt→+∞ g ′′′(t) = 6α(3α − 1) < 0 we clearly see that g ′′′(t) < 0 for t > 1, then from
(2.7)–(2.15) and (3α − 2)(t6α−2 − 1) > 0 for t > 1 we get L3α−2(a, b) < αA(a, b) + (1 − α)G(a, b)
for α ∈ (0, 1/6).

Subcase B. α ∈ [1/6, 1/3). Then (2.18) and Lemma 2.1(1) lead to

g(4)(t) < 0 (2.19)

for t > 1.
From (2.7)–(2.17) and (2.19) together with the fact that (3α − 2)(t6α−2 − 1) > 0 for t > 1

we know that L3α−2(a, b) < αA(a, b) + (1 − α)G(a, b) for α ∈ [1/6, 1/3).

Subcase C. α ∈ (1/3, 1/2). Then (2.18) and Lemma 2.1(1) imply that

g(4)(t) > 0 (2.20)

for t > 1.
From (2.7)–(2.17), (2.20) and (3α − 2)(t6α−2 − 1) < 0 for t > 1 we know that L3α−2(a, b) <

αA(a, b) + (1 − α)G(a, b) for α ∈ (1/3, 1/2).

Subcase D. α ∈ (1/2, 2/3). Then (2.19) again yields, and L3α−2(a, b) > αA(a, b) + (1− α)G(a, b)
for α ∈ (1/2, 2/3) follows from (2.7)–(2.17) and (2.19) together with (3α − 2)(t6α−2 − 1) < 0.

Subcase E. α ∈ (2/3, 1). Then (2.20) is also true, and L3α−2(a, b) > αA(a, b) + (1 − α)G(a, b) for
α ∈ (2/3, 1) follows from (2.7)–(2.17), (2.20) and the fact that (3α − 2)(t6α−2 − 1) > 0.

Next, we prove that the bound L3α−2(a, b) for the sum αA(a, b)+(1−α)G(a, b) is optimal
in each case. The proof is divided into six cases.

Case 1. α = 1/3. For any ε ∈ (0, 1) and x ∈ (0, 1), then (1.1) leads to

[L3α−2+ε(1, 1 + x)]1−ε − [αA(1, 1 + x) + (1 − α)G(1, 1 + x)]1−ε

= [Lε−1(1, 1 + x)]1−ε −
[
1
3
A(1, 1 + x) +

2
3
G(1, 1 + x)

]1−ε

=
εx

(1 + x)ε − 1
−
[
1
3
+
x

6
+
2
3
(1 + x)1/2

]1−ε

=
f1(x)

(1 + x)ε − 1
,

(2.21)

where f1(x) = εx − [(1 + x)ε − 1][1/3 + x/6 + (2/3)(1 + x)1/2]1−ε.
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Let x → 0; making use of Taylor expansion, one has

f1(x) =
1
24

ε2(1 − ε)x3 + o
(
x3
)
. (2.22)

Equations (2.21) and (2.22) imply that for any ε ∈ (0, 1), there exists 0 < δ1 = δ1(ε) < 1,
such that L3α−2+ε(1, 1 + x) > αA(1, 1 + x) + (1 − α)G(1, 1 + x) for any x ∈ (0, δ1) and α = 1/3.

Case 2. α = 2/3. For any ε ∈ (0, 1) and x ∈ (0, 1), from (1.1) we have

[αA(1, 1 + x) + (1 − α)G(1, 1 + x)]ε − [L3α−2−ε(1, 1 + x)]ε

=
[
2
3
A(1, 1 + x) +

1
3
G(1, 1 + x)

]ε

− [L−ε(1, 1 + x)]ε

=
[
2
3
+
x

3
+
1
3
(1 + x)1/2

]ε

− (1 − ε)x

(1 + x)1−ε − 1

=
f2(x)

(1 + x)1−ε − 1
,

(2.23)

where f2(x) = [(1 + x)1−ε − 1][2/3 + x/3 + (1/3)(1 + x)1/2]ε − (1 − ε)x.
Let x → 0; making use of Taylor expansion, one has

f2(x) =
1
24

ε2(1 − ε)x3 + o
(
x3
)
. (2.24)

Equations (2.23) and (2.24) imply that for any ε ∈ (0, 1), there exists 0 < δ2 = δ2(ε) < 1,
such that L3α−2−ε(1, 1 + x) < αA(1, 1 + x) + (1 − α)G(1, 1 + x) for x ∈ (0, δ2) and α = 2/3.

Case 3. α ∈ (0, 1/3). For ε ∈ (0, 1 − 3α) and x ∈ (0, 1), we get

[L3α−2+ε(1, 1 + x)]2−3α−ε − [αA(1, 1 + x) + (1 − α)G(1, 1 + x)]2−3α−ε

=
(1 − 3α − ε)x(1 + x)1−3α−ε

(1 + x)1−3α−ε − 1
−
[
α +

α

2
x + (1 − α)(1 + x)1/2

]2−3α−ε

=
f3(x)

(1 + x)1−3α−ε − 1
,

(2.25)

where f3(x) = (1− 3α− ε)x(1+x)1−3α−ε − [(1+x)1−3α−ε − 1][α+(α/2)x+(1−α)(1+x)1/2]2−3α−ε.
Let x → 0; making use of Taylor expansion, one has

f3(x) =
1
24

ε(1 − 3α − ε)(2 − 3α − ε)x3 + o
(
x3
)
. (2.26)
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Equations (2.25) and (2.26) imply that for any α ∈ (0, 1/3) and any ε ∈ (0, 1−3α), there
exists 0 < δ3 = δ3(ε, α) < 1, such that L3α−2+ε(1, 1 + x) > αA(1, 1 + x) + (1 − α)G(1, 1 + x) for
x ∈ (0, δ3).

Case 4. α ∈ (1/3, 1/2). For any ε ∈ (0, 2 − 3α) and x ∈ (0, 1), we get

[L3α−2+ε(1, 1 + x)]2−3α−ε − [αA(1, 1 + x) + (1 − α)G(1, 1 + x)]2−3α−ε

=
(3α − 1 + ε)x

(1 + x)3α+ε−1 − 1
−
[
α +

α

2
x + (1 − α)(1 + x)1/2

]2−3α−ε

=
f4(x)

(1 + x)3α−1+ε − 1
,

(2.27)

where f4(x) = (3α − 1 + ε)x − [(1 + x)3α−1+ε − 1][α + (α/2)x + (1 − α)(1 + x)1/2]2−3α−ε.
Let x → 0; using Taylor expansion we have

f4(x) =
1
24

ε(3α − 1 + ε)(2 − 3α − ε)x3 + o
(
x3
)
. (2.28)

Equations (2.27) and (2.28) show that for any α ∈ (1/3, 1/2) and any ε ∈ (0, 2 − 3α),
there exists 0 < δ4 = δ4(ε, α) < 1, such that L3α−2+ε(1, 1 + x) > αA(1, 1 + x) + (1 − α)G(1, 1 + x)
for x ∈ (0, δ4).

Case 5. α ∈ (1/2, 2/3). For any ε ∈ (0, 3α − 1) and x ∈ (0, 1), we have

[αA(1, 1 + x) + (1 − α)G(1, 1 + x)]2−3α+ε − [L3α−2−ε(1, 1 + x)]2−3α+ε

=
[
α +

α

2
x + (1 − α)(1 + x)1/2

]2−3α+ε
− (3α − 1 − ε)x

(1 + x)3α−ε−1 − 1

=
f5(x)

(1 + x)3α−1−ε − 1
,

(2.29)

where f5(x) = [(1 + x)3α−1−ε − 1][α + (α/2)x + (1 − α)(1 + x)1/2]2−3α+ε − (3α − 1 − ε)x.
Let x → 0; making use of Taylor expansion we get

f5(x) =
1
24

ε(3α − 1 − ε)(2 − 3α + ε)x3 + o
(
x3
)
. (2.30)

Equations (2.29) and (2.30) imply that for any α ∈ (1/2, 2/3) and any ε ∈ (0, 3α − 1),
there exists 0 < δ5 = δ5(ε, α) < 1, such that L3α−2−ε(1, 1 + x) < αA(1, 1 + x) + (1 − α)G(1, 1 + x)
for x ∈ (0, δ5).
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Case 6. α ∈ (2/3, 1). For any ε ∈ (0, 3α − 2) and x ∈ (0, 1), we get

[αA(1, 1 + x) + (1 − α)G(1, 1 + x)]3α−2−ε − [L3α−2−ε(1, 1 + x)]3α−2−ε

=
[
α +

α

2
x + (1 − α)(1 + x)1/2

]3α−2−ε
− (1 + x)3α−ε−1 − 1

(3α − 1 − ε)x

=
f6(x)

(3α − 1 − ε)x
,

(2.31)

where f6(x) = (3α − 1 − ε)x[α + (α/2)x + (1 − α)(1 + x)1/2]3α−2−ε − [(1 + x)3α−1−ε − 1].
Let x → 0, using Taylor expansion we have

f6(x) =
1
24

ε(3α − 2 − ε)(3α − 1 − ε)x3 + o
(
x3
)
. (2.32)

From (2.31) and (2.32) we know that for any α ∈ (2/3, 1) and any ε ∈ (0, 3α − 2), there
exists 0 < δ6 = δ6(ε, α) < 1, such that L3α−2−ε(1, 1 + x) < αA(1, 1 + x) + (1 − α)G(1, 1 + x) for
x ∈ (0, δ6).

At last, we propose two open problems as follows.

Open Problem 1

What is the least value p such that the inequality

αA(a, b) + (1 − α)G(a, b) < Lp(a, b) (2.33)

holds for α ∈ (0, 1/2) and all a, b > 0 with a/= b?

Open Problem 2

What is the greatest value q such that the inequality

αA(a, b) + (1 − α)G(a, b) > Lq(a, b) (2.34)

holds for α ∈ (1/2, 1) and all a, b > 0 with a/= b?
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