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We consider the Hyers-Ulam stability of a class of trigonometric functional equations in the spaces
of generalized functions such as Schwartz distributions, Fourier hyperfunctions, and Gelfand
generalized functions.

1. Introduction

The Hyers-Ulam stability of functional equations go back to 1940 when Ulam proposed the
following problem [1]:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·) such that

d
(
f
(
xy

)
, f(x)f

(
y
)) ≤ ε. (1.1)

Then does there exist a group homomorphism L and δε > 0 such that

d
(
f(x), L(x)

) ≤ δε (1.2)

for all x ∈ G1?
This problem was solved affirmatively by Hyers [2] under the assumption that G2

is a Banach space. In 1949-1950, this result was generalized by the authors Bourgin [3, 4]
and Aoki [5] and since then stability problems of many other functional equations have
been investigated [2, 6–8, 8–19]. In 1990, Székelyhidi [18] has developed his idea of using
invariant subspaces of functions defined on a group or semigroup in connection with stability
questions for the sine and cosine functional equations. We refer the reader to [6–8, 12–
14, 19] for Hyers-Ulam stability of functional equations of trigonometric type. In this paper,
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following the method of Székelyhidi [18]we consider a distributional analogue of the Hyers-
Ulam stability problem of the trigonometric functional equations

f
(
x − y

)
= f(x)g

(
y
) − g(x)f

(
y
)
, (1.3)

g
(
x − y

)
= g(x)g

(
y
)
+ f(x)f

(
y
)
, (1.4)

where f, g : Rn → C. Following the formulations as in [6, 20–22], we generalize the classical
stability problems of above functional equations to the spaces of generalized functions u, v
as

u ◦ S − u ⊗ v + v ⊗ u ∈ L∞
(
R

2n
)
, (1.5)

v ◦ S − v ⊗ v − u ⊗ u ∈ L∞
(
R

2n
)
, (1.6)

where S(x, y) = x − y, x, y ∈ R
n, ◦ and ⊗ denote the pullback and the tensor product of

generalized functions, respectively, and L∞(R2n) denotes the space of bounded measurable
functions on R

2n.
We prove as results that if generalized function (u, v) satisfies (1.5), then (u, v) satisfies

one of the followings:

(i) u ≡ 0 and v is arbitrary;

(ii) u and v are bounded measurable functions;

(iii) u = c · x + r(x), v = λ(c · x + r(x)) + 1;

(iv) u = λ sin(c · x), v = cos(c · x) + λ sin(c · x),
for some c ∈ C

n, λ ∈ C, and a bounded measurable function r(x).
Also if generalized function (u, v) satisfies (1.6), then (u, v) satisfies one of the

followings:

(i) u and v are bounded measurable functions,

(ii) u = cos(c · x), v = sin(c · x), c ∈ C
n.

2. Generalized Functions

For the spaces of tempered distributions S′(Rn), we refer the reader to [23–25]. Here we
briefly introduce the spaces of Gelfand generalized functions and Fourier hyperfunctions.

Here we use the following notations: |x| =
√
x2
1 + · · · + x2

n, |α| = α1 + · · · + αn, α! = α1! · · ·αn!,
xα = xα1

1 · · ·xαn
n , and ∂α = ∂α1

1 · · · ∂αn
n , for x = (x1, . . . , xn) ∈ R

n, α = (α1, . . . , αn) ∈ N
n
0 , where N0

is the set of nonnegative integers and ∂j = ∂/∂xj .

Definition 2.1. For given r, s ≥ 0, we denote by Ss
r or Ss

r (R
n) the space of all infinitely

differentiable functions ϕ(x) on R
n such that there exist positive constantsA and B satisfying

∥∥ϕ
∥∥
h,k := sup

x∈Rn, α,β∈Nn
0

∣∣xα∂βϕ(x)
∣∣

h|α|k|β|α!rβ!s
< ∞. (2.1)
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The topology on the space Ss
r is defined by the seminorms ‖ · ‖h,k in the left-hand side of (2.1)

and the elements of the dual space S′s
r of Ss

r are called Gelfand-Shilov generalized functions. In
particular, we denote S′1

1 by F′ and call its elements Fourier hyperfunctions.

It is known that if r > 0 and 0 ≤ s < 1, the space Ss
r (R

n) consists of all infinitely
differentiable functions ϕ(x) onR

n that can be continued to an entire function onC
n satisfying

∣
∣ϕ

(
x + iy

)∣∣ ≤ C exp
(
−a|x|1/r + b

∣
∣y

∣
∣1/(1−s)

)
(2.2)

for some a, b > 0.
It is well known that the following topological inclusions hold:

S1/2
1/2 ↪→ F ↪→ S, S′ ↪→ F′ ↪→ S′1/2

1/2. (2.3)

We refer the reader to [24, chapter V-VI], for tensor products and pullbacks of
generalized functions.

3. Stability of the Equations

In view of (2.2), it is easy to see that the n-dimensional heat kernel

Et(x) = (4πt)−n/2 exp

(

−|x|
2

4t

)

, t > 0, (3.1)

belongs to the Gelfand-Shilov space S1/2
1/2(R

n) for each t > 0. Thus the convolution (u ∗
Et)(x) := 〈uy, Et(x − y)〉 is well defined for all u ∈ S′1/2

1/2. It is well known that U(x, t) =
(u ∗Et)(x) is a smooth solution of the heat equation (∂/∂t −Δ)U = 0 in {(x, t) : x ∈ R

n, t > 0}
and (u ∗ Et)(x) → u as t → 0+ in the sense of generalized functions, that is, for every
ϕ ∈ S1/2

1/2(R
n),

〈
u, ϕ

〉
= lim

t→ 0+

∫
(u ∗ Et)(x)ϕ(x)dx. (3.2)

We call (u ∗ Et)(x) the Gauss transform of u. Let 〈G,+〉 be a semigroup and C be the field of
complex numbers. A function l : G → C is said to be additive provided l(x + y) = l(x) + l(y),
and m : G → C is said to be exponential provided m(x + y) = m(x)m(y).

We first discuss the solutions of the corresponding trigonometric functional equations
in the space S′1/2

1/2 of Gelfand generalized functions. As a consequence of the result [6, 26], we
have the following.

Lemma 3.1. The solutions u, v ∈ S′1/2
1/2 of the equation

u ◦ S − u ⊗ v + v ⊗ u = 0,

v ◦ S − v ⊗ v − u ⊗ u = 0,
(3.3)
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are equal, respectively, to the smooth solution f, g of corresponding classical functional equations (1.3)
and (1.4).

Remark 3.2. We refer the reader to Aczél [27, page 180] and Aczél and Dhombres [28, pages
209–217] for the general solutions and measurable solutions of (1.3) and (1.4).

For the proof of the stability of (1.5), we need the following lemma.

Lemma 3.3. Let U,V : Rn × (0,∞) → C be continuous functions satisfying the inequality; there
exists a positive constant M such that

∣
∣U

(
x − y, t + s

) −U(x, t)V
(
y, s

)
+ V (x, t)U

(
y, s

)∣∣ ≤ M (3.4)

for all x, y ∈ R
n, t, s > 0. Then either there exist λ, ν ∈ C, not both zero, and L > 0 such that

|λU(x, t) − νV (x, t)| ≤ L, (3.5)

or else

U
(
x − y, t + s

) −U(x, t)V
(
y, s

)
+ V (x, t)U

(
y, s

)
= 0 (3.6)

for all x, y ∈ R
n, t, s > 0.

Also the inequality (3.5) together with (3.4) implies one of the followings;

(i) U = 0, V : arbitrary;

(ii) U and V are bounded functions;

(iii) U(x, t) = c · xe−bt + R(x, t) and V (x, t) = μU(x, t) + e−bt where c ∈ C
n, b, μ ∈ C with

Rb ≥ 0 and R is a bounded function.

Proof. Following the approach as in [29, page 139, Lemma6.8], we first prove that (3.6) is
satisfied if the condition (3.5) fails. Assume that |λU(x, t) − ρV (y, s)| ≤ L for some L > 0
implies λ = ρ = 0. Let

F
(
x, y, t, s

)
= U

(
x + y, t + s

) −U(x, t)V
(−y, s) + V (x, t)U

(−y, s). (3.7)

Then we can choose y1 and s1 satisfying U(−y1, s1)/= 0. It is easy to show that

V (x, t) = λ0U(x, t) + λ1U
(
x + y1, t + s1

) − λ1F
(
x, y1, t, s1

)
, (3.8)

where λ0 = V (−y1, s1)/U(−y1, s1), and λ1 = −1/U(−y1, s1).
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Using (3.8), we have the following two equations:

U
((
x + y

)
+ z, (t + s) + r

)

= U
(
x + y, t + s

)
V (−z, r) − V

(
x + y, t + s

)
U(−z, r) + F

(
x + y, z, t + s, r

)

=
(
U(x, t)V

(−y, s) − V (x, t)U
(−y, s) + F

(
x, y, t, s

))
V (−z, r)

− (
λ0U

(
x + y, t + s

)
+ λ1U

(
x + y + y1, t + s + s1

) − λ1F
(
x + y, y1, t + s, s1

))
U(−z, r)

+ F
(
x + y, z, t + s, r

)

=
(
U(x, t)V

(−y, s) − V (x, t)U
(−y, s) + F

(
x, y, t, s

))
V (−z, r)

− λ0
(
U(x, t)V

(−y, s) − V (x, t)U
(−y, s) + F

(
x, y, t, s

))
U(−z, r)

− λ1
(
U(x, t)V

(−y − y1, s + s1
) − V (x, t)U

(−y − y1, s + s1
)
+ F

(
x, y + y1, t, s + s1

))
U(−z, r)

+ λ1F
(
x + y, y1, t + s, s1

)
U(−z, r) + F

(
x + y, z, t + s, r

)
,

V
(
x+

(
y+z

)
, t + (s+r)

)
= U(x, t)V

(−y − z, s+r
)−V (x, t)U

(−y − z, s+r
)
+ F

(
x, y + z, t, s+r

)
.

(3.9)

From (3.9), we have

U(x, t)
(
V
(−y, s)V (−z, r) − λ0V

(−y, s)U(−z, r)−λ1V
(−y−y1, s+ s1

)
U(−z, r)−V (−y − z, s+ r

))

+ V (x, t)
(−U(−y, s)V (−z, r) + λ0U

(−y, s)U(−z, r)

+λ1U
(−y − y1, s + s1

)
U(−z, r) +U

(−y − z, s + r
))

= −F(x, y, t, s)V (−z, r) + λ0F
(
x, y, t, s

)
U(−z, r) + λ1F

(
x, y + y1, t, s + s1

)
U(−z, r)

− λ1F
(
x + y, y1, t + s, s1

)
U(−z, r) − F

(
x + y, z, t + s, r

)
+ F

(
x, y + z, t, s + r

)
.

(3.10)

When y, s, z, r are fixed, the right-hand side of the above equation is bounded, so we have
the following.

F
(
x, y + z, t, s + r

) − F
(
x + y, z, t + s, r

)

= F
(
x, y, t, s

)
V (−z, r)

+
(−λ0F

(
x, y, t, s

) − λ1F
(
x, y + y1, t, s + s1

)
+ λ1F

(
x + y, y1, t + s, s1

))
U(−z, r).

(3.11)

Again considering (3.11) as a function of z and r for all fixed x, y, t, s, we have F(x, y, t, s) ≡
0.

Nowwe consider the case that the inequality (3.5) holds. IfU = 0, V is arbitrary, which
is the case (i). IfU is a nontrivial bounded function, in view of (3.4) V is also bounded, which
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is the case (ii). IfU is unbounded, it follows from (3.5) that ν /= 0 and

V (x, t) = μU(x, t) + B(x, t) (3.12)

for some μ ∈ C and a bounded function B. Put (3.12) in (3.4) to get

∣
∣U

(
x − y, t + s

) −U(x, t)B
(
y, s

)
+ B(x, t)U

(
y, s

)∣∣ ≤ M. (3.13)

Replacing (x, t) by (y, s) and (y, s) by (x, t) and using the triangle inequality, we have

|U(x, t) +U(−x, t)| ≤ 2M (3.14)

for all x ∈ R
n, t > 0. Replacing x by −x, y by −y and using the inequality (3.14), we have for

some M∗ > 0,

∣∣U
(−x + y, t + s

)
+U(x, t)B

(−y, s) − B(−x, t)U(
y, s

)∣∣ ≤ M∗. (3.15)

Using (3.13), (3.14), (3.15), and the triangle inequality, we have

∣∣U(x, t)
(
B
(
y, s

) − B
(−y, s)) −U

(
y, s

)
(B(x, t) − B(−x, t))∣∣ ≤ M∗ + 3M. (3.16)

SinceU is unbounded, it follows from (3.16) that B(y, s) = B(−y, s) for all y ∈ R
n, s > 0. Also,

in view of (3.13), for fixed y ∈ R
n and s > 0, x → U(x+y, t+s)−U(x, t)B(−y, s) is a bounded

function of x and t. Thus it follows from [24, page 104, Theorem5.2] that B(−y, s) = B(y, s) is
an exponential function. Given the continuity of U, V , we have B(x, t) = e−bt for some b ∈ C

with Rb ≥ 0. Replacing y by −y in (3.13) and using (3.14), we have

∣∣∣U
(
x + y, t + s

) −U(x, t)e−bs −U
(
y, s

)
e−bt

∣∣∣ ≤ 3M. (3.17)

Now we consider the stability of (3.17). From (3.17) and the continuity of U, it is easy to see
that

lim sup
t→ 0+

U(x, t) := f(x) (3.18)

exists. Putting y = 0 and letting t → 0+ so thatU(x, t) → f(x) in (3.17) and using the triangle
inequality and (3.14), we have

∣∣∣U(x, s) − f(x)e−bs
∣∣∣ ≤ 3M + |U(0, s)| ≤ 4M. (3.19)

It follows from (3.17), (3.19), and the triangle inequality that

∣∣f
(
x + y

) − f(x) − f
(
y
)∣∣ ≤ 15Meb(t+s) (3.20)
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for all x, y ∈ R
n, t, s > 0. Letting t, s → 0+ in (3.20), we have

∣
∣f
(
x + y

) − f(x) − f
(
y
)∣∣ ≤ 15M (3.21)

for all x, y ∈ R
n. Thus it follows from the Hyer-Ulam stability theorem [2] and the continuity

of f that there exists c ∈ C
n such that

∣
∣f(x) − c · x∣∣ ≤ 15M (3.22)

for all x ∈ R
n. Finally, from (3.19) and (3.22), we have

∣
∣∣U(x, t) − c · xe−bt

∣
∣∣ ≤ 19M (3.23)

for all x ∈ R
n. From (3.12) and (3.23), we have (iii). This completes the proof.

Remark 3.4. In particular, if U and V are solutions of the heat equation the case (iii) of the
abovelemma is reduced as

U(x, t) = c · x + R(x, t), V (x, t) = μU(x, t) + 1. (3.24)

for some μ ∈ C and bounded solution R(x, t) of the heat equation.

Theorem 3.5. Let u, v ∈ S′1/2
1/2 satisfy (1.5). Then u and v satisfy one of the followings:

(i) u ≡ 0 and v is arbitrary;

(ii) u and v are bounded measurable functions;

(iii) u = c · x + r(x), v = λ(c · x + r(x)) + 1;

(iv) u = λ sin(c · x), v = cos(c · x) + λ sin(c · x),
for some c ∈ C

n, λ ∈ C, and a bounded measurable function r(x).

Proof. Convolving in (1.5) the tensor product Et(x)Es(y) of n-dimensional heat kernels, we
have

[
(u ◦A) ∗ (Et(ξ)Es

(
η
))](

x, y
)
=
〈
uξ,

∫
Et

(
x − ξ + η

)
Es

(
y − η

)
dη

〉

=
〈
uξ, (Et ∗ Es)

(
x + y − ξ

)〉

=
〈
uξ, (Et+s)

(
x + y − ξ

)〉

= U
(
x + y, t + s

)
.

(3.25)

Similarly, we have

[
(u ⊗ v) ∗ (Et(ξ)Es

(
η
))](

x, y
)
= U(x, t)V

(
y, s

)
,

[
(v ⊗ u) ∗ (Et(ξ)Es

(
η
))](

x, y
)
= V (x, t)U

(
y, s

)
,

(3.26)
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where U(x, t), V (x, t) are the Gauss transforms of u, v, respectively. Thus U, V satisfies the
inequality (3.4). Nowwe can apply Lemma 3.3. First we assume that (3.5) holds and consider
the cases (i), (ii), (iii) of Lemma 3.3. The case (i) implies (i) of our theorem. For the case (ii); it
follows from [30, Page 61, Theorem1] the initial values u, v of U(x, t), V (x, t) as t → 0+

are bounded measurable functions, respectively. For the case (iii); using the remark running
after Lemma 3.3 and [30, Page 61, Theorem1], letting t −→ 0+ the case (iii) of our theorem
follows. Finally, if U,V satisfy the (3.6), letting t, s −→ 0+ we have

u ◦ S − u ⊗ v + v ⊗ u = 0. (3.27)

The nontrivial solutions of (3.27) are given by (iv) or u = c ·x, v = 1+λc ·xwhich is included
in case (iii). This completes the proof.

Now we prove the stability of (1.6).

Lemma 3.6. Let U,V : Rn × (0,∞) → C satisfy the inequality; there exists a positive constant M
such that

∣∣V
(
x − y, t + s

) − V (x, t)V
(
y, s

) −U(x, t)U
(
y, s

)∣∣ ≤ M (3.28)

for all x, y ∈ R
n, t, s > 0. Then either there exist λ, ν ∈ C, not both zero, and L > 0 such that

|λU(x, t) − νV (x, t)| ≤ L, (3.29)

or else

V
(
x − y, t + s

) − V (x, t)V
(
y, s

) −U(x, t)U
(
y, s

)
= 0 (3.30)

for all x, y ∈ R
n, t, s > 0.

Also the inequality (3.29) together with (3.28) implies one of the followings:

(i) U and V are bounded functions;

(ii) U is bounded; V is an exponential;

(iii) U = ±i(V −m) for some bounded exponential m;

(iv) U = μ(m−R)/(μ2 + 1), V = μ2m+R/(μ2 + 1), where μ ∈ C,m is a bounded exponential
and R is a bounded function.

Proof. Suppose that, for L > 0, |λU(x, t) − νV (y, s)| ≤ L does not hold unless λ = ν = 0. Note
that both U and V are unbounded. Let

F
(
x,−y, t, s) = V

(
x − y, t + s

) − V (x, t)V
(
y, s

) −U(x, t)U
(
y, s

)
. (3.31)

Just for convenience, we consider the following equation which is equivalent to (3.31).

F
(
x, y, t, s

)
= V

(
x + y, t + s

) − V (x, t)V
(−y, s) −U(x, t)U

(−y, s). (3.32)
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Since U is nonconstant, we can choose y1 and s1 satisfying U(−y1, s1)/= 0. It is easy to show
that

U(x, t) = λ0V (x, t) + λ1V
(
x + y1, t + s1

) − λ1F
(
x, y1, t, s1

)
, (3.33)

where λ0 = −V (−y1, s1)/U(−y1, s1) and λ1 = 1/U(−y1, s1).
By the definition of F and the use of (3.33), we have the following equations

V
((
x + y

)
+ z, (t + s) + r

)

= V
(
x + y, t + s

)
V (−z, r) +U

(
x + y, t + s

)
U(−z, r) + F

(
x + y, z, t + s, r

)

=
(
V (x, t)V

(−y, s) +U(x, t)U
(−y, s) + F

(
x, y, t, s

))
V (−z, r)

+
(
λ0V

(
x + y, t + s

)
+ λ1V

(
x + y + y1, t + s + s1

) − λ1F
(
x + y, y1, t + s, s1

))
U(−z, r)

+ F
(
x + y, z, t + s, r

)

=
(
V (x, t)V

(−y, s) +U(x, t)U
(−y, s) + F

(
x, y, t, s

))
V (−z, r)

+ λ0
(
V (x, t)V

(−y, s) +U(x, t)U
(−y, s) + F

(
x, y, t, s

))
U(−z, r)

+ λ1
(
V (x, t)V

(−y − y1, s + s1
)
+U(x, t)U

(−y − y1, s + s1
)
+ F

(
x, y + y1, t, s + s1

))
U(−z, r)

− λ1F
(
x + y, y1, t + s, s1

)
U(−z, r) + F

(
x + y, z, t + s, r

)
,

V
(
x+

(
y + z

)
, t + (s + r)

)
=V (x, t)V

(−y − z, s + r
)
+U(x, t)U

(−y − z, s + r
)
+F

(
x, y + z, t, s+r

)
.

(3.34)

By equating (3.34), we have

V (x, t)
(
V
(−y, s)V (−z, r) + λ0V

(−y, s)U(−z, r) + λ1V
(−y−y1, s+s1

)
U(−z, r)−V (−y − z, s+ r

))

+U(x, t)
(
U
(−y, s)V (−z, r) + λ0U

(−y, s)U(−z, r)
+λ1U

(−y − y1, s + s1
)
U(−z, r) −U

(−y − z, s + r
))

= −F(x, y, t, s)V (−z, r) − λ0F
(
x, y, t, s

)
U(−z, r) − λ1F

(
x, y + y1, t, s + s1

)
U(−z, r)

+ λ1F
(
x + y, y1, t + s, s1

)
U(−z, r) − F

(
x + y, z, t + s, r

)
+ F

(
x, y + z, t, s + r

)
.

(3.35)

When y, s, z, r are fixed, the right-hand side of the above equality is bounded, so we have

F
(
x, y + z, t, s + r

) − F
(
x + y, z, t + s, r

)

= F
(
x, y, t, s

)
V (−z, r)

+
(
λ0F

(
x, y, t, s

)
+ λ1F

(
x, y + y1, t, s + s1

) − λ1F
(
x + y, y1, t + s, s1

))
U(−z, r).

(3.36)

Again considering (3.36) as a function of z and r for all fixed x, y, t, s, we have F(x, y, t, s) ≡ 0
which is equivalent to (3.30). Now we consider the case when (3.29) holds. If U is bounded,
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then V (x + y, t + s) − V (x, t)V (−y, s) is also bounded by the inequality (3.28). It follows from
[29, Theorem5.2] that V is bounded or exponential which gives the cases (i) and (ii). If U is
unbounded, then V is also unbounded by the inequality (3.28), hence λ/= 0 and ν /= 0. Now let
V = μU + B for some bounded function B and μ = λ/ν. Then the inequality (3.28) becomes

∣
∣μU

(
x + y, t + s

)
+ B

(
x + y, t + s

) − (
μU(x, t) + B(x, t)

)(
μU

(−y, s) + B
(−y, s))

+U(x, t)U
(−y, s)∣∣ ≤ M.

(3.37)

Since B is bounded, we find that

∣
∣
∣U

(
x + y, t + s

) − μ−1
((

μ2 + 1
)
U
(−y, s) + μB

(−y, s)
)
U(x, t)

∣
∣
∣

is bounded for fixed y ∈ R
n, s > 0.

(3.38)

Thus it follows from [29, page 104, Theorem5.2] that

μ−1
((

μ2 + 1
)
U
(
y, s

)
+ μB

(
y, s

))
= m

(
y, s

)
(3.39)

for some exponential m. Thus if μ2 = −1, we have m = B and (iii) follows. If μ2 /= − 1,

U =
μ(m − B)
μ2 + 1

, V =
μ2m + B

μ2 + 1
, (3.40)

which gives (iv). This completes the proof.

Theorem 3.7. Let u, v ∈ S′1/2
1/2 satisfy (1.6). Then u and v satisfy one of the followings:

(i) u and v are bounded measurable functions;

(ii) u = cos(c · x), v = sin(c · x),
where c ∈ C

n.

Proof. Similarly as in the proof of Theorem 3.5 convolving in (1.6) the tensor product
Et(x)Es(y), we obtain the inequality (3.28)whereU(x, t), V (x, t) are the Gauss transforms of
u, v, respectively. Now we can apply Lemma 3.6. First assume that (3.29) holds and consider
the cases (i), (ii), (iii), and (iv) of Lemma 3.6. For the case (i), it follows from [30, Page 61,
Theorem1] that the initial values u, v of U(x, t), V (x, t) as t → 0+ are bounded measurable
functions, respectively. For the case (ii), by the continuity of V , we have

V (x, t) = ec·x+bt (3.41)

for some c ∈ C
n, b ∈ C. Putting (3.41) in (3.28) and letting y = x, s = t, and using the triangle

inequality, we have

∣∣∣e2bt(ec·x − 1)
∣∣∣ ≤ M (3.42)
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for some M > 0. In view of (3.42), we have c = ia, a ∈ R
n. Thus V (x, t) is bounded in

R
n × (0, 1). Using [25, page 61, Theorem1], the initial values u, v ofU(x, t), V (x, t) as t → 0+

in (3.41) are bounded measurable functions. For the case (iii) putting U = ±i(V − m) in the
inequality (3.28), we have

∣
∣V

(
x − y, t + s

) − V (x, t)m
(
y, s

) − V
(
y, s

)
m(x, t)

∣
∣ ≤ M (3.43)

for all x, y ∈ R
n, t, s > 0, where m is a bounded exponential. Using the continuity of V , it

follows from (3.43) that V (x, t) is bounded in R
n × (0, 1) and so is U(x, t), which implies that

both u and v are bounded measurable functions. For the case (iv) sinceU = λ(m−B)/(λ2+1),
V = (λ2m+B)/(λ2+1) are unbounded continuous,m is unbounded continuous, andm(x, t) =
ec·x+bt. On the other hand, it follows from (3.28) that |V (x, t) − V (−x, t)| ≤ 2M, which occurs
only when c = 0. Thus bothU(x, t) and V (x, t) are bounded inR

n×(0, 1) and u, v are bounded
measurable functions.

Secondly, assume that (3.30) holds. Letting t, s → 0+ in (3.30), we have

v ◦ S − v ⊗ v − u ⊗ u = 0. (3.44)

By Lemma 3.1, the nonconstant solution of (3.44) is given by u = cos(c · x), v = sin(c · x) for
some c ∈ C

n. This completes the proof.

Remark 3.8. Taking the growth of u = ec·x as |x| → ∞ into account, u ∈ S′(Rn) or F′(Rn) only
when c = ia for some a ∈ R

n. Thus the Theorems 3.5 and 3.7 are reduced to the followings.

Corollary 3.9. Let u, v ∈ S′ or F′ satisfy (1.5). Then u and v satisfy one of the followings:

(i) u = 0 and v is arbitrary;

(ii) u and v are bounded measurable functions;

(iii) u = c · x + r(x), only v = λc · x + r(x) + 1,

for some c ∈ C
n, λ ∈ C, and a bounded measurable function r(x).

Corollary 3.10. Let u, v ∈ S′ or F′ satisfy (1.6). Then u and v are bounded measurable functions.
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