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We give out a general method to prove the complete convergence for arrays of rowwise ρ-mixing
random variables and to present some results on complete convergence under some suitable
conditions. Some results generalize previous known results for rowwise independent random
variables.

1. Introduction

Let {Ω,F, P} be a probability space, and let {Xn;n ≥ 1} be a sequence of random variables
defined on this space.

Definition 1.1. The sequence {Xn;n ≥ 1} is said to be ρ-mixing if

ρ(n) = sup
k≥1

sup
X∈L2(Fk

1), Y∈L2(F∞
n+k)

⎧
⎪⎨

⎪⎩

|EXY − EXEY |
√

E(X − EX)2E(Y − EY )2

⎫
⎪⎬

⎪⎭
−→ 0 (1.1)

as n → ∞, where Fn
m denotes the σ-field generated by {Xi;m ≤ i ≤ n}.

The ρ-mixing random variables were first introduced by Kolmogorov and Rozanov
[1]. The limiting behavior of ρ-mixing random variables is very rich, for example, these in
the study by Ibragimov [2], Peligrad [3], and Bradley [4] for central limit theorem; Peligrad
[5] and Shao [6, 7] for weak invariance principle; Shao [8] for complete convergence; Shao
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[9] for almost sure invariance principle; Peligrad [10], Shao [11] and Liang and Yang [12] for
convergence rate; Shao [11], for the maximal inequality, and so forth.

For arrays of rowwise independent random variables, complete convergence has
been extensively investigated (see, e.g., Hu et al. [13], Sung et al. [14], and Kruglov
et al. [15]). Recently, complete convergence for arrays of rowwise dependent random
variables has been considered. We refer to Kuczmaszewska [16] for ρ-mixing and ρ̃-mixing
sequences, Kuczmaszewska [17] for negatively associated sequence, and Baek and Park [18]
for negatively dependent sequence. In the paper, we study the complete convergence for
arrays of rowwise ρ-mixing sequence under some suitable conditions using the techniques
of Kuczmaszewska [16, 17]. We consider the case of complete convergence of maximum
weighted sums, which is different from Kuczmaszewska [16]. Some results also generalize
some previous known results for rowwise independent random variables.

Now, we present a few definitions needed in the coming part of this paper.

Definition 1.2. An array {Xni; i ≥ 1, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a constant C, such that

P{|Xni| > x} ≤ CP{C|X| > x} (1.2)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

Definition 1.3. A real-valued function l(x), positive andmeasurable on [A,∞) for someA > 0,
is said to be slowly varying if

lim
x→∞

l(λx)
l(x)

= 1 for each λ > 0. (1.3)

Throughout the sequel, C will represent a positive constant although its value may
change from one appearance to the next; [x] indicates the maximum integer not larger than
x; I[B] denotes the indicator function of the set B.

The following lemmas will be useful in our study.

Lemma 1.4 (Shao [11]). Let {Xn;n ≥ 1} be a sequence of ρ-mixing random variables with EXi = 0
and E|Xi|q < ∞ for some q ≥ 2. Then there exists a positive constant K = K(q, ρ(·)) depending only
on q and ρ(·) such that for any n ≥ 1

Emax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

Xj

∣
∣
∣
∣
∣
∣

q

≤ K

⎛

⎝n2/q exp

⎛

⎝K
[logn]∑

i=0

ρ
(
2i
)
⎞

⎠max
1≤i≤n

(
E|Xi|2

)q/2

+n exp

⎛

⎝K
[logn]∑

i=0

ρ2/q
(
2i
)
⎞

⎠max
1≤i≤n

E|Xi|q
⎞

⎠.

(1.4)

Lemma 1.5 (Sung [19]). Let {Xn;n ≥ 1} be a sequence of random variables which is stochastically
dominated by a random variable X. For any α > 0 and b > 0, the following statement holds:

E|Xn|αI[|Xn| ≤ b] ≤ C
{
E|X|αI[|X| ≤ b] + bαP{|X| > b}}. (1.5)
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Lemma 1.6 (Zhou [20]). If l(x) > 0 is a slowly varying function as x → ∞, then

(i)
∑m

n=1 n
sl(n) ≤ Cms+1l(m) for s > −1,

(ii)
∑∞

n=m nsl(n) ≤ Cms+1l(m) for s < −1.

This paper is organized as follows. In Section 2, we give the main result and its proof.
A few applications of the main result are provided in Section 3.

2. Main Result and Its Proof

This paper studies arrays of rowwise ρ-mixing sequence. Let ρn(i) be the mixing coefficient
defined in Definition 1.1 for the nth row of an array {Xni; i ≥ 1, n ≥ 1}, that is, for the sequence
Xn1, Xn2, . . . , n ≥ 1.

Now, we state our main result.

Theorem 2.1. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise ρ-mixing random variables satisfying
supn

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2, and let {ani; i ≥ 1, n ≥ 1} be an array of real numbers. Let

{bn;n ≥ 1} be an increasing sequence of positive integers, and let {cn;n ≥ 1} be a sequence of positive
real numbers. If for some 0 < t < 2 and any ε > 0 the following conditions are fulfilled:

(a)
∑∞

n=1 cn
∑bn

i=1 P{|aniXni| ≥ εb1/tn } < ∞,

(b)
∑∞

n=1 cnb
−q/t+1
n max1≤i≤bn |ani|qE|Xni|qI[|aniXni| < εb1/tn ] < ∞,

(c)
∑∞

n=1 cnb
−q/t+q/2
n (max1≤i≤bn |ani|2E|Xni|2I[|aniXni| < εb1/tn ])

q/2
< ∞,

then

∞∑

n=1

cnP

⎧
⎨

⎩
max
1≤i≤bn

∣
∣
∣
∣
∣
∣

i∑

j=1

(
anjXnj − anjEXnjI

[∣
∣anjXnj

∣
∣ < εb1/tn

])
∣
∣
∣
∣
∣
∣
> εb1/tn

⎫
⎬

⎭
< ∞. (2.1)

Remark 2.2. Theorem 2.1 extends some results of Kuczmaszewska [17] to the case of arrays of
rowwise ρ-mixing sequence and generalizes the results of Kuczmaszewska [16] to the case of
maximum weighted sums.

Remark 2.3. Theorem 2.1 firstly gives the condition of the mixing coefficient, so the conditions
(a)–(c) do not contain the mixing coefficient. Thus, the conditions (a)–(c) are obviously
simpler than the conditions (i)–(iii) in Theorem 2.1 of Kuczmaszewska [16]. Our conditions
are also different from those of Theorem 2.1 in the study by Kuczmaszewska [17]: q ≥ 2 is
only required in Theorem 2.1, not q > 2 in Theorem 2.1 of Kuczmaszewska [17]; the powers of
bn in (b) and (c) of Theorem 2.1 are −q/t+1 and −q/t+q/2, respectively, not −q/t in Theorem
2.1 of Kuczmaszewska [17].

Now, we give the proof of Theorem 2.1.
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Proof. The conclusion of the theorem is obvious if
∑∞

n=1 cn is convergent. Therefore, we will
consider that only

∑∞
n=1 cn is divergent. Let

Ynj = anjXnjI
[∣
∣anjXnj

∣
∣ < εb1/tn

]
, Tni =

i∑

j=1

Ynj , Sni =
i∑

j=1

anjXnj ,

A =
bn⋂

i=1

{aniXni = Yni}, B =
bn⋃

i=1

{aniXni /=Yni}.
(2.2)

Note that

P

{

max
1≤i≤bn

|Sni − ETni| > εb1/tn

}

= P

{{

max
1≤i≤bn

|Sni − ETni| > εb1/tn

}⋂
A

}

+ P

{{

max
1≤i≤bn

|Sni − ETni| > εb1/tn

}⋂
B

}

≤ P

{

max
1≤i≤bn

|Tni − ETni| > εb1/tn

}

+
bn∑

i=1

P
{
|aniXni| > εb1/tn

}
.

(2.3)

By (a) it is enough to prove that for all ε > 0

∞∑

n=1

cnP

{

max
1≤i≤bn

|Tni − ETni| > εb1/tn

}

< ∞. (2.4)

By Markov inequality and Lemma 1.4, and note that the assumption
supn

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2, we get

P

{

max
1≤i≤bn

|Tni − ETni| > εb1/tn

}

≤ Cb
−q/t
n Emax

1≤i≤bn
|Tni − ETni|q

≤ Cb
−q/t
n

⎧
⎨

⎩
bn exp

⎛

⎝K
[log bn]∑

i=0

ρ
2/q
n

(
2i
)
⎞

⎠max
1≤i≤bn

E|aniXni|q

× I
[
|aniXni| < εb1/tn

]
+K exp

⎛

⎝K
[log bn]∑

i=1

ρn
(
2i
)
⎞

⎠
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×
(

bnmax
1≤i≤bn

E|aniXni|2I[|aniXni| < εb1/tn ]
)q/2

⎫
⎬

⎭

≤ Cb
−q/t+1
n max

1≤i≤bn
|ani|qE|Xni|qI

[
|aniXni| < εb1/tn

]

+ Cb
−q/t+q/2
n

(

max
1≤i≤bn

|ani|2E|Xni|2I[|aniXni| < εb1/tn ]
)q/2

.

(2.5)

From (b), (c), and (2.5), we see that (2.4) holds.

3. Applications

Theorem 3.1. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise ρ-mixing random variables satisfying
supn

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2, EXni = 0, and E|Xni|p < ∞ for all n ≥ 1, i ≥ 1, and

1 ≤ p ≤ 2. Let {ani; i ≥ 1, n ≥ 1} be an array of real numbers satisfying the condition

max
1≤i≤n

|ani|pE|Xni|p = O
(
nν−1

)
, as n −→ ∞, (3.1)

for some 0 < ν < 2/q. Then for any ε > 0 and αp ≥ 1

∞∑

n=1

nαp−2P

⎧
⎨

⎩
max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjXnj

∣
∣
∣
∣
∣
∣
> εnα

⎫
⎬

⎭
< ∞. (3.2)

Proof. Put cn = nαp−2, bn = n, and 1/t = α in Theorem 2.1. By (3.1), we get

∞∑

n=1

cn

bn∑

i=1

P
{
|aniXni| ≥ εb1/tn

}

≤ C
∞∑

n=1

nαp−2
n∑

i=1

n−αp|ani|pE|Xni|p ≤ C
∞∑

n=1

n−1max
1≤i≤n

|ani|pE|Xni|p ≤ C
∞∑

n=1

n−2+ν < ∞,

∞∑

n=1

cnb
−q/t+1
n max

1≤i≤bn
E|aniXni|qI

[
|aniXni| < εb1/tn

]

≤ C
∞∑

n=1

nαp−2n−αq+1nα(q−p)max
1≤i≤n

|ani|pE|Xni|p ≤ C
∞∑

n=1

n−2+ν < ∞,

∞∑

n=1

cnb
−q/t+q/2
n

(

max
1≤i≤bn

E|aniXni|2I
[
|aniXni| < εb1/tn

])q/2
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≤ C
∞∑

n=1

nαp−2n−αq+q/2nα(2−p)q/2
(

max
1≤i≤n

|ani|pE|Xni|p
)q/2

≤ C
∞∑

n=1

nαp(1−q/2)+(νq/2−1)−1 < ∞

(3.3)

following from νq/2−1 < 0. By the assumption EXni = 0 for n ≥ 1, i ≥ 1 and by (3.1), we have

n−αmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjEXnjI
[∣
∣anjXnj

∣
∣ < εnα]

∣
∣
∣
∣
∣
∣

≤ Cn−α
n∑

j=1

∣
∣anjEXnjI

[∣
∣anjXnj

∣
∣ < εnα]∣∣

≤ Cn−α
n∑

j=1

∣
∣anjEXnjI

[∣
∣anjXnj

∣
∣ ≥ εnα]∣∣

≤ Cn−αp
n∑

j=1

∣
∣anj

∣
∣pE

∣
∣Xnj

∣
∣p

≤Cn−αp+1max
1≤j≤n

|anj |pE|Xnj |p≤Cn−αp+ν−→0, as n −→ ∞,

(3.4)

because ν < 1 and αp ≥ 1. Thus, we complete the proof of the theorem.

Theorem 3.2. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise ρ-mixing random variables satisfying
supn

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2, EXni = 0, and E|Xni|p < ∞ for all n ≥ 1, i ≥ 1, and

1 ≤ p ≤ 2. Let the random variables in each row be stochastically dominated by a random variable X,
such that E|X|p < ∞, and let {ani; i ≥ 1, n ≥ 1} be an array of real numbers satisfying the condition

max
1≤i≤n

|ani|p = O
(
nν−1

)
, as n −→ ∞, (3.5)

for some 0 < ν < 2/q. Then for any ε > 0 and αp ≥ 1 (3.2) holds.

Theorem 3.3. Let {Xni, n ≥ 1, i ≥ 1} be an array of rowwise ρ-mixing random variables satisfying
supn

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2 and EXni = 0 for all n ≥ 1, i ≥ 1. Let the random variables in

each row be stochastically dominated by a random variable X, and let {ani; i ≥ 1, n ≥ 1} be an array of
real numbers. If for some 0 < t < 2, ν > 1/2

sup
i≥1

|ani| = O
(
n1/t−ν

)
, E|X|1+2/ν < ∞, (3.6)
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then for any ε > 0

∞∑

n=1

P

⎧
⎨

⎩
max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjXnj

∣
∣
∣
∣
∣
∣
> εn1/t

⎫
⎬

⎭
< ∞. (3.7)

Proof. Take cn = 1 and bn = n for n ≥ 1. Then we see that (a) and (b) are satisfied. Indeed,
taking q ≥ max(2, 1 + 2/ν), by Lemma 1.5 and (3.6), we get

∞∑

n=1

cn

bn∑

i=1

P
{
|aniXni| ≥ εb1/tn

}

=
∞∑

n=1

n∑

i=1

P
{
|aniXni| ≥ εn1/t

}
≤ C

∞∑

n=1

n∑

i=1

P{|X| ≥ Cnν}

= C
∞∑

n=1

n
∞∑

k=n

P
{
Ckν ≤ |X| < C(k + 1)ν

}

≤ C
∞∑

k=1

k2P
{
Ckν ≤ |X| < C(k + 1)ν

} ≤ CE|X|2/ν < ∞,

∞∑

n=1

cnb
−q/t+1
n max

1≤i≤bn
|ani|qE|Xni|qI

[
|aniXni| < εb1/tn

]

≤ C
∞∑

n=1

n−q/t+1max
1≤i≤n

|ani|q
{

E|X|qI
[
|aniX| < εn1/t

]
+

nq/t

|ani|q
P
{
|aniX| ≥ εn1/t

}
}

≤ C
∞∑

n=1

n−(1+2/ν)/t+1max
1≤i≤n

|ani|1+2/νE|X|1+2/ν + C
∞∑

n=1

nmax
1≤i≤n

P
{
|aniX| ≥ εn1/t

}

≤ C
∞∑

n=1

n−(1+2/ν)/t+1
(

sup
i≥1

|ani|
)1+2/ν

E|X|1+2/ν + C
∞∑

n=1

nP{|X| ≥ Cnν}

≤ C
∞∑

n=1

n−ν−1E|X|1+2/ν + C
∞∑

n=1

n−ν−1E|X|1+2/ν ≤ C
∞∑

n=1

n−ν−1 < ∞ (3.8)

In order to prove that (c) holds, we consider the following two cases.
If ν > 2, by Lemma 1.5, Cr inequality, and (3.6), we have

∞∑

n=1

cnb
−q/t+q/2
n

(

max
1≤i≤bn

|ani|2E|Xni|2I
[
|aniXni| < εb1/tn

])q/2

≤ C
∞∑

n=1

n−q/t+q/2
(

max
1≤i≤n

|ani|2E|X|2I
[
|aniXni| < εn1/t

])q/2
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+ C
∞∑

n=1

nq/2
(

max
1≤i≤n

P
{
|aniX| ≥ εn1/t

})q/2

≤ C
∞∑

n=1

n−q/t+q/2n(1/t)(1−2/ν)(q/2)
(

max
1≤i≤n

|ani|1+2/νE|X|1+2/ν
)q/2

+ C
∞∑

n=1

nq/2(P{|X| ≥ Cnν})q/2

≤ C
∞∑

n=1

n−q/t+q/2+(1/t)(1−2/ν)(q/2)
(

sup
i≥1

|ani|
)(1+2/ν)(q/2)(

E|X|1+2/ν
)q/2

+ C
∞∑

n=1

nq/2n−(1+2/ν)(νq/2)
(
E|X|1+2/ν

)q/2

≤ C
∞∑

n=1

n−(ν+1)(q/2)
(
E|X|1+2/ν

)q/2
< ∞.

(3.9)

If 1/2 < ν ≤ 2, take q > 2/(2ν − 1). We have that (2ν − 1)q/2 > 1. Note that in this case
E|X|2 < ∞. We have

∞∑

n=1

cnb
−q/t+q/2
n

(

max
1≤i≤bn

|ani|2E|Xni|2I
[
|aniXni| < εb1/tn

])q/2

≤ C
∞∑

n=1

n−q/t+q/2
(

max
1≤i≤n

|ani|2E|X|2I
[
|aniXni| < εn1/t

])q/2

+ C
∞∑

n=1

nq/2(P{|X| ≥ Cnν})q/2

≤ C
∞∑

n=1

n−q/t+q/2
(

sup
i≥1

|ani|
)q(

E|X|2
)q/2

+ C
∞∑

n=1

nq/2−νq
(
E|X|2

)q/2

≤ C
∞∑

n=1

n−(2ν−1)(q/2)
(
E|X|2

)q/2
< ∞. (3.10)

The proof will be completed if we show that

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjEXnjI
[∣
∣anjXni

∣
∣ < εn1/t

]
∣
∣
∣
∣
∣
∣
−→ 0, as n −→ ∞. (3.11)
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Indeed, by Lemma 1.5, we have

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjEXnjI
[∣
∣anjXni

∣
∣ < εn1/t

]
∣
∣
∣
∣
∣
∣
≤ Cn−1/t

n∑

j=1

∣
∣anj

∣
∣E|X| + C

n∑

j=1

P
{∣
∣anjX

∣
∣ ≥ εn1/t

}

≤ Cn−νE|X| + CnP{|X| ≥ εnν}

≤ Cn−νE|X| + Cn−(ν+1)E|X|1+2/ν −→ 0, as n −→ ∞.

(3.12)

Theorem 3.4. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise ρ-mixing random variables satisfying
supn

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2, and let {ani; i ≥ 1, n ≥ 1} be an array of real numbers. Let

l(x) > 0 be a slowly varying function as x → ∞. If for some 0 < t < 2 and real number λ, and any
ε > 0 the following conditions are fulfilled:

(A)
∑∞

n=1 n
λl(n)

∑n
i=1 P{|aniXni| ≥ εn1/t} < ∞,

(B)
∑∞

n=1 n
λ−q/t+1l(n)max1≤i≤nE|aniXni|qI[|aniXni| < εn1/t] < ∞,

(C)
∑∞

n=1 n
λ−q/t+q/2l(n)(max1≤i≤n|ani|2E|Xni|2I[|aniXni| < εn1/t])

q/2
< ∞,

then

∞∑

n=1

nλl(n)P

⎧
⎨

⎩
max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

(
anjXnj − anjEXnjI

[∣
∣anjXnj

∣
∣ < εn1/t

])
∣
∣
∣
∣
∣
∣
> εn1/t

⎫
⎬

⎭
< ∞. (3.13)

Proof. Let cn = nλl(n) and bn = n. Using Theorem 2.1, we obtain (3.13) easily.

Theorem 3.5. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise ρ-mixing identically distributed random
variables satisfying

∑∞
i=1 ρ

2/q
n (2i) < ∞ for some q ≥ 2 and EX11 = 0. Let l(x) > 0 be a slowly varying

function as x → ∞. If for α > 1/2, αp > 1, and 0 < t < 2

E|X11|αptl
(
|X11|t

)
< ∞, (3.14)

then

∞∑

n=1

nαp−2l(n)P

⎧
⎨

⎩
max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

Xnj

∣
∣
∣
∣
∣
∣
> εn1/t

⎫
⎬

⎭
< ∞. (3.15)

Proof. Put λ = αp−2 and ani = 1 for n ≥ 1, i ≥ 1 in Theorem 3.4. To prove (3.15), it is enough to
note that under the assumptions of Theorem 3.4, the conditions (A)–(C) of Theorem 3.4 hold.
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By Lemma 1.6, we obtain

∞∑

n=1

nαp−1l(n)P
{
|X11| > εn1/t

}
=

∞∑

n=1

nαp−1l(n)
∞∑

m=n
P
{
εm1/t < |X11| ≤ ε(m + 1)1/t

}

≤ C
∞∑

m=1

P
{
εm1/t < |X11| ≤ ε(m + 1)1/t

} m∑

n=1

nαp−1l(n)

≤ C
∞∑

m=1

mαpl(m)P
{
εm1/t < |X11| ≤ ε(m + 1)1/t

}

≤ CE|X11|αptl
(
|X11|t

)
< ∞,

(3.16)

which proves that condition (A) is satisfied.
Taking q > max(2, αpt), we have αp − q/t < 0. By Lemma 1.6, we have

∞∑

n=1

nαp−1−(q/t)l(n)E|X11|qI
[
|X11| ≤ εn1/t

]

=
∞∑

n=1

nαp−1−(q/t)l(n)
n∑

m=1

E|X11|qI
[
ε(m − 1)1/t ≤ |X11| < εm1/t

]

≤ C
∞∑

m=1

E|X11|qI
[
ε(m − 1)1/t ≤ |X11| < εm1/t

] ∞∑

n=m
nαp−1−(q/t)l(n)

≤ C
∞∑

m=1

mαp−(q/t)l(m)E|X11|qI
[
ε(m − 1)1/t ≤ |X11| < εm1/t

]

≤ CE|X11|αptl
(
|X11|t

)
< ∞,

(3.17)

which proves that (B) holds.
In order to prove that (C) holds, we consider the following two cases.
If αpt < 2, take q > 2. We have

∞∑

n=1

nαp−2−q/t+q/2l(n)
(
E|X11|2I

[
|X11| < εn1/t

])q/2

≤ C
∞∑

n=1

nαp−2−q/t+q/2l(n)nq/t−αpq/2
(
E|X11|αptI

[
|X11| < εn1/t

])q/2

≤ C
∞∑

n=1

n(αp−1)(1−q/2)−1l(n) < ∞.

(3.18)
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If αpt ≥ 2, take q > max(2, 2t(αp − 1)/(2 − t)). We have αp − q/t + q/2 < 1. Note that in
this case E|X11|2 < ∞. We obtain

∞∑

n=1

nαp−2−q/t+q/2l(n)
(
E|X11|2I

[
|X11| < εn1/t

])q/2 ≤ C
∞∑

n=1

nαp−2−q/t+q/2l(n) < ∞. (3.19)

The proof will be completed if we show that

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

EXnjI
[
|X11| < εn1/t

]
∣
∣
∣
∣
∣
∣
−→ 0, as n −→ ∞. (3.20)

If αpt < 1, then

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

EXnjI
[
|X11| < εn1/t

]
∣
∣
∣
∣
∣
∣
≤ Cn1−αpE|X11|αpt −→ 0, as n −→ ∞. (3.21)

If αpt ≥ 1, note that EX11 = 0, then

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

EXnjI
[
|X11| < εn1/t

]
∣
∣
∣
∣
∣
∣

≤ n−1/t+1
∣
∣
∣EX11I

[
|X11| ≥ εn1/t

]∣
∣
∣ ≤ Cn1−αpE|X11|αpt −→ 0, as n −→ ∞.

(3.22)

We complete the proof of the theorem.

Noting that for typical slowly varying functions, l(x) = 1 and l(x) = logx, we can get
the simpler formulas in the above theorems.
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