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Let Σ be a domain on an m-dimensional minimal submanifold in the outside of a convex set
C in Sn or Hn. The modified volume M(Σ) is introduced by Choe and Gulliver (1992) and we
prove a sharp modified relative isoperimetric inequality for the domain Σ, (1/2)mmωmM(Σ)m−1 ≤
Volume(∂Σ−∂C)m, where ωm is the volume of the unit ball of Rm. For any domain Σ on a minimal
surface in the outside convex set C in an n-dimensional Riemannian manifold, we prove a weak
relative isoperimetric inequality πArea(Σ) ≤ Length(∂Σ − ∂C)2 +KArea(Σ)2, whereK is an upper
bound of sectional curvature of the Riemannian manifold.

1. Introduction

Let ∂D be the simple closed curve of a domain D in a two-dimensional space form with
constant curvature K. Then the well-known sharp isoperimetric inequality is the following:

4πArea(D) ≤ Length(∂D)2 +KArea(D)2, (1.1)

where equality holds if and only if D is a geodesic disk (see [1]).
An immediate consequence of this inequality is that ifH is a closed half-space of a two-

dimensional space formwith constant curvatureK andD is a domain inH with ∂D∩∂H /= ∅,
then

2πArea(D) ≤ Length(∂D − ∂H)2 +KArea(D)2, (1.2)
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where equality holds if and only ifD is a totally geodesic half-diskwith the geodesic part of its
boundary contained in ∂H. This follows the original isoperimetric inequality after extending
the domain by mirror symmetry with respect to ∂H.

Motivated by this, one arises natural questions as follows.
If C is a convex set in an n-dimensional space form with constant curvature K and D

is a minimal surface in the outside of C with ∂D ∩ ∂C/= ∅, does D satisfy inequality

2πArea(D) ≤ Length(∂D − ∂C)2 +KArea(D)2? (1.3)

How about an m-dimensional minimal submanifold case?
Equation (1.3) is called the relative isoperimetric inequality, C is called the supporting

set of D, and Area(∂D − ∂C) is called the relative area of ∂D. A partial result is obtained by
Kim [2], when part of the boundary ∂D−∂C of the domainDis radially connected from a point
p ∈ ∂D ∩ ∂C, that is, {r(q) = dist(p, q) | q ∈ ∂D − ∂C} is a connected interval. And there are
some partial results on the higher-dimensional submanifold case (see [3, 4]). In case of Sn,
the problem remains open, even in the two-dimensional case (see [5]).

In this paper, we obtain two different type relative isoperimetric inequalities. First,
using the modified volume introduced by Choe and Gulliver [6], we have a modified relative
isoperimetric inequality in S

n or Hn without the curvature correct term:

1
2
mmωmMp(Σ)m−1 ≤ Volume(∂Σ − ∂C)m, (1.4)

where ωm is the volume of a unit ball of R
m, and Σ is a domain of an m-dimensional

submanifold. In Theorem 2.11, (1.4) holds for ∂Σ − ∂C lies on a geodesic sphere of Sn or Hn.
In Theorem 2.3, (1.4) holds for m = 2, Σ ⊂ S

n
+ and ∂Σ − ∂C is radially connected for a point

p ∈ ∂Σ ∩ ∂C.
Second, in Section 3 we obtain an inequality on usual volume for any minimal surface

of a Riemannian manifold with sectional curvature bounded above by a constant K:

πArea(Σ) ≤ Length(∂Σ − ∂C)2 +KArea(Σ)2. (1.5)

But we cannot find a minimal surface which satisfies the equality. That is why we call (1.5) a
weak relative isoperimetric inequality.

2. Modified Relative Isoperimetric Inequalities in a Space Form

We review the modified volume in S
n and H

n with constant sectional curvature 1 and −1,
respectively. Let p be a point in the n-dimensional sphere S

n and let r(x) be the distance
from p to x in S

n.

Definition 2.1 (modified volume in S
n). Given that Σ is an m-dimensional submanifold in S

n,
the modified volume of Σwith center at p is defined by

Mp(Σ) ≡
∫
Σ
cos r. (2.1)
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Embed S
n in R

n+1 with p being the north pole (0, . . . , 0, 1). For a domain, the geometric
meaning of the modified volume of Σn ⊂ S

n is the Euclidean volume of the orthogonal
projection of Σ into the xn+1 = 0 counting orientation. Clearly, we have in S

n

Mp(Σ) ≤ Volume(Σ), (2.2)

where Volume(Σ) is the usual volume of Σ.
Similarly, let p be a point in the n-dimensional hyperbolic space Hn and let r(x) be the

distance from p to x in H
n.

Definition 2.2 (modified volume inH
n). Given that Σ is anm-dimensional submanifold inH

n,
the modified volume of Σwith center at p is defined by

Mp(Σ) ≡
∫
Σ
cosh r. (2.3)

EmbedH
n isometrically onto the hyperboloidH = {(x1, . . . , xn+1) | x2

1 + · · ·+x2
n−x2

n+1 =
−1, xn+1 > 0} in R

n+1 with the Minkowski metric ds2 = x2
1 + · · · + x2

n − x2
n+1 such that p is the

point (0, . . . , 0, 1) ∈ H. Then for a domain, the modified volume equals the Euclidean volume
of the projection of Σn onto the hyperplane xn+1 = 0. Clearly, we have in H

n

Mp(Σ) ≥ Volume(Σ). (2.4)

More precisely, see Choe and Gulliver’s paper (see [6]).

Theorem 2.3. Let C be a closed convex set in S
n. Assume that Σ is a compact minimal surface in the

outside C such that Σ is orthogonal to ∂C along ΓC := ∂Σ∩ ∂C. And r(x) is the distance from p ∈ ΓC
to x ∈ S

n and r(x) ≤ π/2 on Σ. If Γ := ∂Σ − ΓC is radially connected from the point p ∈ ΓC, that is,
{r(q) = dist(p, q) | q ∈ Γ} is a connected interval, then one has

2πMp(Σ) ≤ Length(Γ)2. (2.5)

Equality holds if and only if Σ is a totally geodesic half-disk with Γ being a geodesic half-circle.

If ∂Σ − ∂C is connected, then it is trivially radially connected from p ∈ ∂Σ ∩ ∂C. If
∂Σ−∂C has two components, then using the same argument as [2, Corollary 1]we obtain the
following.

Corollary 2.4. Let Σ be a compact minimal surface satisfying the same assumptions as in Theorem 2.3
except the radially connectedness. Then the modified relative isoperimetric inequality in Theorem 2.3
holds if Γ is connected or Γ has two components that are connected by a component Υ of ∂Σ ∩ ∂C.

Before giving lemmas for proving Theorem 2.3, we define a cone. Given an (m − 1)-
dimensional submanifold Ω of Sn or Hn and a point p in S

n or Hn, the m-dimensional cone
pAΩwith center at p is defined by the set of all minimizing geodesics from p to a point ofΩ.
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Lemma 2.5 (see [6, Lemma4]). (a) If Σ ⊂ S
n is an m-dimensional minimal submanifold or a cone,

and r is the distance in S
n from a fixed point, then

Δ cos r = −m cos r, (2.6)

whereΔ is the Laplacian on the submanifold Σ and, in case Σ is a cone, r is the distance from the center
of Σ.

(b) Suppose that Σ ⊂ H
n is an m-dimensional minimal submanifold or a cone. Then

Δ cosh r = m cosh r. (2.7)

Here again, in case of a cone Σ, r is the distance from the center of Σ.

Proposition 2.6. Let C be a closed convex set in S
n or H

n. Assume that Σ is an m-dimensional
minimal submanifold in the outside C such that Σ is orthogonal to ∂C along ΓC = ∂Σ ∩ ∂C and r(x)
is the distance from p ∈ ΓC to x ∈ S

n or Hn. Let Γ = ∂Σ − ΓC. In case of Σ ⊂ S
n, one assumes that

r(x) ≤ π/2 for all x ∈ Σ. Then one has

Mp(Σ) ≤ Mp

(
pAΓ

)
. (2.8)

Proof. Let ν and η be the unit conomals to ∂Σ on Σ and pA ∂Σ, respectively. By Lemma 2.5,
we have

Mp(Σ) = − 1
m

∫
Σ
Δ cos r =

1
m

∫
Γ
sin r · ∂r

∂ν
+

1
m

∫
ΓC

sin r · ∂r
∂ν

. (2.9)

The η makes the smallest angle with ∇r, that is, the unit normal vector to ∂Σ that lies in
the two-dimensional plane spanned by ∇r and the tangent line of ∂Σ such that ∂r/∂η ≥ 0.

Clearly ∂r/∂ν ≤ ∂r/∂η =
√
1 − 〈∇r, τ〉2, where τ is a unit tangent to ∂Σ. Since C is a convex

set, p ∈ ΓC, and ΓC ⊂ ∂C, we see that∇r(x) points outward of C for every x ∈ ΓC, where∇r is
the gradient in the Sn. From the orthogonality condition, ν(x) is a unit normal toward inside
C along the ΓC. So we have

∂r

∂ν
(x) =

〈
∇r(x), ν(x)

〉
≤ 0, (2.10)

for every x ∈ ΓC, and

Mp(Σ) ≤ 1
m

∫
Γ
sin r · ∂r

∂ν
≤ 1

m

∫
Γ
sin r · ∂r

∂η
= − 1

m

∫
pAΓ

Δ cos r = Mp

(
pAΓ

)
. (2.11)

The similar proof holds for Σ ⊂ H
n.

Lemma 2.7 (see [6, Lemma6]). Let G(x) be Green’s function of Sn (Hn, resp.), whose derivative
is sin1−mx for 0 < x < π (sinh1−mx for 0 < x < ∞, resp.). If Σ is an m-dimensional minimal
submanifold of Sn (Hn, resp.), then G ◦ r is subharmonic on Σ − {±p} ⊂ S

n (Σ − {p} ⊂ H
n, resp.).
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Now we estimate the angle of Γ viewed from a point p ∈ ΓC. Recall the definition of
the angle viewed from a point. For an (m − 1)-dimensional rectifiable set Ω in S

n and a point
p ∈ S

n such that dist(p, q) < π for all q ∈ Ω, the (m − 1)-dimensional angle Am−1(Ω, p) of Ω
viewed from p is defined by

Am−1(Ω, p
)
= sin1−mt · Volume

[
pAΩ ∩ S

(
p, t

)]
, (2.12)

where S(p, t) is the geodesic sphere of radius t < dist(p,Ω) centered at p, and the volume is
measured counting multiplicity. Clearly, the angle does not depend on t. There is obviously
an analogous definition for the angle of Ω ⊂ H

n viewed from p ∈ H
n.

Note that

Am−1(Ω, p
)
= mωmΘm(pAΩ, p

)
, (2.13)

where Θm(pAΩ, p) is the m-dimensional density of pAΩ at p.

Proposition 2.8. Let Σ be an m-dimensional minimal submanifold satisfying the same assumptions
as in Proposition 2.6. Then for any p ∈ ∂C,

Am−1(Γ, p) ≥ mωm

2
. (2.14)

Equality holds if and only if Σ is totally geodesic and star shaped with respect to p.

Proof. Let Bn(p, t) ⊂ S
n be the geodesic ball centered at p, radius t < dist(p,Γ), Σt = Σ−Bn(p, t),

and St = Σ ∩ S(p, t). By Lemma 2.7, we have subharmonic G(r), where r is distance from p.
Hence

0 ≤
∫
Σt

ΔG(r) =
∫
Σt

div
(
sin1−mr∇r

)
=
∫
∂Σt

sin1−mr · ∂r
∂ν

+
∫
∂Σ
sin1−mr · ∂r

∂ν
, (2.15)

where ν is outward unit conormal along the boundary.
Since, near p, Σ can be identified with totally geodesic half-sphere and ∂r/∂ν →

−1and sin t/t → 1 on ∂Σt as t → 0, we have

mωm

2
= lim

t→ 0

∫
∂Σ
sin1−mr · ∂r

∂ν
≤
∫
∂Σ−∂C

sin1−mr · ∂r
∂ν

≤
∫
∂Σ−∂C

sin1−mr · ∂r
∂η

= Am−1(Γ, p),
(2.16)

where η is the unit conormal of the cone and the same argument holds as in Proposition 2.6.
Equality holds if and only if ΔG(r) = 0, Θ(Σ, p) = 1/2, and ν = η, that is, Σ is a star-

shaped minimal cone with density at the center equal to 1/2. Since S
m−1 is the only (m − 1)-

dimensional minimal submanifold in S
n with volume mωm, this completes the proof for Σ ⊂

S
n. A similar proof holds for Σ ⊂ H

n.
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Proof of Theorem 2.3. We approach to the proof by comparison between Σ and the cone pAΓ.
Since the cone pAΓ is locally developable on a totally geodesic sphere S2, we reduce the proof
to the proof of Theorem 1 in [7] by doubling argument.

For each geodesic sphere S(p, t) centered at p and radius t, one has a local isometry
between the curve S(p, t)∩(pAΓ) and a great circle on S(p, t). Hencewe can develop pAΓ on a
great sphere S2 ⊂ S

n; one can find a curve γ (not necessarily closed) in S
2 and a local isometry

from pAΓ into pA γ , where p is the north pole of S2. Clearly we haveMp(pAΓ) = Mp(pA γ),
Length(Γ) = Length(γ), andA1(Γ, p) = A1(γ, p).Moreover, if we let q1 and q2 be the endpoints
of γ , then dist(p, q1) = dist(p, q2).

We write Γ = Γ1 ∪ · · · ∪ ΓN , where Γj , j = 1, . . . ,N, is a connected component of Γ. Note
that ∂Γj may be empty or not.

If ∂Γj = ∅, then, after cutting pAΓj along an appropriate geodesic and developing it
onto the great sphere S2, pAΓj may be identified with the cone pA γj in S

2, where γj is a curve
in S

2 given in terms of the polar coordinates by ρ = γj(θ) satisfying 0 ≤ θ ≤ θj = A1(Γj , p) and
γj(0) = γj(θj) = dist(p,Γj) = dist(p, γj). Here, θ is the angle parameter of the cone. Now we
define the doubling γ̃j of γj by the doubling parametrization as follows:

ρ = γ̃j(θ) =

⎧⎨
⎩
γj(θ), 0 ≤ θ ≤ θj ,

γj
(
θ − θj

)
, θj ≤ θ ≤ 2θj .

(2.17)

If ∂Γj /= ∅, then, after developing it onto S
2, pAΓj is identified with pA γj in S

2, where
γj is a curve in S

2 given in terms of the polar coordinates by ρ = γj(θ) defined on 0 ≤ θ ≤
θj = A1(Γj , p), where θ is the angle parameter of the cone. Choose θj0 ∈ [0, θj] such that
γj(θj0) = dist(p,Γj) = dist(p, γj). Then we define the doubling γ̃j of γj as follows:

ρ = γ̃j(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γj
(
θ + θj0

)
, 0 ≤ θ ≤ θj − θj0 ,

γj
(
−θ + 2θj − θj0

)
, θj − θj0 ≤ θ ≤ 2θj − θj0 ,

γj
(
θ − 2θj + θj0

)
, 2θj − θj0 ≤ θ ≤ 2θj .

(2.18)

In both cases, we have the following equalities:

Mp

(
pA γ̃j

)
= 2Mp

(
pAΓj

)
,

Length
(
γ̃j
)
= 2Length

(
Γj
)
,

A1(γ̃j , p) = 2A1(Γj , p),
γ̃j(0) = γ̃j

(
2θj

)
= dist

(
p, γ̃j

)
= dist

(
p,Γj

)
.

(2.19)
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Now let us define γ̃ = γ̃1 ∪ · · · ∪ γ̃N . Because of doubling process, we have

Mp

(
pA γ̃

)
= 2Mp

(
pAΓ

)
,

Length
(
γ̃
)
= 2Length(Γ),

A1(pA γ̃
)
= 2A1(Γ, p).

(2.20)

By Proposition 2.8, A1(pA γ̃) ≥ 2π and then γ̃ has a self-intersection point. By the
geometric meaning of the modified volume, Mp(pA γ̃) equals the Euclidean area of the
standard projection of pA γ̃ onto the plane containing the equator of S2. Let γ̃ ′ be the image
of γ̃ under the projection and 0 the origin of the plane. Then Mp(pA γ̃) = Area(0A γ̃ ′),
A1(γ̃ , p) = A1(γ̃ ′, 0), but Length(γ̃) ≥ Length(γ̃ ′). The last inequality arises from the fact that
the projection is a length-shrinking map. Moreover, let q′1 and q′2 be the endpoints of γ̃

′, then
dist(0, q′1) = dist(0, q′2). So we can apply [7, Lemma 1] and conclude the following sharp
isoperimetric inequality:

4π Area
(
0A γ̃ ′

) ≤ Length
(
γ̃ ′
)2
, (2.21)

and equality holds if and only if γ̃ ′ is the boundary of a circle. So we have

2πMp

(
pAΓ

) ≤ Length(Γ)2. (2.22)

By Proposition 2.6, we finally get

2πMp(Σ) ≤ Length(Γ)2, (2.23)

and equality holds if and only if Length(γ̃ ′) = 2Length(Γ) and A1(Γ, p) = π , or equivalently,
Σ is a totally geodesic half-disk centered at p.

Proposition 2.9. LetC be a closed convex set in S
n (Hn, resp.) and letΣ be anm-dimensional compact

minimal submanifold of Sn (Hn, resp.) satisfying that Σ is orthogonal to ∂C along ∂Σ ∩ ∂C. Define
r(x) = dist(p, x) for p ∈ ∂Σ ∩ ∂C. Then sin−mr ·Mp(Σ ∩ Bn(p, r)) (sinh−mr ·Mp(Σ ∩ Bn(p, r)),
resp.) is a monotonically nondecreasing function of r for 0 < r < min(π/2,dist(p, ∂Σ)) (0 < r <
dist(p, ∂Σ), resp.), where Bn(p, r) is the n-dimensional geodesic ball of radius r centered p in S

n (Hn,
resp.).

Proof. Let Σr = Bn(p, r) ⊂ S
n. C is a convex set, r ≤ π/2, and the same argument holds as in

Proposition 2.6; we have

Mp(Σr) = − 1
m

∫
Σr

Δ cos r =
1
m

∫
∂Σr

sin r
∂r

∂ν

≤ 1
m

∫
∂Σr−∂C

sin r
∂r

∂ν
≤ 1

m
sin r

∫
∂Σr−∂C

|∇r|.
(2.24)
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Denote the volume forms on Σ and ∂Σt by dv and dΣt, respectively. Then we have

dv =
1

|∇r|dΣrdr. (2.25)

It follows that

d

dr

∫
Σr

cos r|∇r|2dv =
d

dr

∫ r

0

∫
∂Σr−∂C

cos r|∇r|dΣr dr = cos r
∫
∂Σr−∂C

|∇r|. (2.26)

Hence we have

Mp(Σr) ≤ 1
m

sin r
cos r

cos r
∫
∂Σr−∂C

|∇r| = 1
m

sin r
cos r

d

dr

∫ r

0

∫
∂Σr−∂C

cos r|∇r|2

≤ 1
m

sin r
cos r

d

dr

∫ r

0

∫
∂Σr−∂C

cos r =
1
m

sin r
cos r

d

dr
Mp(Σr).

(2.27)

In the above inequality we used the fact that r ≤ π/2 and |∇r| ≤ 1 on Σ. Therefore we obtain

d

dr
log

[
sin−mr ·Mp(Σr)

] ≥ 0. (2.28)

This completes the proof for Σ ⊂ S
n.

The similar argument applies to Σ ⊂ H
n.

Remark 2.10. The classical monotonicity of a minimal submanifold in the Euclidean or
hyperbolic space can be found in [6, 8, 9].

In case ∂Σ − ∂C lies on a geodesic sphere, Σ automatically satisfies the radially
connectivity. In this case, the relative isoperimetric inequality can be extended to the
hyperbolic space, and to aminimal submanifold case (not necessarily aminimal surface case).
More precisely, we have the following theorem.

Theorem 2.11. Let C be a closed convex set in S
n or Hn and let Σ be an m-dimensional compact

minimal submanifold of Sn or Hn satisfying that Σ is orthogonal to ∂C along ∂Σ ∩ ∂C. Assume that
∂Σ − ∂C lies on a geodesic sphere centered at a point p ∈ ∂Σ ∩ ∂C and that r is the distance in S

n or
H

n from p ∈ ∂Σ ∩ ∂C. Furthermore, in case of Σ ⊂ S
n, assume that r ≤ π/2. Then

1
2
mmωmMp(Σ)m−1 ≤ Volume(∂Σ − ∂C)m, (2.29)

where equality holds if and only if Σ is an m-dimensional totally geodesic half-ball centered at p.
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Proof. Assume that Σ is a minimal submanifold inH
n with ∂Σ−∂C lying on a geodesic sphere.

Let R be the radius of the geodesic sphere. Since C is a convex set and the same argument
holds as in Proposition 2.6, then

Mp(Σ) =
1
m

∫
Σ
Δ cosh r ≤ 1

m

∫
∂Σ−∂C

sinh r · ∂r
∂ν

=
1
m

sinhR · Volume(∂Σ − ∂C). (2.30)

By Proposition 2.9, limr→ 0sinh
−mr ·Mp(Σr) = ωm/2. Hence

Mp(Σ) ≤ 1
m

(ωm

2

)−1/m
Mp(Σ)1/mVolume(∂Σ − ∂C) (2.31)

and so the desired inequality follows. Equality holds if and only if Σ is a cone with density at
the center equal to 1/2, or equivalently, ∂Σ∩ ∂C is a totally geodesic half-ball in H

n. A similar
proof holds for Σ ⊂ S

n.

3. Weak Relative Isoperimetric Inequalities in a Riemannian Manifold

The results in Section 2 are sharp but those require some extra assumptions on their boundary.
And the results are concerned with the modified volume. In this section, by contrast, we
obtain weak relative isoperimetric inequality which holds for any minimal surface and holds
for the usual volume.

From now on, we denote Area(Σ) as A and Length(∂Σ − ∂C) as L for simplicity.

Theorem 3.1. Let C be a closed convex set in a complete simply connected Riemannian manifold
W(K) of sectional curvature bounded above by a constant K. Assume that Σ2 is a compact minimal
surface in the outside of C such that Σ2 is orthogonal to ∂C along ∂Σ ∩ ∂C. In case of K > 0, one
assumes that diam(Σ) ≤ π/2

√
K. Then one has

πA ≤ L2 +KA2. (3.1)

To prove the above theorem, we begin with the following lemmas on the Laplacian on
functions of distance.

Lemma 3.2. Let Σ be an m-dimensional compact minimal submanifold in a simply connected
Riemannian manifold W(K) of sectional curvature bounded above by a constant K. Define r(x) =
dist(p, x) for a fixed point p ∈ W(K).

(a) If K = 0, then one has Δr ≥ (1/r)(m − |∇r|2) on Σ.

(b) If K = −k2 < 0, then one has Δr ≥ k(m − |∇r|2) coth kr on Σ.

(c) If K = k2 > 0, then one has Δr ≥ k(m − |∇r|2)cotkr on Σ.

Proof. See [6, 10] for the proof.
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Lemma 3.3. Let Σ2 be a compact minimal surface satisfying the same assumptions as in Theorem 3.1.
Define r(x) = dist(p, x) for any p ∈ ∂Σ ∩ ∂C.

(a) If K = 0, then one has on Σ

(1) Δ log r ≥ πδp.

(b) If K = −k2 < 0, then one has on Σ

(2) Δ log(sinh kr/(1 + cosh kr)) ≥ πδp,

(3) Δ log sinh kr ≥ πδp −K.

(c) If K = k2 > 0, then one has on Σ

(4) Δ log(sin kr/(1 + cos kr)) ≥ πδp if r ≤ π/2k,

(5) Δ log sin kr ≥ πδp −K if r ≤ π/2k.

Proof. For K = k2, using Lemma 3.2(c), we have

Δ log
sin kr

1 + cos kr
= div

k

sin kr
∇r = −k

2 cos kr

sin2kr
|∇r|2 + k

sin kr
Δr

≥ 2k2 cos kr

sin2kr

(
1 − |∇r|2

)
≥ 0.

(3.2)

Near p, Σ can be identifiedwith totally geodesic half-sphere with constant sectional curvature
K. Since f(r) = log(sin kr/(1 + cos kr)) is a fundamental solution of Laplacian on S

2(K),
Δf(r) = 2πδp. Hence we obtain (4).

Next for (5)we compute

Δ log sin kr = div
(
k cos kr
sin kr

∇r

)
= −k2csc2kr|∇r|2 + k cot krΔr

≥ k2csc2kr
[
2 cos2kr −

(
1 + cos2kr

)
|∇r|2

]
≥ −k2.

(3.3)

Note that

lim
r→ 0

(d/dr) log sin kr
(d/dr) log(sin kr/(1 + cos kr))

= 1, (3.4)

which proves (5) by (4).
For K = 0, using Lemma 3.2(a) and f(r) = log r being a fundamental solution of

Laplacian on R
2, we get (1).

For K = −k2, using Lemma 3.2(b) and f(r) = log(sinh kr/(1 + cosh kr)) being a
fundamental solution of Laplacian on H

2(K), we get (2). By similar argument as before, we
get (3).
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Proof of Theorem 3.1. (i) K = −k2 < 0. Let r(x) be the distance from p ∈ ∂Σ ∩ ∂C to x ∈ Σ.
Integrating Lemma 3.3(3) over Σ for the point p ∈ Σ ∩ ∂C, we get

π −KA ≤
∫
Σ
Δ log sinh kr ≤

∫
∂Σ−∂C

k coth kr · ∂r
∂ν

+
∫
∂Σ∩∂C

k coth kr · ∂r
∂ν

. (3.5)

Since the same argument holds as in Proposition 2.6, we have

π −KA ≤
∫
∂Σ−∂C

k coth kr. (3.6)

This inequality holds for all x ∈ Σ, and we can integrate it over Σ and apply Fubini’s theorem
to obtain

πA −KA2 ≤
∫
Σ

∫
∂Σ−∂C

k coth kr =
∫
∂Σ−∂C

∫
Σ
k coth kr. (3.7)

By Lemma 3.2(b) and convexity of C, we get

πA −KA2 ≤
∫
∂Σ−∂C

∫
Σ
Δr =

∫
∂Σ−∂C

∫
∂Σ−∂C

∂r

∂ν
+
∫
∂Σ−∂C

∫
∂Σ∩∂C

∂r

∂ν

≤
∫
∂Σ−∂C

∫
∂Σ−∂C

∂r

∂ν
≤ Length(∂Σ − ∂C)2.

(3.8)

(ii) K = 0. Integrate Lemma 3.3(1) twice and apply Lemma 3.2(a) as in (i).
(iii) K = k2. Integrate Lemma 3.3(5) twice and apply Lemma 3.2(c) as in (i).
This completes the proof.
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