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Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following
additive-quadratic-quartic functional equation f(x + 2y) + f(x − 2y) = 2f(x + y) + 2f(−x − y) +
2f(x − y) + 2f(y − x) − 4f(−x) − 2f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y) in complete random
normed spaces.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of influence
in the development of what we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias
stability of functional equations. A generalization of the Th. M. Rassias theorem was obtained
by Găvruţa [5] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Th. M. Rassias’ approach.



2 Journal of Inequalities and Applications

The functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [6] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [7] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [8] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems
of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [4, 9–26]).

In [27], Lee et al. considered the following quartic functional equation

f
(
2x + y

)
+ f

(
2x − y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
+ 24f(x) − 6f

(
y
)
. (1.2)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.2), which is
called a quartic functional equation and every solution of the quartic functional equation is said
to be a quartic mapping.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.1 ([28, 29]). Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d
(
Jnx, Jn+1x

)
= ∞ (1.3)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0,

(2) the sequence {Jnx} converges to a fixed point y∗ of J ,

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞},
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M. Rassias [30] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [31–36]).
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2. Preliminaries

In the sequel we adopt the usual terminology, notations and conventions of the theory of
random normed spaces, as in [37–41]. Throughout this paper,Δ+ is the space of all probability
distribution functions that is, the space of all mappings F : R ∪ {−∞,+∞} → [0, 1], such that
F is left-continuous, non-decreasing on R, F(0) = 0 and F(+∞) = 1. D+ is a subset of Δ+

consising of all functions F ∈ Δ+ for which l−F(+∞) = 1, where l−f(x) denotes the left limit
of the function f at the point x, that is, l−f(x) = limt→x−f(t). The spaceΔ+ is partially ordered
by the usual point-wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t
in R. The maximal element for Δ+ in this order is the distribution function ε0 given by

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(2.1)

Definition 2.1 ([40]). A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a + b − 1, 0) (the Łukasiewicz t-norm).

Recall (see [42, 43]) that if T is a t-norm and {xn} is a given sequence of numbers in
[0, 1], Tn

i=1xi is defined recurrently by T1
i=1xi = x1 and Tn

i=1xi = T(Tn−1
i=1 xi, xn) for n ≥ 2. T∞

i=nxi is
defined as T∞

i=1xn+i.
It is known ([43]) that for the Łukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1 − xn) < ∞. (2.2)

Definition 2.2 ([41]). A Random Normed space (briefly, RN-space) is a triple (X, μ, T), where X
is a vector space, T is a continuous t-norm, and μ is a mapping from X into D+ such that, the
following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) μαx(t) = μx(t/|α|) for all x ∈ X, α/= 0;

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 2.3. Let (X, μ, T) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists positive integer N such that μxn−x(ε) > 1 − λwhenever n ≥ N.

(2) A sequence {xn} in X is called Cauchy if, for every ε > 0 and λ > 0, there exists
positive integer N such that μxn−xm(ε) > 1 − λ whenever n ≥ m ≥ N.
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(3) A RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X. A complete RN-space is said to be random Banach
space.

Theorem 2.4 ([40]). If (X, μ, T) is a RN-space and {xn} is a sequence such that xn → x, then
limn→∞μxn(t) = μx(t) almost everywhere.

The theory of random normed spaces (RN-spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us the appropriate tools to study the geometry of
nuclear physics and have important application in quantum particle physics. The generalized
Hyers-Ulam stability of different functional equations in random normed spaces, RN-
spaces and fuzzy normed spaces has been recently studied in, Alsina [44], Mirmostafaee,
Mirzavaziri and Moslehian [33, 45–47], Miheţ and Radu [38, 39, 48, 49], Mihet, Saadati and
Vaezpour [50, 51], Baktash et al. [52] and Saadati et al. [53].

3. Generalized Hyers-Ulam Stability of the Functional Equation f(x +
2y) + f(x − 2y) = 2f(x + y) + 2f(−x − y) + 2f(x − y) + 2f(y − x) − 4f(−x) −
2f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y): An Odd Case

One can easily show that an odd mapping f : X → Y satisfies f(x + 2y) + f(x − 2y) =
2f(x+y)+2f(−x−y)+2f(x−y)+2f(y−x)−4f(−x)−2f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)
if and only if the odd mapping mapping f : X → Y is an additive mapping, that is,

f
(
x + 2y

)
+ f

(
x − 2y

)
= 2f(x). (3.1)

One can easily show that an even mapping f : X → Y satisfies f(x+ 2y) + f(x− 2y) =
2f(x+y)+2f(−x−y)+2f(x−y)+2f(y−x)−4f(−x)−2f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)
if and only if the even mapping f : X → Y is a quadratic-quartic mapping, that is,

f
(
x + 2y

)
+ f

(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

) − 6f(x) + 2f
(
2y

) − 8f
(
y
)
. (3.2)

It was shown in [54, Lemma 2.1] that g(x) := f(2x) − 4f(x) and h(x) := f(2x) − 16f(x) are
quartic and quadratic, respectively, and that f(x) = (1/12)g(x) − (1/12)h(x).

For a given mapping f : X → Y , we define

Df
(
x, y

)
:= f

(
x + 2y

)
+ f

(
x − 2y

) − 2f
(
x + y

) − 2f
(−x − y

) − 2f
(
x − y

) − 2f
(
y − x

)

+ 4f(−x) + 2f(x) − f
(
2y

) − f
(−2y) + 4f

(
y
)
+ 4f

(−y)
(3.3)

for all x, y ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

functional equation Df(x, y) = 0 in complete RN-spaces: an odd case.
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Theorem 3.1. Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ be a mapping from
X2 to D+(Φ(x, y) is denoted by (Φx,y)) such that, for some 0 < α < 1/3,

Φ3x,3y(t) ≤ Φx,y(αt)
(
x, y ∈ X, t > 0

)
(3.4)

Let f : X → Y be an odd mapping satisfying

μDf(x,y)(t) ≥ Φx,y(t) (3.5)

for all x, y ∈ X and all t > 0. Then

A(x) := lim
n→∞

3nf
(

x

3n

)
(3.6)

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

μf(x)−A(x)(t) ≥ Φx,x

(
1 − 3α

α
t

)
(3.7)

for all x ∈ X and all t > 0.

Proof. Letting x = y in (3.5), we get

μf(3x)−3f(x)(t) ≥ Φx,x(t) (3.8)

for all x ∈ X and all t > 0.
Consider the set

S :=
{
g : X −→ Y,

}
(3.9)

and introduce the generalized metric on S:

d
(
g, h

)
= inf

{
u ∈ R

+ : μg(x)−h(x)(ut) ≥ Φx,x(t), ∀x ∈ X, ∀t > 0
}
, (3.10)

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 in [38].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 3g
(
x

3

)
(3.11)

for all x ∈ X and we prove that J is a strictly contractive mapping with the Lipschitz constant
3α.



6 Journal of Inequalities and Applications

Let g, h ∈ S be given such that d(g, h) < ε. Then

μg(x)−h(x)(εt) ≥ Φx,x(t) (3.12)

for all x ∈ X and all t > 0. Hence

μJg(x)−Jh(x)(3αεt) = μ3g(x/3)−3h(x/3)(3αεt)

= μg(x/3)−h(x/3)(αεt)

≥ Φx/3,x/3(αt)

≥ Φx,x(t)

(3.13)

for all x ∈ X and all t > 0. So d(g, h) < ε implies that d(Jg, Jh) ≤ 3αε. This means that

d
(
Jg, Jh

) ≤ 3αd
(
g, h

)
(3.14)

for all g, h ∈ S.
It follows from (3.8) that

μf(x)−3f(x/3)(αt) ≥ Φx,x(t), (3.15)

for all x ∈ X and all t > 0. So

d
(
f, Jf

) ≤ α <
1
3
. (3.16)

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , that is,

A

(
x

3

)
=

1
3
A(x) (3.17)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g

)
< ∞}

. (3.18)

This implies that A is a unique mapping satisfying (3.17) such that there exists a u ∈ (0,∞)
satisfying

μf(x)−A(x)(ut) ≥ Φx,x(t), (3.19)

for all x ∈ X and all t > 0;
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(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

lim
n→∞

3nf
(

x

3n

)
= A(x) (3.20)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping;
(3) d(f,A) ≤ (1/(1 − 3α))d(f, Jf)with f ∈ M, which implies the inequality

d
(
f,A

) ≤ α

1 − 3α
, (3.21)

from which it follows

μf(x)−A(x)

(
α

1 − 3α
t

)
≥ Φx,x(t). (3.22)

This implies that the inequality (3.7) holds.
Now, we have,

μ3nDf(x/3n,y/3n)(t) = μDf(x/3n,y/3n)

(
t

3n

)
≥ Φx/3n,y/3n

(
t

3n

)
(3.23)

for all x, y ∈ X, all t > 0 and all n ∈ N.
So, we obtain by (3.4)

μ3nDf(x/3n,y/3n)(t) ≥ Φx,y

(
t

(3α)n

)
(3.24)

for all x, y ∈ X, all t > 0 and all n ∈ N.
Since limn→∞Φx,y(t/(3α)n) = 1 for all x, y ∈ X and all t > 0, by Theorem 2.4, we

deduce that

μDA(x,y)(t) = 1 (3.25)

for all x, y ∈ X and all t > 0. Thus the mapping A : X → Y is additive, as desired.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

μDf(x,y)(t) ≥ t

t + θ
(‖x‖p + ∥∥y

∥∥p) (3.26)

for all x, y ∈ X and all t > 0. Then

A(x) := lim
n→∞

3nf
(

x

3n

)
(3.27)
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exists for each x ∈ X and defines an additive mapping A : X → Y such that

μf(x)−A(x)(t) ≥ (3p − 3)t
(3p − 3)t + 2.3pθ‖x‖p (3.28)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

Φx,y(t) :=
t

t + θ
(‖x‖p + ∥

∥y
∥
∥p) (3.29)

for all x, y ∈ X. Then we can choose α = 3−p and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ be a mapping from
X2 to D+ (Φ(x, y) is denoted by Φx,y)such that, for some 0 < α < 3,

Φx/3,y/3(t) ≤ Φx,y(αt)
(
x, y ∈ X, t > 0

)
. (3.30)

Let f : X → Y be an odd mapping satisfying (3.5). Then

A(x) := lim
n→∞

1
3n

f(3nx) (3.31)

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

μf(x)−A(x)(t) ≥ Φx,x((3 − α)t) (3.32)

for all x ∈ X and all t > 0.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (3.26). Then

A(x) := lim
n→∞

3−nf(3nx) (3.33)

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

μf(x)−A(x)(t) ≥ (3 − 3p)t
(3 − 3p)t + 2θ‖x‖p (3.34)

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 3.3 by taking

μDf(x,y)(t) ≥ t

t + θ
(‖x‖p + ∥

∥y
∥
∥p) (3.35)

for all x, y ∈ X. Then we can choose α = 3p and we get the desired result.

4. Generalized Hyers-Ulam Stability of the Functional Equation f(x +
2y) + f(x − 2y) = 2f(x + y) + 2f(−x − y) + 2f(x − y) + 2f(y − x) − 4f(−x) −
2f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y): An Even Case

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0 in random Banach spaces: an even case.

Theorem 4.1. Let X be a linear space, let (Y, μ, TM) be a complete RN-space and Φ be a mapping
from X2 to D+ (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/16,

Φx,y(αt) ≥ Φ2x,2y(t)
(
x, y ∈ X, t > 0

)
. (4.1)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then

Q(x) := lim
n→∞

16n
(
f

(
x

2n−1

)
− 4f

( x

2n
))

(4.2)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥ TM

(
Φx,x

(
1 − 16α

5α
t

)
,Φ2x,x

(
1 − 16α

5α
t

))
(4.3)

for all x ∈ X and all t > 0.

Proof. Letting x = y in (3.5), we get

μf(3y)−6f(2y)+15f(y)(t) ≥ Φy,y(t) (4.4)

for all y ∈ X and all t > 0.
Replacing x by 2y in (3.5), we get

μf(4y)−4f(3y)+4f(2y)+4f(y)(t) ≥ Φ2y,y(t) (4.5)

for all y ∈ X and all t > 0.
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By (4.4) and (4.5),

μf(4x)−20f(2x)+64f(x)(5t)

≥ TM
(
μ4(f(3x)−6f(2x)+15f(x))(4t), μf(4x)−4f(3x)+4f(2x)+4f(x)(t)

)

≥ TM(Φx,x(t),Φ2x,x(t))

(4.6)

for all x ∈ X and all t > 0. Letting g(x) := f(2x) − 4f(x) for all x ∈ X, we get

μg(x)−16g(x/2)(5t) ≥ TM(Φx/2,x/2(t),Φx,x/2(t)) (4.7)

for all x ∈ X and all t > 0.
Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Now we consider the linear mapping J : S → S such that

Jh(x) := 16h
(x
2

)
(4.8)

for all x ∈ X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant 16α.

It follows from (4.7) that

μg(x)−16g(x/2)(5αt) ≥ TM(Φx,x(t),Φ2x,x(t)) (4.9)

for all x ∈ X and all t > 0. So

d
(
g, Jg

) ≤ 5α ≤ 5
16

< ∞. (4.10)

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , that is,

Q
(x
2

)
=

1
16

Q(x) (4.11)

for all x ∈ X. Since g : X → Y is even with g(0) = 0, Q : X → Y is an even mapping with
Q(0) = 0. The mapping Q is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g

)
< ∞}

. (4.12)

This implies that Q is a unique mapping satisfying (4.11) such that there exists a u ∈ (0,∞)
satisfying

μg(x)−Q(x)(ut) ≥ TM(Φx,x(t),Φ2x,x(t)) (4.13)

for all x ∈ X and all t > 0;
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(2) d(Jng,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

16ng
( x

2n
)
= Q(x) (4.14)

for all x ∈ X;
(3) d(h,Q) ≤ 1/(1 − 16α)d(h, Jh) for every h ∈ M, which implies the inequality

d
(
g,Q

) ≤ 5α
1 − 16α

. (4.15)

This implies that the inequality (4.3) holds.
Proceeding as in the proof of Theorem 3.1, we obtain that the mapping Q : X → Y

satisfies f(x + 2y) + f(x − 2y) = 2f(x + y) + 2f(−x − y) + 2f(x − y) + 2f(y − x) − 4f(−x) −
2f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y).

Now, we have

Q(2x)−16Q(x)= lim
n→∞

[
16ng

(
x

2n−1

)
−16n+1g

( x

2n
)]

=16 lim
n→∞

[
16n−1g

(
x

2n−1

)
−16ng

( x

2n
)]

=0

(4.16)

for every x ∈ X. Since the mapping x → Q(2x) − 4Q(x) is quartic (see [54, Lemma 2.1]), we
get that the mapping Q : X → Y is quartic.

Corollary 4.2. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.26). Then

Q(x) := lim
n→∞

16n
(
f

(
x

2n−1

)
− 4f

( x

2n
))

(4.17)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥ (2p − 16)t
(2p − 16)t + 5(1 + 2p)θ‖x‖p (4.18)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

μDf(x,y)(t) ≥ t

t + θ
(‖x‖p + ∥∥y

∥∥p) (4.19)

for all x, y ∈ X. Then we can choose α = 2−p and we get the desired result.
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Similarly, we can obtain the following. We will omit the proof.

Theorem 4.3. Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ be a mapping from
X2 to D+ (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 16,

Φx,y(αt) ≥ Φx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (4.20)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then

Q(x) := lim
n→∞

1
16n

(
f
(
2n+1x

)
− 4f(2nx)

)
(4.21)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥ TM

(
Φx,x

(
16 − α

5
t

)
,Φ2x,x

(
16 − α

5
t

))
(4.22)

for all x ∈ X and all t > 0.

Corollary 4.4. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.26). Then

Q(x) := lim
n→∞

1
16n

(
f
(
2n+1x

)
− 4f(2nx)

)
(4.23)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥ (16 − 2p)t
(16 − 2p)t + 5(1 + 2p)θ‖x‖p (4.24)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

μDf(x,y)(t) ≥ t

t + θ
(‖x‖p + ∥∥y

∥∥p) (4.25)

for all x, y ∈ X. Then we can choose α = 2p and we get the desired result.

Theorem 4.5. Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ be a mapping from
X2 to D+ (Φ(x, y) is denoted by Φx,y)such that, for some 0 < α < 1/4,

Φx,y(αt) ≥ Φ2x,2y(t)
(
x, y ∈ X, t > 0

)
. (4.26)
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Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then

T(x) := lim
n→∞

4n
(
f

(
x

2n−1

)
− 16f

( x

2n
))

(4.27)

exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ TM

(
Φx,x

(
1 − 4α
5α

t

)
,Φ2x,x

(
1 − 4α
5α

t

))
(4.28)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 4.1.
Letting g(x) := f(2x) − 16f(x) for all x ∈ X in (4.6), we get

μg(x)−4g(x/2)(5t) ≥ TM(Φx/2,x/2(t),Φx,x/2(t)) (4.29)

for all x ∈ X and all t > 0.
It is easy to see that the linear mapping J : S → S such that

Jh(x) := 4h
(x
2

)
, (4.30)

for all x ∈ X, is a strictly contractive self-mapping with the Lipschitz constant 4α.
It follows from (4.29) that

μg(x)−4g(x/2)(5αt) ≥ TM(Φx,x(t),Φ2x,x(t)) (4.31)

for all x ∈ X and all t > 0. So

d
(
g, Jg

) ≤ 5α < ∞. (4.32)

By Theorem 1.1, there exists a mapping T : X → Y satisfying the following.
(1) T is a fixed point of J , that is,

T
(x
2

)
=

1
4
T(x) (4.33)

for all x ∈ X. Since g : X → Y is even with g(0) = 0, T : X → Y is an even mapping with
T(0) = 0. The mapping T is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g

)
< ∞}

. (4.34)
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This implies that T is a unique mapping satisfying (4.33) such that there exists a u ∈ (0,∞)
satisfying

μg(x)−T(x)(ut) ≥ TM(Φx,x(t),Φ2x,x(t)) (4.35)

for all x ∈ X and all t > 0;
(2) d(Jng, T) → 0 as n → ∞. This implies the equality

lim
n→∞

4ng
( x

2n
)
= T(x) (4.36)

for all x ∈ X;

(3) d(h, T) ≤ 1
1 − 4α

d(h, Jh) for each h ∈ M, which implies the inequality

d
(
g, T

) ≤ 5α
1 − 4α

. (4.37)

This implies that the inequality (4.28) holds.
Proceeding as in the proof of Theorem 4.1, we obtain that the mapping T : X → Y

satisfies f(x + 2y) + f(x − 2y) = 2f(x + y) + 2f(−x − y) + 2f(x − y) + 2f(y − x) − 4f(−x) −
2f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y).

Now, we have

T(2x) − 4T(x) = lim
n→∞

[
4ng

(
x

2n−1

)
− 4n+1g

( x

2n
)]

= 4 lim
n→∞

[
4n−1g

(
x

2n−1

)
− 4ng

( x

2n
)]

= 0

(4.38)

for every x ∈ X. Since the mapping x → T(2x) − 16 T(x) is quadratic (see [54, Lemma 2.1]),
we get that the mapping T : X → Y is quadratic.

Corollary 4.6. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.26). Then

T(x) := lim
n→∞

4n
(
f

(
x

2n−1

)
− 16f

( x

2n
))

(4.39)

exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ (2p − 4)t
(2p − 4)t + 5(1 + 2p)θ‖x‖p (4.40)

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 4.5 by taking

Φx,y(t) :=
t

t + θ
(‖x‖p + ∥

∥y
∥
∥p) (4.41)

for all x, y ∈ X. Then we can choose α = 2−p and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 4.7. Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ be a mapping from
X2 to D+ (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 4,

Φx,y(αt) ≥ Φx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (4.42)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then

T(x) := lim
n→∞

1
4n

(
f
(
2n+1x

)
− 16f(2nx)

)
(4.43)

exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ TM

(
Φx,x

(
4 − α

5
t

)
,Φ2x,x

(
4 − α

5
t

))
(4.44)

for all x ∈ X and all t > 0.

Corollary 4.8. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.26). Then

T(x) := lim
n→∞

1
4n

(
f
(
2n+1x

)
− 16f(2nx)

)
(4.45)

exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ (4 − 2p)t
(4 − 2p)t + 5(1 + 2p)θ‖x‖p (4.46)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 4.7 by taking

Φx,y(t) :=
t

t + θ
(‖x‖p + ∥∥y

∥∥p) (4.47)

for all x, y ∈ X. Then we can choose α = 2p and we get the desired result.
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References

[1] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied
Mathematics, no. 8, Interscience, New York, NY, USA, 1960.

[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 27, pp. 222–224, 1941.

[3] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical
Society of Japan, vol. 2, pp. 64–66, 1950.

[4] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American
Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
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