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We generalize means of Stolarsky type and show the monotonicity of these generalized means.

1. Introduction and Preliminaries

The following double inequality is well known in the literature as the Hermite-Hadamard
(H.H) integral inequality

a+b 1 (" f(a) + f(b)
f( 5 ) < m J‘a f(x)dx < T, (11)

provided that f : [a,b] — R is a convex function [1, page 137], [2, page 1].

This result for convex functions plays an important role in nonlinear analysis.
These classical inequalities have been improved and generalized in a number of ways and
applied for special means including Stolarsky type, logarithmic, and p-logarithmic means. A
generalization of H.H inequalities was obtained in [3-5], [2, page 5], and [1, page 143].

Theorem 1.1. Let p, g be positive real numbers and ay, a, b, by be real numbers such that a; < a <
b < by. Then the inequalities

b A+y b
f(P;:Z )s% ) f(x)dxsp—f(ar))izf( ) (1.2)
-y
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hold for A = (pa +gb)/(p +q), y > 0, and all continuous convex functions
f:la,bi] = Rifand only if y < (b—a)/(p +q) min{p, q}. (1.3)

Remark 1.2. The inequalities given by (1.2) are strict if f is a continuous strictly convex
on [ay, bi].
If we keep the assumptions as stated in Theorem 1.1, we also have [1, page 146]

1 _(patgb\ _pf(@)+qf(b) 1 (A
2 ) as f(x)dx f( T >s o % )y f(x)dx. (1.4)

The above inequality is strict, when f is strictly convex continuous function.
Let us define F' : C[a,b] — R fori =1,2,3 by differences of (1.2) and (1.4)

b M
F'(fip,q;a,b,y) = p(@) +4f () _ Zif f(x)dx,

p+q
) -4 _f(Parab 15
Plimgaby) =5 e (P, (15)
3 pf(a)+qf(b) pa+tagb\ 1
Flfipgaby) == f( P ) yfm f(x)dx,

wherem=A-y, M=A+y.

Remark 1.3. 1t is clear from inequalities (1.2) and (1.4) that if the conditions of Theorem 1.1
are satisfied and f € K,[a, b] (f is continuous convex on [a, b]), then

F'(f;p,q;aby) >0, fori=1,23. (1.6)

Consider the following means:

bt 1/(t-r)
<tr((yyr_;fr;> O tr(t-r) 20,

1/r
yr_xr
_ , 0, t=0,
<r(logy—logx)> r#

o\ V)
e‘l/’<7> , t:T#O,
Y

/XY, t=r=0,

Es(x,y) =3 (1.7)
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where x, v € (0, 0) such that x# y and r,t € R These means are known as Stolarsky means.
Namely, Stolarsky introduced these means in 1975 (see [1, page 120]) and proved that for
r <wuand t < v one can get

E.i(x,y) <Euo(x,y) forx,y€(0,00), x#y. (1.8)

Some simple proofs of inequality (1.8) and related results on means of Stolarsky type are
given in [6].

The aim of this paper is to prove the exponential convexity of the functions deduced
from (1.5) and apply these functions to generalize the means of Stolarsky type, and at last we
prove the monotonicity property of these new means.

We review some necessary definitions and preliminary results.

Definition 1.4 (see [7]). A function f : (a,b) — R is exponentially convex if it is continuous
and

i &g f (xi +xj) 20, (1.9)

ij=1

foreachn € Nandevery ¢ € R, i=1,...,nsuchthatx; + x; € (a,b),1<i,j <n.

Proposition 1.5 (see [7]). Let f : (a,b) — R, be a function. Then f is exponentially convex if and
only if f is continuous and

iéé,-f(xi ; xj) >0, (1.10)

i,j=1

forallme N, ¢ € Rand x; € (a,b), 1 <i<n.

Definition 1.6 (see [1]). A function f : I — R*, where I is an interval in R, is said to be log-
convex if log f is convex, or equivalently if for all x,y € I and all « € [0, 1], one has

flax+(1-a)y) < fx) f*(y). (1.11)

Corollary 1.7 (see [7]). If f : (a,b) — R* is exponentially convex then f is log-convex function.
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The following lemma is another way to define convex function [1, page 2].

Lemma 1.8. If f is a convex on an interval I C R, then

f(s1)(s3—82) + f(s2) (51— 83) + f(53) (51 —52) 20 (1.12)

holds for each s1 < sy < s3, where s1,52,53 € 1.

In Section 2, we prove the exponential and logarithmic convexity of the functions
deduced from (1.5). We also prove related mean value theorems of Cauchy type.

2. Main Results

The following lemma gives us very important family of convex functions.

Lemma 2.1 (see [7]). Consider a family of functions ¢, : (0,00) — R, r € R defined as

xr
re-ny 7O
¢r(x) = —logx, r=0, (2.1)

xlogx, r=1

Then ¢, is convex on (0, o0) for each v € R

Theorem 2.2. Let p, q, a, b, A, and y be positive real numbers such that

a=pera y< 272 min{p,q),
p+q p+q (2.2)

J(r) = F(¢s;p,q;a,b,y), i=1,23,

a<b,

where ¢, is defined in Lemma 2.1. Then

(i) matrix [Cfi((r,- + rk)/Z)]?/k=1 is positive semidefinite for eachn € N and ry,..., 1, € R
particularly,

A + Tk p
det [3’(—)] >0 forl<p<m (2.3)
2 jk=1

(ii) the function r — J'(r) is exponentially convex on R;
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(iii) if 3'(r) > 0, then the function r — Ji(r) is a log-convex on R and the following inequality
holds for r,s,t € R such that r <s < t;

(7)< (3n) " (Fo) (2.4)
Proof. (i) Consider the function
p(x) = > ujugdy, (x) (2.5)
jk=1

for 1 <p <n, x> 0u; € R, where u; is not identically zero and rjx = (r; +1¢)/2

n
P (x) = D wjux
jk=1

2
n
= < u]-x(rf/z)_1> >0, x>0.
j=1

This shows that p is a convex function for x > 0. By setting f = u in (1.5), respectively and
from Remark 1.3, we get

(2.6)

L pd)rjk ((1) + ‘M’m (b) 1 IM
[ - — (x)dx ) >0,
j,kzzl ! < p+q 2y ) P
n 1 J‘M pa+qgb
uiue| — . (x)dx— . < > >0, 2.7
=) ] k<2y m (Iblk ¢Jk P+q ( )
L p¢’jk (a) + q()bfjk(b) (Pa + qb> 1 J‘M
u;u + ¢, - s (X)dx ) >0,
]',kz=1 Jk< p+a Pl vq )yl
or equivalently
n .
ujurJ (rjk) > 0. (2.8)

jk=1
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Therefore the given matrix is a positive semidefinite. By using well-known Sylvester criterion,
we have

[T+ Tk P
det [T<T)] >0 foreachl<p<n. (2.9)
jl=1

(i) Since lim, _,;J%(r) = Ji(I) for I = 0,1, it follows that J' is continuous on R. Therefore,
by Proposition 1.5 for f = J, we get exponential convexity of J' on R.

(iii) Let J'(r) > 0, then the log-convexity of J' is a simple consequence of Corollary 1.7.
By setting f =log J', s1 =1, s2 =5, 53 =t in Lemma 1.8, we have

(t—7r)logJ'(s) < (t—s)logJ'(r) + (s — )T (t), (2.10)

which implies (2.4). I
We will use the following lemma in the proof of mean value theorem.

Lemma 2.3 (see [1, page 4]). Let f € C*([a,b]) such that

a< f'(x)<p VYxela,b]. (2.11)

If one considers the functions hy, hy, defined by

2
ax
)= - f),
(2.12)
px?
ha(x) = f(x) - 5 v
then hy and h, are convex on [a, b].
Proof. Therefore
hix) = a- f'(x) 20,
(2.13)

Hy(x) = f'(x) - >0,

that is, h; for j = 1,2 are convex on [a, b]. [

Theorem 2.4. Let p, q, a, b, A, and y be real numbers as given in Theorem 1.1. If f € C?([a,b])
then there exists ¢ € [a, b] such that

F'(fip,qaby) = f 2@) Fi<x2;p, g;a,b, y) fori=1,2,3. (2.14)
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Proof. Since f € C?([a,b]), we can take that a < f” < . Now in Remark 1.3, replacing f by
hj, j =1, 2 defined in Lemma 2.3, we have

Fi(hj;p,q;a,b,y) 20 forj=1,2. (2.15)

This gives

F(fx)ip,q:aby) < gF"(xz;r»q; aby),

(2.16)
gFi<x2;p,q; a,b,y) <F(f(x);p.q:a,b,y).

Combining (2.16) and (14), we get

;Fi(xz;p,q; a,b,y> <Fi(f(x);p,q:a,b,y) < gFi(xz;p,q; a,b,y>- (2.17)
By using Remark 1.2
Fi <x2;p, q;a,b, y> >0, (2.18)
therefore

2F'(f(x);p,4;a,b,y) <p (2.19)

Fi(x%p,q;a,b,y)

We get the required result. Il

Theorem 2.5. Let p, g, a, b, A, and y be real numbers as given in Theorem 1.1. If f, g € C*([a, b])
such that §"(x) do not vanish for any x € [a, b], then there exits ¢ € [a, b] such that

F(f;p.qaby) f'@)

: = fori=1,2,3. (2.20)
Fi(g;p,q;a,by)  £"(8)

Proof. Define functions ¢’ € C?([a,b]),i=1,2,3 by

P =cg-cf, (2.21)
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where

¢, =F'(f;p,q:a,b,y),

- (222)
¢, =F(gp,qaby).

Then using Theorem 2.4 for f = ¢i, we have

0= <c11 g"z(é) - cé fﬁz@) >Fi <x2;p, g;a,b, y). (2.23)
Using Remark 1.2
F' <x2;p, q;a,b, y> >0, (2.24)
therefore
]
which is clearly (2.20).

Corollary 2.6. If p, g, a, b, A, and y are real numbers as defined in Theorem 1.1 then for —co < r,
t < oo, r#t, r#0,1 and there exists ¢ € [a, b] such that

tt-1 Fi r; ' q; /b/
ot 2 VPP giaby) oy, g (2.26)
r(r—1)Fi(x';p,q;a,b,y)

Remark 2.7. If the inverse of f"/g" exists, then from (2.20) we get

Fi(g;p,q;a,b,y)

"\ /Fi(f;p,qa,b,
§:<é> < (fip.ga w) fori=1,23.

(2.27)
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3. Means of Stolarsky Type

Expression (2.27) gives the means. We can consider

F'(¢r;p,q;0,b,y)
Fi(¢s;p,q;a,b,y)

1/(r—t)
Ei/t(p,q; a,b,y) = < > , r#t fori=1,2,3 (3.1)

as a means in the broader sense. Moreover we can extend these means in other cases. Consider
the following functions to cover all continuous extensions of (3.1):

1 Par+qbr ML — gt
r(r—l)[ p+q 2y(r +1) r#-101,
pb+qa  logM —logm o1
2ab(p +q) by '
3(r) = 5 Mllog M -1] -m[logm-1] ploga+qlogb 0
- r: 4
2y p+q
paloga+qblogb_l_ o
p+q
1 ML gt pa+qb r
Mr—D[ 2y(r+1) _< p+q )]’ 7 oLoL
log M —logm p+q
_ , r=-1,
32(1,.):< 4y 2(pa+qb)
1Og<pa+qb _ M[log M -1] - m[logm -1] 0
P:Z +gb 2 , ,
r- 2o (2, r=1,
L Ptq p+q
( r b’ b r r+1 _ o, r+1
1 pa +q +<pa+q) _M m r#-1,0,1,
rr-1)] p+q P+q y(r+1)
pb+ga L P*q _log M —logm I
2ab(p+q)  2(pa+qb) 2y 7 '
P (r) = 5 MllogM —-1] -m[logm—1] ploga+qlogb | (pa+qb> 0
- -lo , r=0,
y p+q & p+q
paloga+qblogb+pa+qb log<Pa+qb>—1]—2F ,o1
P+q pPt+q pt+q
(3.2)

where I' = (M?[2log M — 1] - m?*[2logm - 1])/8y.
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We have
o 1/(r-t)
<F(¢nnq/a,b,y>> ' rit
Fi(¢i;p,q:a,b,y)
exp e _F’(¢o¢r;p,q;a,b,y) r=t#-1,0,1
r(r-1) Fi(¢r;p,q;a,b,y) ’ Y

exp<3_Fi(¢0¢—1;qu;a/b/3/>> F=t=—

E.(p.g;a,by) = 2 F@aipaaby) 53

Fi(¢%p,q;a,b,
exp( 1- (¢0pqa y) , r=t=0,
2F(¢o;p,q;a,b,y)

Fi ;p.q;a,b,
exp| -1- (¢0¢1an y) , r=t=1,
2Fi(¢1;p,q;a,b,y)

\

fori = 1,2,3. We will use the following lemma to prove the monotonicity of Stolarsky type
means.

Lemma 3.1. Let f be log-convex function, and if r < u, t < v, r#t, u#v, then the following
inequality is valid:

The proof of this Lemma is given in [1].

Theorem 3.2. Let p, g, a, b, A, and y be real numbers as defined in Theorem 1.1 and let r,t,u,v € R
such that r < u, t < v, then the following inequality is valid:

Ei,t (p,ga,b,y) < ij (p,gsa,b,y) fori=1,2,3. (3.5)

Proof. For a convex function ¢, a simple consequence of the definition of convex function is
the following inequality [1, page 2]:

$(x1) —Pplx2) _ P(v2) - p(y1)

X2 — X1 - -y

, with x1 Sy1, X <y, X1 #X2, Y1#Yo. (3.6)

AsJiis log-convex we set ¢(r) = log J(r),x1=1,x =t, Y1 = v, y» = uin the above inequality
and get

log 3i(r) — log J'(t) - log 3! (u) — log J'(v)

r—t uU-°v (3.7)

which is equivalent to (3.5) for t # r, u # v. By continuity of 3/, (3.5) is valid fort =r,u = v. ||
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Remark 3.3. If we substitute p = g =1 and replacer — r—1landt — t-1in Ei,t(p, g a,b,y),

fori =1,2,3, then means of Stolarsky type and related results given in [6] are obtained.

4. Generalized Means of Stolarsky Type
By substitinga — a®,b — b°,y — y°,r = r/s,t = t/s,¢{ — &5 in (2.26), we get

~ t(E - S)Fi(xr/s,‘p, q; as, bs, ys)

a B i 4 0’ t f | = 1/2/3- 41
‘ r(r —s)Fi(x!/s;p,q; a®,b°, y°) s#0, t#riort (4.1)

It follows that

Fi(¢r/s;p,q;a°,b°, y°)
Fi(¢i/s;p, q; a°,b%, y°)

1/(r—t)
Ei/t;s(p, g;a°,b%,y°) = < > , s#0,t#rfori=1,2,3. (4.2)

To get all continuous extension of (4.2), we consider

s bs 1/s
o [ g

p+tq
(apbq)l/(PW), s=0,
b —as ) 1/s (4.3)
. m1n{p,q}> , s#0,
YS9 /p\ Viprayminipa)
<a> p s=0.
For s#0, we define
IL(r) = F{($r/s;p, q;a°,b°,y°) fori=1,2,3, (4.4)

where {¢,;r € R} is the family of functions defined in Lemma 2.1. Here we
have Fi(f;p,q; a°,b°,y°) defined as

as) + bs 1 Mg
Fi(fip.q:a”b%y°) = % Toys ) A%

1 (M pa’® +qb°
2(¢. a5 BS 15) = _ 45
P(fipagaby) =, [ feode- (BT, 45)

S+ gbs Pf(as)'*'UIf(bs) 1 M;
FS P, ;aS/ bS’ %) = <pa q > + - g (x)dx/
(fip.a )=y P v, !

wherei=1,2,3, m; = A°—y°,and M = A®° + y°.
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We have

r 2 par +qbr 5 M§r+s)/s _mgﬂs)/s
- 7 r# _SIOIS/
r(r-s)| p+gq r+s 2ys
pb® + qa® log M, — log m;
- r=-5
2asbs(p + 4ys ’ ’
Tir) = 4 (p+4) y
(M) [log Mg — 1] — m;[log ms — 1] P log a+qlog b -0
2y° ptq '
°1 b°log b
(P’ log a+qb°log . s
. p+q
s s M9 reass <Pa5+qbs>r/s , 1#-50,s,
r(r=s)|r+s 2ys p+q
log M — log m < p+q >s
- r=-s,
4ys 2(pas + gb®
2(r) < | y (pa® +qb°)
M;[log M — 1| —mg, |l -1 s s
s [log M. — 1] sms[ogms ]—sloglL +ab , r=0,
2y p+q (4.6)
S bs S S bs
rs_s<u) log<u), T:S,
p+q p+q

( 572 |:pa7’ +qb" . <Pas + qbs>r/s s M§r+s)/s _ m£r+s)/s]
y* ’

rir=s)| p+q p+q r+s
r# -5s,0,s;
pb° + qa® p+a '\ _logM; -logm
— ; r=-5,
3( ) 2asbs(p+q) 2(Pa5+qbs) 2ys
Js(r) = 3
’ M [log M, — 1] - ms[logm, 1] (pa5+qbs)
— 510 -
y® & ptq
I log b
_plogatqlogh r=o
pPtq
1 1 s s\ S s s
jpalog a+qb ogb+s<r’a +0lb> lo <M>_zrs, r=s,
p+q p+q p+q

where I’y = (M*[2log M — 1] - ms?[2log ms — 1])/8y°.



Journal of Inequalities and Applications 13

For s = 0, we consider a family of convex functions {¢, : € R} defined on R by

g =147 (4.7)
2 _

We have fi(f; p,q;log a,log b,log y),i=1,2,3 defined as

- pf(log a) +qf(logb) 1 f g M
F'(f;p,q;log a,log b,lo = - x)dx,
(f3p,4;10g a,log b, log ) P 2108 7 Jiogm 7 )
_ log M (log a) + q(log b)
F?(f;p,a;lo¢ a,log b,1o = J. (x)dx - p ,
(fip,@:log alog b/log y) = 570~ ogm f paa
flog )+ aflogt)
- log a +qglog b pf(log a) +qf(log b
F3(f;p,a;lo¢ a,log b,1o = (P ) +
(fip,q;log a,log b,log y) = f Vi a P
1 log M
- log Yy J‘logm f(x)dxl
where log m = log((aPb9)" #*9 /), log M = log(y(a?b?)" ?*9). Now for
3.(r) = F'(¢r;p,q;log a,log b,log y) fori=1,2,3,
(1 pa’ +gb" (aPb)"/ Pra) (y* - 1) .
o )T pra 2rylog y ' o
JO(r) ) 1 p10g2a+q10g2b 1 2( pbq)l/(p+q) 11 2 _ 0
2 P og” (a Jlog’y|, =0,
(1 [ (aP b r/(p+q) (,,2r _ 1
Ry =17 ( )Zryr log(;yy L @by o0 |, s, (4.9)
sy =471L
\ élog2 Y, r=0,
(1 'par +qb" . (apbq)f/(PW) ~ (anQ)r/(PWI) (er -1) r£0
Bry=d"L Pra . ry"log y
3(r) =
1 plOg a+q10g b 2 p1g 1/ (p+q) 2 2 _
k2[ — —log” (a”b1) —3logy, r=0.
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We get means

r#t, se R\ {0},

( i . « A4S 1S .S 1/(r-t)
F((,br/s/P/q;a/b/]/) !
Fi(¢u/s:p.q; a°, 0, y°)

< r—2s  F(¢opr/s;p, a4 as,bs,ys)>
exp

_ ' r = t, T'2 —Trs 0,
r(r—s)  sFi(¢r/s;p,q;a°,b% y°) ’

ool 3 _Fdodupaav,y) F=t=—s, s#0
P\ 25 sFi(¢p-1;p,q; a°,b°,y°) , /
Fi 2; 7 ; s/ bs/ °
N D
. S ! / 7 ;a 4 4
E,ps(p.g;a°,b°,y°) =5 v ’
oo 1 F@opiip.ga by r=t=s, s#0
p s 2SFi(¢1;P, q; as, bs, ys> ’ ’
op( 2 FCwipalogalogblogy)\ g
* Fi(gr;p,q;log a,log b,log y) / ,
exp Fi(xg; p, 4;10g a,log b, log y>> ret=s=0
3Fi(yo; p, 4;10g a,log b, log y) ,
\
(4.10)

fori=1,2,3.
Theorem 4.1. Theorem 2.2 is still valid if one sets ¢, = ¢,
Proof. The proof is similar to the proof of Theorem 2.2. ]

Theorem 4.2. Letp, q, a,b, A, and y are real numbers as defined in Theorem 1.1 also letr,t,u,v € R
such that r < u, t < v, then the following inequality is valid:

Ei,t;s (p,q;a%,b°,y°) <E.,...(p,g;a°, b%,y°) fori=1,2,3. (4.11)

u,v;s

Proof. For s #0, in this case we use Lemma 3.1 for f = 3%, and we have that

. 1/(r-t) . 1/(u-v)
) J'(u)
Ga) <Gi) 1
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fort,r,u,ve R, r<u,t<v,r#t, u#v. For s >0, by substitutinga — a*>,b — b*,r — r/s,
t—t/s, u— u/s, v — v/s,suchthatr/s<u/s,t/s<v/s,t#r, u#vin (4.12), we get

Jls(r) s/(r—t)< Jls(u) s/ (u-v) (4'13)
(1) “\ %) ‘

For s < 0, by substituting 3'(r) = Ji(r),a — a%>, b — b, r — r/s, t — t/s,u — u/s,
v — v/s,suchthatu/s <r/s, v/s<t/s,in (4.12) we have

Cfé(u) s/ (u—v) . 32(1’) s/(r—t) (4 14)
J4(v) ~\ 3 ' '

By raising power 1/s, to (4.13) and —(1/s), to (4.14), we get (4.11) for t #7, u#v.
For s = 0, since J(r) is log-convex function, therefore Lemma 3.1 implies that for
r<u,t<uv,t#r,u#v, wehave

E.,o(p,q;log a,log b,log y) < E, ., (p,q;10g a,log b,log y), (4.15)

which completes the proof. I

Remark 4.3. 1f we substitutep=g=1,s — s—1,andt — t -1 in the above results, then the
results of generalized Stolarsky type means proved in [6] are recaptured.
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