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Video applications using mobile wireless devices are a challenging task due to the limited capacity of batteries. The higher complex
functionality of video decoding needs high resource requirements. Thus, power efficient control has become more critical design
with devices integrating complex video processing techniques. Previous works on power efficient control in video decoding systems
often aim at the low complexity design and not explicitly consider the scalable impact of subfunctions in decoding process, and
seldom consider the relationship with the features of compressed video date. This paper is dedicated to developing an energy-
scalable video decoding (ESVD) strategy for energy-limited mobile terminals. First, ESVE can dynamically adapt the variable
energy resources due to the device aware technique. Second, ESVD combines the decoder control with decoded data, through
classifying the data into different partition profiles according to its characteristics. Third, it introduces utility theoretical analysis
during the resource allocation process, so as to maximize the resource utilization. Finally, it adapts the energy resource as different
energy budget and generates the scalable video decoding output under energy-limited systems. Experimental results demonstrate
the efficiency of the proposed approach.

1. Introduction

With the growing popularity of portable video applica-
tions, such as portable video smart phones, mobile video
terminals such as PDA, and vehicle DVD devices energy
consumption of video decoders becomes an important
design requirement. Lots of compression codecs are issued
for the several major video code standards, including
MPEG4/2, H.264/3, and AVS. Generally, decoders focus on
the performance while rarely support dynamic decoding
process to meet the variable energy resources. However,
most portable video application devices operate on batteries
with limited-energy supply. The capacity of battery in
portable devices is limited, as well as the usable capacity
of the battery declines with using time. Thus, power
should be used economically to provide longer service
time. Then, how to make the video decoder adapt resource
in handheld devices? How to maximum video decoding
quality under battery constraint when playing on portable

terminals? This paper tries to answer above-mentioned
questions.

In this paper, we proposed simple, energy-scalable video
decoding algorithms for energy constraint terminals to save
power and improve video quality. Moreover, we comple-
ment these algorithms with device energy aware method
to lengthen the available time of video services. This is
implemented through maximizing the decoded available
video frames at a given power budget. The algorithm, called
ESVD, means an integrated energy-scalable video decoding
framework for low-power video decoding applications.
ESVD uses energy profiles as scalable management guideline.
Each energy profile is equivalent to an energy constraint
budget. On such ESVD, algorithms use utility theory to
find the best energy levels for each of the subfunctions in
decoding.

In ESVD system, video decoder can dynamically adapt
the variable energy resources through energy aware tech-
nique. ESVD helps the decoder combine decoded data
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with the decoding process. Video decoder can work under
variable energy resources constraint marked with different
energy consumption budgets and provide a wide scope
adjustable decoding energy output. Besides, it uses utility
theory to solve the tradeoff between decoding effect and
energy consumption, so as to obtain better performance in
each energy levels.

This paper is organized as follows. Section 2 describes
related work; Section 3 gives label and parsing method so as
to provide a sufficient conditions for the ESVD; Section 4
describes the energy-scalable video decoding algorithms;
Section 5 evaluates them; and Section 6 concludes.

2. RelatedWork and Backgrounds

The contributions of the paper are related to several areas of
work, which we consider in turn.

2.1. Designing Low-Power Video Encoders

2.1.1. Scalable Video Decoders on Terminals. De Schrijver
et al. [1] study the scalable video codec. They consider
the memory, processing power, and bridge these with
amount of bandwidth which comes from video fragment.
Thus, scalable function is from the encoded scalable video
bitstreams. Yanagihara et al. [2] propose CPU load-scalable
video decoder algorithm, it uses several DCT manipulations
such as low-pass filtering and resolution conversion in DCT
domain. The decoder aims at the application of multichannel
multicast system. Their work is rudimental to ours. Landge
et al. [3] propose a systematic framework to optimize the
energy consumption. They are in view of wavelet-based video
decoders and use generic computational complexity metrics
derived from the frequency of execution of program basic
blocks. Since the decoder often does not know beforehand
the encoded streams, this scalable function is obtained
postmanufacturing and is unique to each codec system.

2.1.2. Designing Low-Power Video Decoders. Masselos et al.
[4] design a low-power decoders based on the replacement
of the image block by the selected codeword in the out-
put image. Besides, they use efficient transformations to
the codewords to compensate for the quality degradation
introduced by the small codebook size in the encoder side.
This method reduces its memory requirements so that it gets
lower power consumption. Szu- Lee and Kuo [5] integrate
the encoder selected proper interprediction modes and then
generate a video bit stream. This method enables the encoder
to estimate the decoding complexity and choose the best
inter prediction mode to meet the complexity constraint of
the target decoding platform. In a word, these methods rely
on the encoder to reduce resource consumption of decoder.
From integrated circuit aspect, Liu et al. [6] derive rapid
algorithm in IDCT, deblocking filter and prediction, which
can reduce the processing cycles and reduce the memory size
and access frequency. These methods are the main measures
for lowering the power consumption. The work is also com-
plementary to ours. The other low-power design techniques

include skipping computation in zero components, using
lower constant multipliers, reducing transitions in the data
path, and self-adaptive techniques. These methods acquire
good effects in IDCT and prediction compensation modules,
corresponding research examples include August and Ha
[7] in IDCT and prediction, Tsung- Tsai and Fang [8] in
VLC, and Xu and Choy in [9] self-adaptive prediction. We
combine thoughts in scalable decoder and methods in low-
power design so as to achieve integration scalability and
efficiency.

2.1.3. Complexity Power Mapping in Video Decoders. From
encoder aspect, researchers have developed how to measure
the power consumption in video encoders. He et al. [10]
analyze the rate-distortion (R-D) behavior of video encoding
system under the energy constraint. Based on power-rate-
distortion (P-R-D) model in [10], they prove that power is
tightly coupled with rate, thus, to trade bits for joules and
to perform energy minimization are rapid method to obtain
minimum energy [11]. Though these models are proposed
based on the encoder, they can be used for reference in
low power decoding design. From decoder aspect, existing
approaches use the complexity metrics as the main measure
methods on the first step; these metrics include counting
the number of base operations [12], and memory access
frequency [13] and occupation. On the second step, use
mapping relations between complexity metrics and power or
energy consumption to evaluate the accurate loss value [10,
14]. We combine the complexity metrics and power mapping
methods, which in turn guide the control of optimal
algorithm design to optimize the energy consumption.

2.2. Complexity Metrics in Video Codec

2.2.1. Complexity Evaluation in MPEG. It is largely rec-
ognized that MPEG standards play a major role in the
starting and development of multimedia communications
and applications [15]. From the compression ratio point
of view, MPEG possesses an important role of low-bit-rate
video coding. From the complexity point of view, MPEG
provides three tools to evaluate video codec complexity
so that it controls the resources required at the decoder.
Through these models, we can set boundaries on memory
and computational requirements. The MPEG-4 standard
defines video buffering verifier mechanism, which includes
three virtual buffer models, named the video rate buffer
verifier (VBV), the video complexity verifier (VCV), and
video reference memory verifier (VMV). There, the VCV
model is applied to all macroblocks in an MPEG-4 video
bitstream and is used to verify the computational power
required at the decoder. The model is defined in terms of
the VCV MB/S decoding rate and VCV buffer size and is
applied to all MBs in the scene [16, 17]. It mainly aims
at the processing speed, defines in terms of the number of
macroblocks (MBs) per second, and determines whether the
decoding resources fit within a certain profile so as to not
exceed the values specified for the corresponding profile and
level.
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In VCV model, the computational complexity of the
decoder is defined by bridging the data rate, and the number
of MBs per second that the decoder has to decode. Indeed,
the computational power consumption required by each MB
decoding may largely vary with the MB types. According to
careful analysis in [16], the ways to measure the decoding
complexity of the encoded video data can be associated to
the rate of the following parameters, including the number of
MBs, the number of MBs per shape type such as boundary or
transparent, the number of MBs per combination of texture
and shape coding types, and the number of arithmetic
instructions and memory Read/Write operations. Therefore,
the number of MBs per combined coding type is a better
method to represent the major factors determining the
actual decoding complexity from the compressed data. Based
on this, an alternative VCV model is proposed in [18],
which allows a more efficient use of the available decoding
resources. The model indicates that the decoding complexity
can be measured by a combination of the MB complexity
types and the number of MBs in corresponding different
types. Thus, the decoding complexity can be evaluated and
characterized by a combination of scenes, shape, and texture
coding tools. This model enhances the VCV model because
of complementing some determining factors. Furthermore,
simplified control method in [18] can be adopted to
distinguish the various types of MBs in terms of decoding
complexity, in which the complexity weights can be defined
relatively to the most complexMB type in the context of each
profile. This means MPEG-4 decoders in most critical cases
can be a compliant decoder, making a better supplement of
the video complexity verifier model.

2.2.2. Complexity Evaluation in H.264. H.264/AVC repre-
sents many advanced techniques in standard video coding
technology, and promises some significant advances of the
state-of-the-art video coding techniques in a broad variety
of applications [19, 20]. Compared to previous standards,
H.264/AVC is given with respect to the coding efficiency and
hardware complexity [21]. Indeed, assessing the complexity
of a video coding standard is not a straightforward task; the
same is true of H.264/AVC. Though the complexity heavily
depends on the characteristics of the platform on which it
is implemented, there are still mapping metrics to evalu-
ate implementation complexity. Reference [21] analyse the
complexity of H.264/AVC based on the new versions of the
executable H.264/AVC specification, which includes updated
tool definitions and can achieve a reduced complexity [22].
This analysis divided the H.264/AVC decoder into six parts,
these are CABAC, RD-Lagrangian optimization, B-frames,
Hadamard transform, deblocking filter, and displacement
vector resolution. And it analyzes these parts in detail from
the access frequency aspect and decoding time aspect.

2.2.3. Complexity Metrics in Video Codec. Generally speak-
ing, the VCV model and the alternative VCV model are both
based on measuring the decoding complexity in terms of the
number of MB. The relative complexity weight for each MB
complexity type is thus obtained as the ratio between the

maximum decoding time for each MB type and the highest
maximum decoding time from all the MB types relevant in
the decoder profile. This method is widely adopted in the
video codec, such as [23].

The measurement flow of video complexity evaluation
systems such as video codec can be typically divided in
several main steps.

(1) Algorithmic development phase. This first step
focuses on algorithmic performance. The algorithmic spec-
ification is typically released as a standard description plus
a software verification model [24]. In this phase, complexity
cost function in C-level analysis is needed. Efficient imple-
mentation based on each algorithm is adopted while it guar-
antees performance [25]. This phase focuses on deducing
complexity, leading to high performance and enabling low-
power realizations in algorithm-specific complexity level.

(2) Evaluation flow phase which deals with the actual
system realization is based on a specific platform. The
true implementation complexity of the algorithm based on
universal platform can be acquired. Can this stage determine
the cost of each module or each algorithm in some series
terminals and, hence, its success and widespread diffusion or
not?

On the other hand, memory access consumption is
another key factor in power consumption. In video decoding,
the primary design goal is to reduce memory transfers
between large frame memories and data paths. Many
researches summarize the cost of a data transfer into a
function of the memory size, memory type, and the access
frequency, such as [5, 13, 26]. The measure method is the
number of accesses per second instead of the clock frequency
[26]. To accurately calculate the dynamic cost in each frame
during decoding is a difficult job. Thus, in [12], they provide
the upper limit of memory consumption.

3. Parsing and Labeling Video Decoding

The main low-power techniques targeted at achieving lower
consumed processing cycles and memory requirements are
both described and discussed in Section 2. In this part, we
address in analysis how to partition the decoder so as to
provide scalable output.

In most cases, there is not enough residual capacity of
battery to enable portable devices users to watch any video
programs at any time as they wish, because of the exhausting
battery. At the same time, in general video decoding systems,
each module consumes a different amount of power and
can affect a different rating of video quality. That is, the
modules have different contributions in an environment
with energy/battery constraint. Therefore, there is a tradeoff
between maximum available lifetime of battery and mini-
mum distortion caused by as possible as balanced decoding
control.

Given that the residual capacity levels of battery can
be substantial, it makes sense to schedule modules and
perform power management as if the scalable affected was
a heterogeneous system. On the other hand, most video
decoders nowadays, especially in real time mobile video
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applications, are paid more efforts in improving robustness.
For example, data partition techniques in H.264, decoder
with little redundancy information or with little support
from the encoder side. In this case, useful information can
be introduced to help decoder. In this environment, there are
three high-level control issues. The first is the MB types in
coded data; the second is the detailed MB partition infor-
mation; the third is the effect of human visual properties on
single image. Based on these configurations, we present a set
of energy-scalable algorithms for video decoding scheduling
and energy management, aimed at minimizing power and
maximizing video quality. The scheduling algorithms are
intended to complement the scheduling criteria produced
by the parsing and labeling control, such as priority, and
fairness. In the following, we give the detailed parsing and
labeling processing.

3.1. MB Type Information. In the first place, MB type infor-
mation is considered as the primary criterion in decision
since an intra MB is decoded without referencing any MB
in another picture [27], but may be referred to by other
inter MBs. Usually, intra MB is taken for more importance
than inter MB. Thus, the intra MB block is marked as L1(0),
the inter MB is marked as L1(1), and inter MB in B frame
is marked as L1(2), which are denoted in (1). It means,
from block type aspect, intrablocks and intra frames are
assigned and processed in high energy profile comparing
with interblocks. In fact, VCV also introduced MB type
information as main decoding control term, which had been
discussed in Section 2.2,

w1
(
i, j
) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1(0), case: Intra MB,

L1(1), case: Inter MB,

L1(2), case: Inter MB in B frame,

(1)

where w1(·) is the results of paring MB type information.
(i, j) denotes the position index of an MB.

3.2. MB Partition Information. In the second place, the MB
partition information is considered as secondary criterion in
decision.

Each intramacroblock could be classified into several
modes including intra 4× 4, intra 8× 8, and intra 16× 16.
Each intermacroblock in P frames could be partitioned into
inter 4×4, inter 8×8, inter 8×16, inter 16×8, and inter
16 × 16. In a word, there are following partition modes in
macroblock, these are 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4,
4 × 8, and 4 × 4. Among these, if a block is partitioned into
4 × 4 mode, then it is the finest block and may be assigned
in top level profile; while if a block is in 16 × 16 mode,
it belongs to coarse block and is in bottom level profile.
The MB partition information can be easily extracted after
entropy decoding. Thus, the partition information becomes
a criterion in assigning the macroblock into different energy
profile. Here, for simplicity, we use the energy controlling
parameters to mark the blocks or macroblocks so that we can
obtain a reasonable distribution in the energy profile. L2(x)
denotes the controlling level while L2(x) ∈ [L2(0),L2(4)],

and the values corresponding to MB partition information
are in the following:

w2
(
i, j
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L2(0), 4× 4,

L2(1), 8× 4 or 4× 8,

L2(2), 8× 8,

L2(3), 8× 16 or 16× 8,

L2(4), 16× 16.

(2)

Generally, a macroblock can be regarded as a combina-
tion of basic blocks which belong to different partitions. The
basic block is defined in 4 × 4 block in H.264 [19] and is
defined in 8 × 8 in MPEG2 [28] and AVS [29]. Hence, the
marked coefficient for a macroblock is deduced through the
partition results of basic blocks. Weighted sum method is
adopted in this paper. For instance, a macroblock consists
of four 4 × 4 blocks in top left corner, two 4 × 8 blocks in
top right corner, two 8× 4 blocks in bottom left corner, and
an 8 × 8 block in bottom right corner. Figure 1 shows the
partition results. Then, the final effected coefficient which
decides the macroblock into appropriate energy profile is
4× L2(0) + 2×∑2

1 L2(1) + 2×∑2
1 L2(1) + 1×∑4

1 L2(2).

3.3. Effect of Human Visual Properties. In the third place,
the effect of human visual properties is considered as
third criterion in decision. In many video applications,
clients would pay more attention to the regions of their
interest. For example, if the shoulder and head video is
always existed in video applications, the region of interest
(ROI) of clients is usually the human face instead of the
background. Thus, for the decoder, more resources including
bits and computational power are desired to be allocated
reasonably according to the human subjective effects to
improve the overall visual quality [30]. From the objective
aspect, [31] gave a detailed segmentation strategies for an
image. The paper analyses main segmentation approaches
for multimedia services from the viewpoint of their features.
The first one consists in estimating segmentation scope
through the position of the transitions and marks the
separation between neighboring regions. This approach has
been mainly successful for the temporal case and being
applied to both spatial and temporal segmentation problems.
The second approach consists in estimating the region
through homogeneous elements according to the feature
space. This approach has been mostly applied to spatial
and spatial-temporal segmentation. Here, we applied the
segmentation thoughts and ROI technology to the image
region decision. We mark the region in image based on
human’s attention degree. The technology of ROI is adopted
as an efficient tool for the reasonable classification of image;
it could be used to divide an image into several parts into
different level. When the available battery energy is not
enough, the ROI information is used to optimally allocate
the available energy to different parts of the image according
to their relative level. Since the central region in an image will
be concerned firstly according to the habit of human being,
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L(2) L(2)

L(2)L(2)

L(4) L(4)

L(4) L(4)

L(3) L(3)

L(3) L(3)

L(3) L(3)

L(3) L(3)

MB

Figure 1: A example of MB partition information computing.

the blocks in central region is allocated to higher energy
profile than the surrounding region. As shown in Figure 2,
the marks of the human’s attention degree are dispersal from
central to surrounding regions, then the energy controlling
parameters can be marked as (3), where (i, j) denotes the
position index of an MB,

w3
(
i, j
) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L3(0),
(
i, j
) ∈ interest region,

L3(1),
(
i, j
) ∈ sub-interest region,

L3(2),
(
i, j
) ∈ normal region.

(3)

These parsing and labeling configurations provide the
sufficient conditions for the following energy-scalable algo-
rithms. Then the energy profile scheduling and energy
scalable management rely on the criteria produced by the
parsing and labeling control, including priority, and fairness.
In the next section, we develop a model of energy-scalable
video decoding (ESVD).The overall energy consumption
could be optimized after these methods, at the same time
the ESVD can guarantee the best video decoding quality in
energy constraint circumstance.

4. Energy-Scalable Video DecodingModel

In this model, different energy profiles are equivalent to
different energy consumption level, and video decoder runs
at these profiles. In this scalable energy profiles, the most
obvious optimization goal is to maximize performance at
a given power or energy budget. Given the complexity
or the power budget of this environment, to reasonably
design the algorithm for scheduling and for energy or power
management, a global optimization solution is required.

Section 2 shows possible algorithms to maximize per-
formance at the target power. To simplify the problem, we
construct parsing and labeling processing in video decoder in
first step, which is given in details in Section 2. These provide
the foundation of ESVD. On the other hand, in most video
decoding systems, especially for mobile applications, there
is a limited system energy supply. Most of the services or
functions in mobile devices have estimable power consump-
tion. It means that the upper bound of the consumption
can be acquired. Generally speaking, the total consumption
is measured by the available battery capacity, that is, the
energy consumption is inverse proportion to the available

battery lifetime. Strictly speaking, the energy consumption in
general video processing applications results from a number
of factors, including the number of functions in using
regulations, operation systems, hardware, and battery life.
Most researches distinguish between two types of power
constraints, namely peak constraint and average constraint.
Here, we propose another type of power constraints, which
is a bound constraint H(F ). We use F ⊃ { fn} to represent
a function, in which fn represents the nth subfunction
in function F . H(F ) represents the minimum energy
requirement required to implement a function F . For
video decoder, a bound of energy constraints also exists.
It implies that the optimal energy control method can be
obtained when the total energy consumption is deduced
by the method tends to the energy bound as closely as
possible. Of course, the video decoding function contains
many subfunctions such as interpolation (INTP), deblocking
filter (DF), entropy decoding (END), and inverse transform
(IDCT) [32]. According to bound constraint definition,
designing an optimal energy/power consumption video
decoding system can be transferred to find the best control
among these subfunctions to achieve lower power/energy
consumption, so that we can prolong the available battery
duration.

The above discussion shows the possibility to maximize
performance at different target power level. To resolve
the problem, we decompose it into two steps. First, we
use parsing and labeling processing to map the subfunc-
tions in unit of MB in video decoder, so as to generate
scalable video decoding output. Second, we use power
management algorithm to find the best configuration in
subfunctions for each power profile and at the same time,
maximizes overall performance while keeping lower power
consumption.

4.1. Energy Scalable Management in Video Decoder. To
compute the integrated weight of MB in order to assign it
into appropriate energy profile, the proposed three decision
phases in Section 3 are in combined calculation. This needs a
mapping bridge between the levels Lk(i) in each phase. This
problem is solved as follows. Given a set ofN subfunctions in
video decoding function F in unit of MB, each subfunction
can run atM levels, there isN×M power consumption level,
correspondingly. Then this problem can be summarized as
finding the best selection of power consumption levels for
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the subfunctions, at the same time it can maximize the
decoding quality subject to the constraints: each scalable
power consumptions in whole video decoding is less than
Eprofile(k) in each energy/power profile. Our approach is
to reduce the problem to a linear optimization problem.
Overall, from parsing and labeling procedure, we map the
labeling results on energy/power profiles orderly. To be
specific, from the subfunctions, we select the subfunctions
in order for MBs and in round robin manner for the whole
video sequences decoding.

Here, to be simplified, linear weight control

f (MB) = a1
∑

L1(k) + a2
∑

L2(k) + a3
∑

L3(k), (4)

where k1, k2 and k3 represent the effects on the total
performance for each phase, separately. We give a simple
example firstly. Then the final value can assign the mac-
roblock into appropriate energy profile. For instance, if the
video is encoded in AVS, assuming that the initial (a1, a2, a3)
is (c1, c2, c3) in empirical way and Lj(k) = k, thereby the
maximum marked coefficient for a macroblock is f (MB) =
c1i+c2

∑
i+c3i and the minimummarked one is zero. We can

get the marked bound of a macroblock as [0,max( f (MB))].
Suitable levels can be classified either in theoretical way
or in empirical method, then there are different intervals
corresponding to the levels. (0, a1 ·max( f (MB))) represents
coarse level, (a1 · max( f (MB)), a2 · max( f (MB))) denote
half accurate level, and (a2 · max( f (MB)),max( f (MB)))
is in accurate level, for the sake of clarity, equal config-
uration is used, that is a1 = a2 = 1/3. For example,
given a coded frame, after entropy decoding, the mac-
roblock information is extracted as follows, the type is
intra, the partition belongs to 8 × 8, the position lies in
central adjacency region, and Lj(i) = i still comes into
existence. Then the finial marked coefficient is calculated
through (4). It means that the labeling energy index
of this macroblock belongs to the corresponding energy
profile.

4.2. Utility Function in Power Control Scheme. As a frame
decoding is composed by subdecoding in unit of MB, MB
encoding is also under common resource constrained. Each
MB’s decoding is a competitor of battery energy for others.
On the other hand, PSNR and bit rates are the measurement
of decoding quality of all MBs. Ideally, an MB unit would
like to achieve normal quality of decoding effect while
expending a small amount of energy. In some cases, better
decoding effect or long duration decoding and playing are
in anticipantion even if the available battery capacity is
not enough. For example, most mobile terminals can work
in different battery states including “Maximum battery life
mode,” “Battery optimized mode,” “Maximum performance
mode,” and “Enhanced quality mode”. Each battery state
corresponds to a battery working mode of the device. These
states are widely used in mobile devices and terminals. It
is desired that video decoder should provide corresponding
decoding output to match these working states. Thus, it

Utility

Decoding effect

Fixed power

(a)

Utility

Power consumption

Fixed decoding
effect

(b)

Figure 2: Utilities as a function of decoding effect and power
consumption.

is necessary to optimize the video decoding process under
battery resource constraint. Obviously, it can be transformed
into a kind of tradeoff between obtaining better decoding
effect and obtaining lower energy consumption in corre-
sponding working state. Finding a good balance between
the two conflicting objectives is the primary focus of the
power control component of resource management. This
tradeoff is illustrated through the conceptual line in Figure 2.
If the decoder power is fixed, the terminal would experience
high decoding effect which leads to increased reasonable
allocation of the system resources. If the decoding effect and
quality is fixed, increasing the power consumption expedites
the battery drain, which reduces the effective use of the
mobile terminal.

The optimal power control algorithm for video decoding
systems should maximize the decoding quality. Traditionally,
the object is to achieve acceptable PSNR as the measurement
of decoding quality. However, this single target is not enough
for efficient video decoding. This is because the object on
power consumption is another important factor in applica-
tions. It is clear that a high PSNR level at the decoding output
will result in better decoding effect. However, achieving a
high PSNR level often requires the terminal to work in high
power consumption state, which, in turn, results in low
battery life. These issues can be quantified by defining the
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utility function of an MB decoding unit, which is defined
as

ui, j =
Δei, j

ΔPSNRi, j

mwh

dB
, (5)

where Δei, j = Enormal(i, j) − Eprofile(i, j) and ΔPSNRi, j =
PSNRnormal(i, j) − PSNRprofile(i, j). For MB(i, j), Enormal(i, j)
represents the battery power consumption of the decoder
in normal state, while Eprofile(i, j) means the battery power
consumption in corresponding energy profile. Accordingly,
PSNRnormal(i, j) is the quality in full decoding state, while
PSNRprofile(i, j) represents the decoding quality in corre-
sponding energy profile. Utility as defined above combines
the decoding quality and power consumption. The effi-
ciency function yields the desirable properties. Assuming
perfect case ΔPSNRi, j → 0 and Δei, j → 0 means
the decoder is under the full-state decoding. The mobile
terminal can work in “Maximum performance mode” or
“Enhanced quality mode.” In this case, the decoding quality
will obtain maximum value. On the other hand, ui, j is
a monotonically increasing function of the Δei, j . That is,
in case of fixed target power consumption ei, j = Etarget,
for decoding schemes, the best strategy for MB encoding
is to make a decision for each subfunction, so as to
acquire maximum utility ui. This suggests that, in order
to maximize utility, all MBs in the video decoding system
should try to improve the decoding effect while as possible
as less consume the energy. So that the utility function is
suitable for measuring power efficiency of video decoding
systems.

4.3. Energy Allocation Scheme Based on Macroblock Tracking.
As mentioned above, most mobile terminals provide many
working states such as “Maximum battery life mode,” “Bat-
tery optimized mode,” “Maximum performance mode” and
so on. Accordingly, supposing that video decoder can provide
corresponding decoding output to match these working
states. Each energy profile Eprofile(k), k ∈ N corresponds to
a decoding level. Then the goal is to adjust the decoder state
in unit of MB to obtain best decoding quality under energy
consumption budget Ebudget(k). Following the arguments in
(5), there is

max
∑

i

∑

j

U
(
i, j
)

s.t.
∑

i

∑

j

EMB
(
i, j
) ≤ Ebudget,

(6)

where i = widthframe/widthmb and j = heightframe/heightmb.
For example, if there is video decoding data in CIF format,
then widthframe = 352, heightframe = 288, widthmb =
heightmb = 16, and so forth. From the discussion above, all
MBs in a frame are parsed and labeled into different scalar
quantity, here we use ŵ(i, j) to represent the final labeling
result of each MB. Then the MBs in a frame can be allocated
into different energy profile levels according to their labeling
results. As the decoder is divided into several levels in unit
of MBs, we relate these MBs with different decoding state

to realize fine allocation. Define that the number of decoder
states is γ, and then it is obviously that the number of MBs
is usually unequal to γ. This leads to an optimal problem.
That is, we should configure these MBs into suitable
decoding states to obtain better decoding quality. From (6),
we have

max
∑

i

∑

j

U
(
i, j
)

s.t.
∑

γ

wlevel(γ)

∑

i

∑

j

mlevel(γ)EMB
(
i, j | level(γ)) ≤ Ebudget.

(7)

As mentioned above, we classify these MBs into three
levels for the sake of simplicity and define that the MBs in
the same level has the same energy budget. For each MB in
level 1, let the energy budget is e1, accordingly, for each MB
in level 2 and each MB in level 3, the energy budget be e2 and
e3, separately. Then (7) can be rewritten as

max
∑

i

∑

j

U
(
i, j
)

s.t.
3∑

γ=1
wlevel(γ)mlevel(γ)eγ ≤ Ebudget.

(8)

4.4. Decisions Using Learning Method. As we known, it is
difficult to obtain the accurate correlation between PSNR
and energy consumption level. Thus we use machine learn-
ing tools [33] to exploit the correlation and derive decision
table to classify the MBs into corresponding decoding levels.
Machine learning method refers to the study of decoding
states to acquire knowledge from experiences. It deduces
new knowledge from existing rules and uses the analysis
of a set of experiments or examples, for creating a set
of rules to take decisions. Thus, the correlation problem
is posed into two sub-problems: one is to collection the
variation of PSNR and energy consumption in each decoding
state; the other is to classify these data into suitable modes
according to their utilities. In next section, we give the detail
of subfunctions design in unit of MB. And carry out a
performance evaluation of each subfunction in terms of its
variation of PSNR and the variation of PSNR and energy
consumption results.

5. Implementation During Video Decoding

The overall energy consumption could be optimized after
these methods; at the same time the ESVD can guarantee
the best video decoding quality in energy constraint circum-
stance. For the sake of clarity, the whole energy constraints
are summarized as the total summation of each function
which the applications support. In practice, the functions
cover a variety of applications. In contrast, the average power
constraint can be imposed on the overall consuming power
in universal user application circumstance.

Motivated by the previous discussion that all mac-
roblocks are classified into several energy/power profiles, we
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Figure 3: Illustration of the power scalable control video decoding system.

design a device resource perceptual module. This module
implements amapping bridge between the energy profile and
the device available resource. This module includes two part
functions. Part 1, user can specify the working state of video
service. These states include “Maximum battery life mode,”
“Battery optimized mode,” “Maximum performance mode,”
and “Enhanced quality mode”. As mentioned above, each
state corresponds to a battery working mode of the device.
Part 2, to automatic adapt the working state of video service
according to remaining battery capacity perception. For
instance, “Maximum battery life mode” can be configured
automatically when the residual capacity is under 30%, while
“Enhanced quality mode” adopted automatically in the case
of available battery capacity is above 80%. To be specific,
when the result of part 1 and result of part 2 are not
matched, that is, user configures the device as “Enhanced
quality mode” but the residual capacity is under 30% at
that time, the final available profile is based on perceptual
remaining battery capacity results. That is to say, part 2 has
higher priority than part 1, and user canmanually specify the
working state only when the device resource is sufficient.

It is widely accepted that END, IDCT, INTP, and DF
are the four main subfunctions in universal video decoder.
Consequently, the following discussion is based on these four
subfunctions. The implementation of each energy profile is
described in Figure 3, and the modules are listed as follows.

5.1. IDCT SubFunction. The complexity of IDCT subfunc-
tion in decoder has closed relation with the inner non-zero
parameters. Researches provide many scalable methods, for
example, [34] using different proportion subrectangles in
blocks to output scalable computation IDCT. In general,
the energy of the DCT coefficients is dissipated among the
zigzag scan of the block. The low-frequency component
in left-upper corner has higher energy, while the high-
frequency components in right-lower corner contain lower
energy. Thus, we progressively omit the data along the inverse
zigzag scan, from right-lower corner to the left-upper corner,
so that obtain minimal output quality degradation and at

the same time achieve scalable energy consumption. Here,
we classify the energy profile in IDCT subfunction into
four degrees, including accurate-level, saving-level, coarse-
level and non-IDCT. When accurate-level is selected, the
whole parameters computation is implemented as shown
in Figure 4(a). Many simplified methods can be used such
as 1D IDCT optimization so as to minimize the energy
consumption possible as. Figures 4(b) and 4(c) show the
cases of optimal-level and matching-level, separately. The
main difference between the two levels is the number of
computing parameters. The number implies corresponding
processing levels.

5.2. Motion Compensation and Interpolation SubFunction.
Motion and residual information is generated from com-
pressed bits after entropy decoding. Interpolation of ref-
erence samples to generate a motion-compensated predic-
tion is generally performed for each macroblock that is
intercoded [12] and occupies most complexity in motion-
compensated prediction. Thus, the average time required
by the interpolation subfunction is approximate to a func-
tion of the number of intercoded macroblocks. The most
straightforward approach to classify this subfunction is to
fully interpolate and fully compensation operations. In this
level, quarter-pixel motion compensation is replaced by half-
pixel operations, it forms a saving mode with little quality
decline while computation is saved. Accordingly, substituted
interpolation modes in unit of half-pixel and integral-pixel
compensation by integer interpolation results are adopted in
the other energy profile, separately.

5.3. Deblocking Filter SubFunction. Deblocking filter which
is often referred to as a loop filter is the final stage of
the decoding process. DF subfunction reduces the blocking
effect that is introduced by encoding the process at block
boundaries. Comparatively high complexity of the subfunc-
tion is in consensus. Even after a tremendous effort in speed
optimization of the filtering algorithms, the filter can easily
account for one-third of the computational complexity of
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Figure 4: Data pruning patterns in IDCT.
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Figure 5: Influence on energy consumption and PSNR under different decoding rules.

a decoder [35]. The complexity is mainly based on the
high adaptivity of the filter, which requires conditional and
decisional processing on the block edge and sample levels,
thus, there are many conditional branches in the filter which
leads to excessive power consumption. At the same time,
for a macroblock, the vertical filter begins from left-most
edge and is followed from left to right by the three vertical
edges; besides, the horizontal filter begins from top edge,
and is followed by the three internal horizontal edges from
top to bottom. Amount of relevant and candidate pixels
should be loaded into the memory, this leads to additional
power consumption either. Scalable energy can be achieved
by classifying the filtering process into three levels, including
full, half, and rough filtering. Among these, full filtering
operation means that overall branch filtering is implemented
for the macroblock. And, half filtering represents the oper-
ation reduced in computational complexity, which can be
achieved by taking into account the fact that the image area
in past frames is already filtered, and thereby optimizing
or omitting the filtering process accordingly. For the rough
filtering, skip operation is used with low quality degradation,

while the lowest power consumption of the DF subfunction
is required in this mode.

Besides, learning tools are used to analyze the data sets
of decoder. The decision table will be used to determine
the decoding modes of an MB. Inductive learning uses
the analysis of data sets for creating a set of rules to take
decisions.

Then a decision table is built as the decoding rules. This
table is from a set of experiments or examples, collected as
the training data set.We build information database to gather
the decoding states. This set of data including the following
properties: (0) full decoding mode; (1) decoding without
deblocking filter mode, which corresponds to deblocking
filter subfunction adjusting, (2) quarter pixel interpolation
is compensated by half-pixel interpolation, (3) quarter pixel
interpolation and half-pixel interpolation are both com-
pensated by integer-pixel interpolation; these two cases are
corresponding to motion compensation and interpolation
subfunction adjusting, (4) data pruning pattern in IDCT
complies with saving-level, (5) data pruning pattern in
IDCT follows coarse-level; (6) data pruning pattern in
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Figure 6: Stat. on energy consumption and PSNR for different video sequences in each decoding rule.

IDCT follows low-level; these three cases are brought into
correspondence with IDCT subfunction adjusting. Figure 5
gives the influence on energy consumption and PSNR under
different decoding rules, separately.

Affiliated subfunction: discussion on error concealment
subfunction. Error concealment technique aims at obtaining
a close approximation of the original signal or making the
output of decoder closely accepted by human eyes [36]. Most
error concealment techniques are based on block matching
algorithms [37] or adaptive techniques in unit of block such
as [38]. It can improve the decoding quality while it leads to
less computational complexity. Due to the energy consump-
tion which lies in computation, memory occupation and
memory access, the effect of error concealment on additional
power consumption is more than that on complexity. Here,
we classify the error concealment operation into three levels
to adapt the scalable energy profiles. This classification is

based on scene and region change and on the unit of block.
Thus, the macroblock can belong to three energy profiles,
including accurate concealment in case of scene change,
half concealment in case of regional variability, and coarse
concealment when few and no movements take place.

Reference [39] gives an analysis of H.264/AVC decoder
in computational complexity, and [12] presents detailed
analysis in both computational complexity and memory
occupation complexity. For the aspect of the complexity
in AVS video decoding, [32] is provided an approximate
estimation. Generally speaking, for most video decoders
including H.264, MPEG4, AVS, and so forth, the computa-
tional power allocation with emphasis on power-distortion
(P-D) [10] can be expressed in form of cost functions. We
take power consumption in video decoding into account
by modifying the power-distortion-complexity (P-D-C) cost
functions in processing unit of macroblock and subfunctions
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Figure 7: Influence on energy consumption and PSNR under different decoding modes.

in decoder. Through the objective function in (8), dynamic
scalable assignments provide a local quality optimum in
each energy profile. Consequently energy scalable video
decoding (ESVD) is achieved. An undeniable fact is that
scalable video decoding leads to the quality degradation.
Thus minimizing this degradation is another purpose in
ESVD.

6. Experimental Results

6.1. Building Energy Consumption Information Database. In
this subsection, we use Application Energy Graphing Tool
[40], which can measure the battery power consumption of
an application over time, log and graph the resulting data.
We use it to profile the energy distribution of the decoding
modes. To calculate the energy consumption in the case of
subfunctionsmodes, we assume that all other possible opera-
tions among the subfunctions are running, expect the testing
mode. It means it will occur in power control schemes in
practices that decoding data will be ergodic to all basic sub-
function units in despite of some skipped or simplified oper-
ations. The reason is that compressed video data includes
multifeatures, thus the decoding process varies with these
features. For instance, for the same decoding program, the
decoding time is different among the typical sequences such
as mother, waterfall, tennis, ship, bus, and paris. Thus we use
the typical video sequences as the test video set. The format
is CIF and coded in AVS standard. We recycle the decoding
process until the number of decoding frames obtains 15000
frames in each sequence. Figure 6 shows the total energy
consumption and corresponding PSNR in each decoding
rule. The results are based on statistical experimental
average.

The decision table will be used to determine the decoding
mode of MBs, based on the information gathered during
the preanalysis of the decoder. This process can be more
accurate by the information update during the decoding

stage. Figure 5 depicts the process for building the decision
tables from the results in Figure 6. For example, when the
decoder works on mode (1), decoding without deblocking
filter mode, little PSNR is lost but about 15% energy
consumption saving can be obtained; when the decoder
works on mode (5), data pruning pattern in IDCT follows to
coarse-level, only around 10% energy consumption saving
can be obtained but 85% PSNR losing occurs that is,
when the energy budget is not full enough to support full-
mode decoding, mode (1) is a better choice than mode
(5).

6.2. The Performance of the ESVD Model. To evaluate the
performance of the ESVD model and the energy scalable
video decoding system, we implement the proposed ESVD
model and energy scalability scheme in the AVS decoder
software. The ESVD model is not limited to the video
coding standards, and thus similar performance can be
expected for other coding systems, such as H.264 and
MPEG-4. We select stochastically “waterfall” CIF sequence
at 128 kB/s and 25 fps as the testing sequence. We performed
two sets of evaluations—one is for evaluating decoding
scalability and the other for evaluating scalability quality.
We let the decoder work under four modes. The energy
consumption budgets are descending. The scalable results
including PSNR and energy consumption shown in Figures
7 and 8 show the subjective quality in different decoding
modes, separately. Each mode corresponds to energy con-
sumption budget ratio compared to the full decoding mode.
These experiments show the scalability and efficiency of
ESVD.

7. Conclusion and FutureWork

This paper proposed ESVD framework in power control
video decoding systems. It aims at providing the scalable
decoding output which is adaptive to energy resource.
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Figure 8: Subjective quality in the different scalable modes.

It proposed a method to make the video decoder adapt
resource under battery constraint, which can be widely
used in handheld devices. At the same time, it gives a
method to maximum video decoding quality when play-
ing on portable terminals, through building a decoding

information database. The experiments demonstrate the
efficiency of ESVD. In future research, we will try to study
fine-grained energy scalable control in energy consump-
tion through improving the scalability of each decoding
module.
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