
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2009, Article ID 936121, 16 pages
doi:10.1155/2009/936121

Research Article
Viscosity Approximation of Common Fixed Points
for L-Lipschitzian Semigroup of Pseudocontractive
Mappings in Banach Spaces

Xue-song Li,1 Jong Kyu Kim,2 and Nan-jing Huang1

1 Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China
2 Department of Mathematics, Kyungnam University, Masan, Kyungnam 631-701, South Korea

Correspondence should be addressed to Nan-jing Huang, nanjinghuang@hotmail.com

Received 14 January 2009; Accepted 5 March 2009

Recommended by Charles E. Chidume

We study the strong convergence of two kinds of viscosity iteration processes for approximating
common fixed points of the pseudocontractive semigroup in uniformly convex Banach spaces
with uniformly Gâteaux differential norms. As special cases, we get the strong convergence of the
implicit viscosity iteration process for approximating common fixed points of the nonexpansive
semigroup in Banach spaces satisfying some conditions. The results presented in this paper extend
and generalize some results concerned with the nonexpansive semigroup in (Chen and He, 2007)
and the pseudocontractive mapping in (Zegeye et al., 2007) to the pseudocontractive semigroup
in Banach spaces under different conditions.

Copyright q 2009 Xue-song Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space with the dual space E∗ and J : E → 2E
∗
be a normalized duality

mapping defined by

J(x) =
{
x∗ ∈ E∗ :

〈
x, x∗〉 = ‖x‖2 = ‖x∗‖2}, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that (see, e.g., [1, pages
107–113])

(i) J is single-valued if E∗ is strictly convex;

(ii) E is uniformly smooth if and only if J is single-valued and uniformly continuous
on any bounded subset of E.
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Let K be a nonempty closed convex subset of E. A mapping T : K → E is said to be

(i) nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ K, (1.2)

(ii) L-Lipschitzian if there exists a constant L > 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ K, (1.3)

(iii) k-strongly pseudocontractive if there exist a constant k ∈ (0, 1) and j(x − y) ∈
J(x − y) such that

〈
Tx − Ty, j(x − y)

〉 ≤ k‖x − y‖2, ∀x, y ∈ K, (1.4)

(iv) pseudocontractive if there exists j(x − y) ∈ J(x − y) such that

〈
Tx − Ty, j(x − y)

〉 ≤ ‖x − y‖2, ∀x, y ∈ K. (1.5)

It is easy to see that the pseudocontractive mapping is more general than the nonexpansive
mapping.

A pseudocontractive semigroup is a family,

Γ :=
{
T(t) : t ≥ 0

}
, (1.6)

of self-mappings on K such that

(1) T(0)x = x for all x ∈ K;

(2) T(s + t)x = T(s)T(t)x for all x ∈ K and s, t ≥ 0;

(3) T(t) is pseudocontractive for each t ≥ 0;

(4) for each x ∈ K, the mapping T(·)x from R+ into K is continuous.

If the mapping T(t) in condition (3) is replaced by

(3)′ T(t) is nonexpansive for each t ≥ 0;

then Γ := {T(t) : t ≥ 0} is said to be a nonexpansive semigroup on K.
We denote by F(Γ) the common fixed points set of pseudocontractive semigroup Γ,

that is,

F(Γ) =
⋂

t∈R+

F
(
T(t)

)
=
{
x ∈ K : T(t)x = x for each t ≥ 0

}
. (1.7)

In the sequel, we always assume that F(Γ)/=∅.
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In recent decades, many authors studied the convergence of iterative algorithms
for nonexpansive mappings, nonexpansive semigroup, and pseudocontractive mapping in
Banach spaces (see, e.g., [2–14]). Let Γ := {T(t) : t ≥ 0} be a nonexpansive semigroup from K
into itself and f : K → K be a contractive mapping. It follows from Banach’s fixed theorem
that the following implicit viscosity iteration process is well defined:

xn = αnf
(
xn

)
+
(
1 − αn

)
T
(
tn
)
xn, ∀n ≥ 1, (1.8)

where αn ∈ (0, 1) and T(tn) ∈ Γ. Some authors studied the convergence of iteration process
(1.8) for nonexpansive mappings in certain Banach spaces (see [5, 10]). Recently, Xu [11]
studied the following implicit iteration process: for any u ∈ K,

xn = αnu +
(
1 − αn

)
T
(
tn
)
xn, ∀n ≥ 1, (1.9)

where αn ∈ (0, 1), T(tn) ∈ Γ, and obtained the convergence theorem as follows.

Theorem X (see [11]). Let E be a uniformly convex Banach space having a weakly continuous
duality map Jϕ with gauge ϕ, K a nonempty closed convex subset of E and

Γ :=
{
T(t) : t ≥ 0

}
(1.10)

a nonexpansive semigroup on K such that F = Fix(Γ)/=∅. If

lim
n→∞

tn = lim
n→∞

αn

tn
= 0, (1.11)

then {xn} generated by (1.9) converges strongly to a member of F.

Xu [11] also proposed the following problem.

Problem X (see [11]). We do not know if Theorem X holds in a uniformly convex and
uniformly smooth Banach (e.g., Lp for 1 < p < ∞).

This problem has been solved by Li and Huang [15] and Suzuki [8], respectively.
Moudafi’s viscosity approximationmethod has been recently studied bymany authors

(see, e.g., [2, 3, 5, 10, 13, 15–17] and the references therein). Chen and He [3] studied the
convergence of (1.8) constructed from a nonexpansive semigroup and a contractive mapping
in a reflective Banach space with a weakly sequentially continuous duality mapping. Zegeye
et al. [13] studied the convergence of (1.8) constructed from a pseudocontractive mapping
and a contractive mapping.

On the other hand, many authors (see [2, 3, 5, 13]) studied the following explicit
viscosity iteration process: for any given y0 ∈ K,

yn+1 =
[
1 − λn

(
1 + θn

)]
yn + λnT

(
tn
)
yn + λnθnf

(
yn

)
, ∀n ≥ 0, (1.12)

where T(tn) ∈ Γ, λn, θn ∈ (0, 1) and λn(1 + θn) ∈ (0, 1]. Chen and He [3] studied the
convergence of (1.12) constructed from a nonexpansive semigroup and obtained some
convergence results.
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An interesting work is to extend some results involving nonexpansive mapping,
nonexpansive semigroup, and pseudocontractive mapping to the semigroup of pseu-
docontractive mappings. Li and Huang [15] generalized some corresponding results
to pseudocontractive semigroup in Banach spaces. Some further study concerned with
approximating common fixed points of the semigroup of pseudocontractive mappings in
Banach spaces, we refer to Li and Huang [16].

Motivated by the works mentioned above, in this paper, we study the convergence of
implicit viscosity iteration process (1.8) constructed from the pseudocontractive semigroup
Γ := {T(t) : t ∈ R+} and k-strongly pseudocontractive mapping in uniformly convex
Banach spaces with uniformly Gâteaux differential norms. As special cases, we obtain the
convergence of the implicit iteration process for approximating the common fixed point
of the nonexpansive semigroup in certain Banach spaces. We also study the convergence
of the explicit viscosity iteration process (1.12) constructed from the pseudocontractive
semigroup Γ and k-strongly pseudocontractive mapping in uniformly convex Banach spaces
with uniformly Gâteaux differential norms. The results presented in this paper extend
and generalize some results concerned with the nonexpansive semigroup in [3] and the
pseudocontractive mapping in [13] to the pseudocontractive semigroup in Banach spaces
under different conditions.

2. Preliminaries

A real Banach space E is said to have a weakly continuous duality mapping if J is single-
valued and weak-to-weak∗ sequentially continuous (i.e., if each {xn} is a sequence in E
weakly convergent to x, then {J(xn)} converges weakly∗ to J(x)). Obviously, if E has a
weakly continuous duality mapping, then J is norm-to-weak∗ sequentially continuous. It is
well known that lp (1 < p < ∞) posses duality mapping which is weakly continuous (see,
e.g., [11]).

Let l∞ be the Banach space of all bounded real-valued sequences. A Banach limit LIM
(see [1]) is a linear continuous functional on l∞ such that

‖LIM‖ = LIM(1) = 1, LIM
(
t1, t2, . . .

)
= LIM

(
t2, t3, . . .

)
(2.1)

for each t = (t1, t2, . . .) ∈ l∞. If LIM is a Banach limit, then it follows from [1, Theorem 1.4.4]
that

lim inf
n→∞

tn ≤ LIM(t) ≤ lim sup
n→∞

tn (2.2)

for each t = (t1, t2, . . .) ∈ l∞.
A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at a

point p ∈ E if whenever {xn} is a sequence inD(T)which converges weakly to x ∈ D(T) and
{Txn} converges strongly to p, then Tx = p.

For the sake of convenience, we restate the following lemmas that will be used.

Lemma 2.1 (see [18]). Let E be a Banach space, K be a nonempty closed convex subset of E, and
T : K → K be a strongly pseudocontractive and continuous mapping. Then T has a unique fixed
point in K.
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Lemma 2.2 (see [19]). Let E be a Banach space and J be the normalized duality mapping. Then for
any x, y ∈ E and j(x + y) ∈ J(x + y),

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉
. (2.3)

Lemma 2.3 (see [12]). Let r > 0. Then a real Banach space E is uniformly convex if and only if there
exists a continuous and strictly increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such
that

∥
∥λx + (1 − λ)y

∥
∥2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)g

(‖x − y‖) (2.4)

for all x, y ∈ Br , λ ∈ [0, 1], where Br = {x ∈ E : ‖x‖ ≤ r}.

Lemma 2.4 (see [9]). Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − τn

)
an + ηn, (2.5)

where τn ∈ (0, 1), ∀n ≥ n0, n0 ∈ N is fixed,
∑∞

n=1τn = ∞, and ηn = o(τn). Then limn→∞an = 0.

3. Main Results

We first discuss the convergence of implicit viscosity iteration process (1.8) constructed from
a pseudocontractive semigroup Γ := {T(t) : t ≥ 0}.

Theorem 3.1. Let K be a nonempty closed convex subset of a real Banach space E. Let Γ := {T(t) :
t ∈ R+} be an L-Lipschitzian semigroup of pseudocontractive mappings and f : K → K be an
Lf -Lipschitzian k-strongly pseudocontractive mapping. Suppose that for any bounded subset C ⊂ K,

lim
s→ 0

sup
x∈C

∥∥T(s)x − x
∥∥ = 0. (3.1)

Then the sequence {xn} generated by (1.8) is well defined. Moreover, if

lim
n→∞

tn = lim
n→∞

αn

tn
= 0, (3.2)

then limn→∞‖xn − T(t)xn‖ = 0 for any t ∈ R+.

Proof. Let

Tnx := αnf(x) +
(
1 − αn

)
T
(
tn
)
x, ∀n ≥ 1. (3.3)



6 Journal of Inequalities and Applications

Since

〈
Tnx − Tny, j(x − y)

〉
=
(
1 − αn

)〈
T
(
tn
)
x − T

(
tn
)
y, j(x − y)

〉
+ αn

〈
f(x) − f(y), j(x − y)

〉

≤ [
1 − αn(1 − k)

]∥∥x − y
∥
∥2

,

(3.4)

we know that Tn is strongly pseudocontractive and strongly continuous. It follows from
Lemma 2.1 that Tn has a unique fixed point (say) xn ∈ K, that is, {xn} generated by (1.8)
is well defined.

Taking p ∈ F(Γ), we have

‖xn − p‖2 = αn

〈
f
(
xn

) − p, j
(
xn − p

)〉
+
(
1 − αn

)〈
T
(
tn
)
xn − T

(
tn
)
p, j

(
xn − p

)〉

≤ αnk
∥
∥xn − p

∥
∥2 + αn

〈
f
(
p
) − p, j

(
xn − p

)〉
+
(
1 − αn

)∥∥xn − p
∥
∥2

≤ [
1 − αn(1 − k)

]∥∥xn − p
∥∥2 + αn

∥∥f(p) − p
∥∥∥∥xn − p

∥∥,

(3.5)

and so ‖xn − p‖ ≤ (1/(1 − k))‖f(p) − p‖. This means {xn} is bounded. By the Lipschitzian
conditions of Γ and f , it follows that {T(tn)xn} and {f(xn)} are bounded. Therefore,

∥∥xn − T
(
tn
)
xn

∥∥ = αn

∥∥f
(
xn

) − T
(
tn
)
xn

∥∥ −→ 0. (3.6)

For any given t > 0,

∥∥xn − T(t)xn

∥∥ =
[t/tn]−1∑

k=0

∥∥T
(
(k + 1)tn

)
xn − T

(
ktn

)
xn

∥∥ +
∥∥T(t)xn − T

([
t/tn

]
tn
)
xn

∥∥

≤ [t/tn]L
∥∥xn − T

(
tn
)
xn

∥∥ + L
∥∥T

(
t − [

t/tn
]
tn
)
xn − xn

∥∥

≤ tL
αn

tn

∥∥f
(
xn

) − T
(
tn
)
xn

∥∥ + Lmax
{∥∥T(s)xn − xn

∥∥ : 0 ≤ s ≤ tn
}
,

(3.7)

where [t/tn] is the integral part of t/tn. Since limn→∞(αn/tn) = 0 and T(·)x : R+ → K is
continuous for any x ∈ K, it follows from (3.1) that

lim
n→∞

∥∥xn − T(t)xn

∥∥ = 0. (3.8)

This completes the proof.

Theorem 3.2. Let E be a uniformly convex Banach space with the uniformly Gâteaux differential
norm and K be a nonempty closed convex subset of E. Let Γ := {T(t) : t ∈ R+} be an L-Lipschitzian
semigroup of pseudocontractive mappings satisfying (3.1) and let f : K → K be an Lf -Lipschitzian
k-strongly pseudocontractive mapping. Suppose that {xn} is a sequence generated by (1.8) and

(1) limn→∞(αn/tn) = limn→∞tn = 0;

(2) LIM‖T(t)xn −T(t)x∗‖ ≤ LIM‖xn −x∗‖, ∀x∗ ∈ C, t ∈ R+, where C := {x∗ ∈ K : Φ(x∗) =
minx∈KΦ(x)} with Φ(x) = LIM‖xn − x‖2 for all x ∈ K.
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Then {xn} converges strongly to a common fixed point x∗ of Γ that is the unique solution in F(Γ) to
the following variational inequality:

〈
f
(
x∗) − x∗, j

(
x∗ − p

)〉 ≥ 0, ∀p ∈ F(Γ). (3.9)

Proof. From Theorem 3.1, we know that {xn} is bounded and limn→∞‖xn − T(t)xn‖ = 0. It is
easy to see that C is a nonempty bounded closed convex subset of K (see, e.g., [10]).

Now, we show that there exists a common fixed point of Γ in C. For any t ∈ R+ and
x∗ ∈ C, it follows from limn→∞‖xn − T(t)xn‖ = 0 that

Φ
(
T(t)x∗) = LIM

∥
∥xn − T(t)x∗∥∥2

= LIM
∥
∥T(t)xn − T(t)x∗∥∥2

≤ LIM
∥
∥xn − x∗∥∥2

= Φ
(
x∗),

(3.10)

and so

T(t)(C) ⊂ C. (3.11)

Next, we prove that C is a singleton. In fact, since E is uniformly convex, by Lemma 2.3 that
there exists a continuous and strictly increasing convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that, for any x∗

1 and x∗
2 ∈ C,

∥∥∥∥xn −
x∗
1 + x∗

2

2

∥∥∥∥

2

≤ 1
2
∥∥xn − x∗

1

∥∥2 +
1
2
∥∥xn − x∗

2

∥∥2 − 1
4
g
(∥∥x∗

1 − x∗
2

∥∥). (3.12)

Taking Banach limit LIM on the above inequality, it follows that

1
4
g
(∥∥x∗

1 − x∗
2

∥
∥) ≤ 1

2
LIM

∥∥xn − x∗
1

∥
∥2 +

1
2
LIM

∥∥xn − x∗
2

∥
∥2 − LIM

∥∥∥∥xn −
x∗
1 + x∗

2

2

∥∥∥∥

2

≤ 0.
(3.13)

This implies x∗
1 = x∗

2 and so C is a singleton. Therefore, (3.11) implies that there exists x∗ ∈ C
such that x∗ ∈ F(Γ).

For any p ∈ F(Γ), from (1.8), we have

〈
xn − f

(
xn

)
, j
(
xn − p

)〉
=

1 − αn

αn

〈
T
(
tn
)
xn − xn, j

(
xn − p

)〉

=
1 − αn

αn

[〈
T
(
tn
)
xn − T

(
tn
)
p, j

(
xn − p

)〉 − 〈
xn − p, j

(
xn − p

)〉]

≤ 0.
(3.14)
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Since x∗ ∈ F(Γ), it follows from (3.14) that

LIM
〈
xn − f

(
xn

)
, j
(
xn − x∗)〉 ≤ 0. (3.15)

Furthermore, for any t ∈ (0, 1), by Lemma 2.2, we have

∥
∥xn − x∗ − t

(
f
(
xn

) − x∗)∥∥2 ≤ ∥
∥xn − x∗∥∥2 − 2t

〈
f
(
xn

) − x∗, j
(
xn − x∗ − t

(
f
(
xn

) − x∗))〉

≤ ∥
∥xn − x∗∥∥2 − 2t

〈
f
(
xn

) − x∗, j
(
xn − x∗)〉

− 2t
〈
f
(
xn

) − x∗, j
(
xn − x∗ − t

(
f
(
xn

) − x∗)) − j
(
xn − x∗)〉,

〈
f
(
xn

) − x∗, j
(
xn − x∗)〉 ≤ 1

2t
[∥∥xn − x∗∥∥2 − ∥

∥xn − x∗ − t
(
f
(
xn

) − x∗)∥∥2]

− 〈
f
(
xn

) − x∗, j
(
xn − x∗ − t

(
f
(
xn

) − x∗)) − j
(
xn − x∗)〉.

(3.16)

For any ε > 0, since E has a uniformly Gâteaux differential norm, we know that J is norm-to-
weak∗ uniformly continuous on any bounded subset of E (see, e.g., [1, pages 107–113]) and
so there exists sufficient small δ(ε) > 0 such that

〈
f
(
xn

) − x∗, j
(
xn − x∗)〉 ≤ 1

2t
[∥∥xn − x∗∥∥2 − ∥∥xn − x∗ − t

(
f
(
xn

) − x∗)∥∥2] + ε, ∀t ∈ (0, δ).

(3.17)

This implies that

LIM
〈
f
(
xn

) − x∗, j
(
xn − x∗)〉 ≤ 1

2t
[
LIM

∥∥xn − x∗∥∥2 − LIM
∥∥xn − x∗ − t

(
f
(
xn

) − x∗)∥∥2] + ε ≤ ε.

(3.18)

By the arbitrariness of ε, it follows that

LIM
〈
f
(
xn

) − x∗, j
(
xn − x∗)〉 ≤ 0. (3.19)

Adding inequalities (3.15) and (3.19), we have

LIM
〈
xn − x∗, j

(
xn − x∗)〉 = LIM

∥∥xn − x∗∥∥2 ≤ 0. (3.20)

This implies that there exists subsequence {xnj} ⊂ {xn}which converges strongly to x∗. From
the proof of (3.20), we know that LIM‖xnl − x∗‖2 ≤ 0 for any subsequence {xnl} ⊂ {xn} and
so there exists subsequence of {xnl} which converges strongly to x∗. If there exists another
subsequence {xnk} ⊂ {xn} which converges strongly to y∗, then it follows from Theorem 3.1
that y∗ ∈ F(Γ). From (3.14), we have

〈
x∗ − f

(
x∗), j

(
x∗ − y∗)〉 ≤ 0,

〈
y∗ − f

(
y∗), j

(
y∗ − x∗)〉 ≤ 0.

(3.21)
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Thus

∥
∥x∗ − y∗∥∥2 ≤ 〈

f
(
x∗) − f

(
y∗), j

(
x∗ − y∗)〉 ≤ k

∥
∥x∗ − y∗∥∥2

. (3.22)

This implies that ‖x∗−y∗‖2 ≤ 0 and so x∗ = y∗. Therefore, {xn} converges strongly to x∗ ∈ F(Γ).
From (3.14) and the deduction above, we know that x∗ is also the unique solution to the
variational inequlity

〈
f
(
x∗) − x∗, j

(
x∗ − p

)〉 ≥ 0, ∀p ∈ F(Γ). (3.23)

This completes the proof.

Remark 3.3. (1) Theorem 3.2 extends and generalizes Theorem 3.1 of [3] from nonexpansive
semigroup to Lipschitzian pseudocontractive semigroup in Banach spaces with different
conditions; (2) If Γ is a pseudocontractive mapping, then condition (3.1) is trivial.

If Γ := {T(t) : t ∈ R+} is a nonexpansive semigroup, then Γ := {T(t) : t ∈ R+} is an L-
Lipschitzian semigroup of pseudocontractive mappings, condition (2) of Theorem 3.2 holds
trivially. From Theorem 3.2, we have the following result.

Corollary 3.4. Let E be a uniformly convex Banach space with the uniformly Gâteaux differential
norm and K be a nonempty closed convex subset of E. Let Γ := {T(t) : t ∈ R+} be a nonexpansive
semigroup satisfying (3.1) and let f : K → K be an Lf -Lipschitzian k-strongly pseudocontractive
mapping. Suppose that {xn} is a sequence generated by (1.8). If

lim
n→∞

αn

tn
= lim

n→∞
tn = 0, (3.24)

then {xn} converges strongly to a common fixed point x∗ of Γ that is the unique solution in F(Γ) to
VI (3.9).

Theorem 3.5. Let E be a uniformly smooth Banach space and K be a nonempty closed convex subset
of E. Let Γ := {T(t) : t ∈ R+} be a nonexpansive semigroup satisfying (3.1) and let f : K → K be an
Lf -Lipschitzian k-strongly pseudocontractive mapping. Suppose that {xn} is a sequence generated by
(1.8). If

lim
n→∞

αn

tn
= lim

n→∞
tn = 0, (3.25)

then {xn} converges strongly to a common fixed point x∗ of Γ that is the unique solution in F(Γ) to
VI (3.9).

Proof. For the nonexpansive semigroup Γ, condition (2) of Theorem 3.2 is trivial and so
formula (3.11) holds. Since uniformly smooth Banach space E has the fixed point property
for nonexpansive mapping T(t) (see, e.g., [10]), T(t) has a fixed point x∗ ∈ C ∩ F(Γ). The rest
proof is similar to the proof of Theorem 3.2 and so we omit it. This completes the proof.
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Theorem 3.6. Let E be a real Hilbert space and K be a nonempty closed convex subset of E. Let
Γ := {T(t) : t ∈ R+} be an L-Lipschitzian semigroup of pseudocontractive mappings satisfying (3.1)
and let f : K → K be an Lf -Lipschitzian k-strongly pseudocontractive mapping. Suppose that {xn}
is a sequence generated by (1.8). If

lim
n→∞

αn

tn
= lim

n→∞
tn = 0, (3.26)

then {xn} converges strongly to a common fixed point x∗ of Γ that is the unique solution in F(Γ) to
the following variational inequality:

〈
f
(
x∗) − x∗, x∗ − p

〉 ≥ 0, ∀p ∈ F(Γ). (3.27)

Proof. From the proof of Theorem 3.1, we know that {xn} is bounded and so there exists
subsequence {xnj} ⊂ {xn} which converges weakly to some point x∗ ∈ K. By Theorem 3.1,
we have

lim
n→∞

∥∥xn − T(t)xn

∥∥ = 0. (3.28)

It follows from [20, Theorem 3.18b] that I − T(t) is demiclosed at zero for each t ∈ R+, where
I is an identity mapping. This implies that x∗ ∈ F(Γ).

In addition, from (1.8), we have

∥∥xn − x∗∥∥2 = αn

〈
f
(
xn

) − x∗, xn − x∗〉 +
(
1 − αn

)〈
T
(
tn
)
xn − x∗, xn − x∗〉

≤ αn

〈
f
(
xn

) − f
(
x∗) +

(
f(x∗) − x∗), xn − x∗〉

+
(
1 − αn

)〈
T
(
tn
)
xn − T

(
tn
)
x∗, xn − x∗〉

≤ [
1 − αn(1 − k)

]∥∥xn − x∗∥∥2 + αn

〈
f
(
x∗) − x∗, xn − x∗〉,

(3.29)

and so

∥∥xn − x∗∥∥2 ≤ 1
1 − k

〈
f
(
x∗) − x∗, xn − x∗〉. (3.30)

This implies that {xnj} converges strongly to x∗ ∈ F(Γ). Similar to the proof of Theorem 3.2,
it is easy to show that {xn} converges strongly to x∗ ∈ F(Γ) that is also the unique solution to
VI (3.27). This completes the proof.

Now we turn to discuss the convergence of explicit viscosity iteration process (1.12)
for approximating the common fixed point of the pseudocontractive semigroup Γ := {T(t) :
t ≥ 0}.

Theorem 3.7. Let K be a nonempty closed convex subset of a real Banach space E. Let Γ := {T(t) :
t ∈ R+} be an L-Lipschitzian semigroup of pseudocontractive mappings with L ≥ 1 such that (3.1)
holds. Let f : K → K be an Lf -Lipschitzian k-strongly pseudocontractive mapping. Suppose that
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the sequence {yn} is generated by (1.12) and the following conditions hold:

(i)
∑∞

n=1λnθn = ∞, λn(1 + θn) ≤ 1, for all n ≥ 0;

(ii) θn/tn → 0, (θn−1/θn − 1)/(λnθn) → 0, tn → 0 (n → ∞);

(iii) there exists some constant α > 0 such that

λn
θn

≤ 1 − k

4L(2 + L + Lf)(1 + α)
, ∀n ≥ 0; (3.31)

(iv) The following equation holds:

lim
n→∞

∥
∥T

(
tn − tn−1

)
x − x

∥
∥

λnθ
2
n

= 0, ∀x ∈ K. (3.32)

Then limn→∞‖yn − T(t)yn‖ = 0 for any t ∈ R+.

Proof. Let {xn} denote the sequence defined as in (1.8) with αn = θn/(1 + θn). By virtue of
condition (ii) and Theorem 3.1, we know that {xn} is well defined and limn→∞‖xn−T(t)xn‖ =
0 for any t ∈ R+. From (1.8), we have

(
1 + θn

)
xn = θnf

(
xn

)
+ T

(
tn
)
xn, ∀n ≥ 0, (3.33)

λn
(
1 + θn

)
xn = λnθnf

(
xn

)
+ λnT

(
tn
)
xn, ∀n ≥ 0. (3.34)

To obtain the assertion of Theorem 3.7, we first give a serial of estimations: using (3.33),
we get

∥∥xn − xn−1
∥∥2 =

〈
xn − xn−1, j

(
xn − xn−1

)〉

=
〈
T
(
tn
)
xn − T

(
tn−1

)
xn−1 + θn

(
f
(
xn

) − xn

) − θn−1
(
f
(
xn−1

) − xn−1
)
, j
(
xn − xn−1

)〉

≤ 〈
T
(
tn
)
xn − T

(
tn
)
xn−1 + T

(
tn
)
xn−1 − T

(
tn−1

)
xn−1

+ θn
(
f
(
xn

) − f
(
xn−1

) − (
xn − xn−1

)
+ f

(
xn−1

) − xn−1
)

− θn−1
(
f(xn−1

) − xn−1
)
, j
(
xn − xn−1

)〉

≤ [
1 − θn(1 − k)

]∥∥xn − xn−1
∥∥2 +

(
θn − θn−1

)∥∥f
(
xn−1

) − xn−1
∥∥∥∥xn − xn−1

∥∥

+
∥∥T

(
tn − tn−1

)
T
(
tn−1

)
xn−1 − T

(
tn−1

)
xn−1

∥∥∥∥xn − xn−1
∥∥,

(3.35)

which implies that

∥∥xn − xn−1
∥∥ ≤ θn − θn−1

(1 − k)θn

∥∥f
(
xn−1

) − xn−1
∥∥ +

∥∥T
(
tn − tn−1

)
zn − zn

∥∥

(1 − k)θn
, (3.36)
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where zn = T(tn−1)xn−1. From the proof of Theorem 3.1, we know that {xn} is bounded.
Therefore, there exists a constant M > 0 such that

∥
∥xn − xn−1

∥
∥ ≤ M

1 − k

∣
∣
∣
∣
θn − θn−1

θn

∣
∣
∣
∣ +

∥
∥T

(
tn − tn−1

)
zn − zn

∥
∥

(1 − k)θn
. (3.37)

By using (1.12) and (3.33), we have

∥
∥yn+1 − yn

∥
∥ = λn

∥
∥T

(
tn
)
yn −

(
1 + θn

)
yn + θnf

(
yn

)∥∥

≤ λn
∥
∥T

(
tn
)
yn − T

(
tn
)
xn −

(
1 + θn

)(
yn − xn

)
+ θn

(
f
(
yn

) − f
(
xn

))∥∥

≤ λn
[
L
∥
∥yn − xn

∥
∥ +

(
1 + θn

)∥∥yn − xn

∥
∥ + θnLf

∥
∥yn − xn

∥
∥]

≤ (
2 + L + Lf

)
λn

∥∥yn − xn

∥∥.

(3.38)

It follows from (1.12) and (3.34) that

∥∥yn+1 − xn

∥∥ =
∥∥[1 − λn

(
1 + θn

)](
yn − xn

)
+ λn

(
T
(
tn
)
yn − T

(
tn
)
xn

)
+ λnθn

(
f
(
yn

) − f
(
xn

))∥∥

≤ [
1 − λn

(
1 + θn

)
+ λn

(
L + Lf

)]∥∥yn − xn

∥∥

≤ [
1 + λn

(
L + Lf

)]∥∥yn − xn

∥∥.
(3.39)

By virtue of (1.12), (3.34), and Lemma 2.2, we have

∥∥yn+1 − xn

∥∥2 =
∥∥[1 − λn

(
1 + θn

)](
yn − xn

)
+ λn

(
T
(
tn
)
yn − T

(
tn
)
xn

)
+ λnθn

(
f
(
yn

) − f
(
xn

))∥∥2

≤ [
1 − λn

(
1 + θn

)]2∥∥yn − xn

∥∥2 + 2λn
〈
T
(
tn
)
yn − T

(
tn
)
xn, j

(
yn+1 − xn

)〉

+ 2λnθn
〈
f
(
yn

) − f
(
xn

)
, j
(
yn+1 − xn

)〉

≤ [
1 − λn

(
1 + θn

)]2∥∥yn − xn

∥∥2 + 2λn
∥∥yn+1 − xn

∥∥2 + 2λnL
∥∥yn+1 − yn

∥∥∥∥yn+1 − xn

∥∥

+ 2λnθnk
∥∥yn+1 − xn

∥∥2 + 2λnθnLf

∥∥yn+1 − yn

∥∥∥∥yn+1 − xn

∥∥.
(3.40)

Since θn → 0, then λn → 0 by condition (iii). Thus for sufficient large n, we know

∥∥yn+1 − xn

∥∥2 ≤ [
1 − λn

(
1 + θn

)]2∥∥yn − xn

∥∥2 + 2λ2nL
(
2 + L + Lf

)(
1 + α

)∥∥yn − xn

∥∥2

+ 2λn
(
1 + kθn

)∥∥yn+1 − xn

∥∥2
.

(3.41)
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Consequently, by condition (iv) we can have

∥
∥yn+1 − xn

∥
∥2 ≤ 1 − 2λn

(
1 + θn

)
+ λ2n

(
1 + θn

)2

1 − 2λn
(
1 + kθn

)
∥
∥yn − xn

∥
∥2

+
2λ2nL

(
2 + L + Lf

)
(1 + α)

1 − 2λn
(
1 + kθn

)
∥
∥yn − xn

∥
∥2

≤
[

1 − 2λnθn
1 − k − (λn/2θn)

(
1 + θn

)2

1 − 2λn
(
1 + kθn

)

]
∥
∥yn − xn

∥
∥2

+ 2λnθn
L
(
2 + L + Lf

)
(1 + α)(λn/θn)

1 − 2λn
(
1 + kθn

)
∥
∥yn − xn

∥
∥2

≤
[

1 − 2λnθn
1 − k − (1/4)(1 − k)
1 − 2λn

(
1 + kθn

)

]
∥∥yn − xn

∥∥2

+ 2λnθn
(1/4)(1 − k)

1 − 2λn
(
1 + kθn

)
∥∥yn − xn

∥∥2

≤ [
1 − 2λnθn

(
1 − k

)]∥∥yn − xn

∥∥2
.

(3.42)

Squaring on both sides of (3.42) and using (3.37), we get

∥∥yn+1 − xn

∥∥ ≤ [
1 − λnθn(1 − k)

]∥∥yn − xn

∥∥

≤ [
1 − λnθn(1 − k)

](∥∥yn − xn−1
∥∥ +

∥∥xn − xn−1
∥∥)

≤ [
1 − λnθn(1 − k)

]∥∥yn − xn−1
∥∥ +

M

1 − k

∣∣∣∣
θn − θn−1

θn

∣∣∣∣ +

∥∥T
(
tn − tn−1

)
zn − zn

∥∥

(1 − k)θn
.

(3.43)

Setting an := ‖yn − xn−1‖ and τn := λnθn(1 − k), then it follows from conditions (i)–(iv) that

an+1 =
(
1 − τn

)
an + o

(
τn
)
. (3.44)

By Lemma 2.4, we know that an → 0, which implies that

lim
n→∞

∥∥yn+1 − xn

∥∥ = 0. (3.45)

Consequently, since ‖xn − xn−1‖ → 0 by (3.37), we have

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.46)
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Now we prove that limn→∞‖yn − T(t)yn‖ = 0 for any t ∈ R+. Since

∥
∥yn − T(t)yn

∥
∥ ≤ ∥

∥yn − xn

∥
∥ +

∥
∥xn − T(t)xn

∥
∥ +

∥
∥T(t)xn − T(t)yn

∥
∥

≤ (1 + L)
∥
∥yn − xn

∥
∥ +

∥
∥xn − T(t)xn

∥
∥,

(3.47)

by Theorem 3.1 and (3.46)we know that for any t ∈ R+,

lim
n→∞

∥
∥yn − T(t)yn

∥
∥ = 0. (3.48)

This completes the proof.

Remark 3.8. An example for the conditions (i)–(iii) of Theorem 3.7 is given by

tn =
1

4
√
n + 1

, θn =
1

3
√
n + 1

, λn =
1 − k

4L
(
2 + L + Lf

)(
1 + α

)θn (3.49)

for all n ≥ 0, where α is an any given positive real number. It is easy to see that the conditions
with regard to λn and θn in Theorem 3.7 hold. If the mapping T(·)x : R+ → K is Lipschitz
continuous for any x ∈ K, then condition (iv) in Theorem 3.7 also holds.

Theorem 3.9. Let E be a uniformly convex Banach space with the uniformly Gâteaux differential
norm and K be a nonempty closed convex subset of E. Let Γ := {T(t) : t ∈ R+} be an L-Lipschitzian
semigroup of pseudocontractive mappings with L ≥ 1 such that (3.1) holds. Let f : K → K be an Lf -
Lipschitzian k-strongly pseudocontractive mapping. Suppose that the sequence {yn} is generated by
(1.12) and conditions (i)–(iv) of Theorem 3.7 hold. Assume further that condition (2) of Theorem 3.2
holds, where {xn} is generated by (1.8) with αn = θn/(1 + θn). Then {yn} converges strongly to a
common fixed point x∗ of Γ that is the unique solution in F(Γ) to VI (3.9).

Proof. By Theorem3.2, we know that {xn} converges strongly to a fixed point x∗ of Γ that is
the unique solution in F(Γ) to VI (3.9), where {xn} is generated by (1.8)with αn = θn/(1+θn).
It follows from (3.46) that yn → x∗ ∈ F(Γ). This completes the proof.

Remark 3.10. (1) Theorem 3.9 extends Theorem 4.1 of [13] from Lipschitzian pseudocontrac-
tive mapping to Lipschitzian pseudocontractive semigroup in Banach spaces under different
conditions; (2) Theorem 3.9 also extends Theorem 3.2 of [3] from nonexpansive semigroup to
Lipschitzian pseudocontractive semigroup in Banach spaces under different conditions.

If Γ := {T(t) : t ∈ R+} is a nonexpansive semigroup, then Γ := {T(t) : t ∈ R+} is an L-
Lipschitzian semigroup of pseudocontractive mappings, condition (2) of Theorem 3.2 holds
trivially. Therefore, Theorem 3.9 gives the following result.

Corollary 3.11. Let E be a uniformly convex Banach space with the uniformly Gâteaux differential
norm and K be a nonempty closed convex subset of E. Let Γ := {T(t) : t ∈ R+} be a nonexpansive
semigroup satisfying (3.1) and f : K → K be an Lf -Lipschitzian k-strongly pseudocontractive
mapping. Suppose that the sequence {yn} is generated by (1.12) and conditions (i)–(iv) of Theorem 3.7
hold. Then {yn} converges strongly to a common fixed point x∗ of Γ that is the unique solution in F(T)
to VI (3.9).
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Theorem 3.12. Let E be a uniformly smooth Banach space andK be a nonempty closed convex subset
of E. Let Γ := {T(t) : t ∈ R+} be a nonexpansive semigroup satisfying (3.1) and let f : K → K be an
Lf -Lipschitzian k-strongly pseudocontractive mapping. Suppose that the sequence {yn} is generated
by (1.12) and conditions (i)–(iv) of Theorem 3.7 hold. Then {yn} converges strongly to a common fixed
point x∗ of Γ that is the unique solution in F(Γ) to VI (3.9).

Proof. Let {xn} denote the sequence defined as in (1.8)with αn = θn/(1+θn). By Theorem 3.5,
we know that {xn} converges strongly to a fixed point x∗ of Γ that is the unique solution in
F(Γ) to VI (3.9). It follows from (3.46) that yn → x∗. This completes the proof.

Theorem 3.13. Let E be a real Hilbert space and K be a nonempty closed convex subset of E. Let
Γ := {T(t) : t ∈ R+} be an L-Lipschitzian semigroup of pseudocontractive mappings with L ≥ 1
such that (3.1) holds. Let f : K → K be an Lf -Lipschitzian k-strongly pseudocontractive mapping.
Suppose that the sequence {yn} is generated by (1.12) and conditions (i)–(iv) of Theorem 3.7 hold.
Then {yn} converges strongly to a common fixed point x∗ of Γ that is the unique solution in F(Γ) to
VI (3.27).

Proof. Let {xn} denote the sequence defined as in (1.8)with αn = θn/(1+θn). By Theorem 3.6,
we know that {xn} converges strongly to a fixed point x∗ of Γ that is the unique solution in
F(Γ) to VI (3.27). It follows from (3.46) that yn → x∗. This completes the proof.
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