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A preprocessing scheme based on linear prediction coefficient (LPC) residual is applied to higher-order statistics (HOSs) for
automatic assessment of an overall pathological voice quality. The normalized skewness and kurtosis are estimated from the LPC
residual and show statistically meaningful distributions to characterize the pathological voice quality. 83 voice samples of the
sustained vowel /a/ phonation are used in this study and are independently assessed by a speech and language therapist (SALT)
according to the grade of the severity of dysphonia of GRBAS scale. These are used to train and test classification and regression
tree (CART). The best result is obtained using an optima l decision tree implemented by a combination of the normalized skewness
and kurtosis, with an accuracy of 92.9%. It is concluded that the method can be used as an assessment tool, providing a valuable
aid to the SALT during clinical evaluation of an overall pathological voice quality.
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1. Introduction

Pathological voice quality assessment has attracted attention
for many years, inducing a large amount of research based
on acoustical, aerodynamic, and physiological measurements
[1–6]. Our goal is to assess an overall pathological voice
quality which is scored on a four-point scale: 0 = normal,
1 = mild deviance, 2 = moderate deviance, and 3 = severe
deviance.

Gu et al. suggested three objective quality assessment
measures such as Itakura-Saito (IS) distortion, log-likelihood
ratio (LLR), and log-area-ratio (LAR). By evaluating speech
database of thirteen sentences, the IS measure showed a
strong correlation with mean opinion score (MOS). There-
fore, the IS measure was suggested to be more suitable than
LLR and LAR for use as a reliable tool to evaluate an overall
quality of disordered speech [1].

An artificial neural network (NN) was investigated using
various combinations of short-term and long-term time-
domain and frequency-domain parameters extracted from
electrical impedance signals by R.T. Ritchings et al. In 77
abnormal speech signals, the voice quality was independently

assessed by a speech and language therapist (SALT) according
to their seven-point ranking of subjective voice quality. The
best result was obtained using 21 input parameters, for which
an accuracy of 92% was achieved [4].

Muzeyyen Dogan et al. performed an acoustic analysis
using the multidimensional voice program (MDVP; Kay
Elemetrics Corporation, Lincoln Park, NJ). Voice handicap
index (VHI), grade of the severity of dysphonia (G), rough-
ness (R), and breathiness (B) scales were used for subjective
evaluations. They found that maximum phonation time,
frequency, and amplitude perturbation parameters were
impaired in 40 asthmatic patients [6].

Although all the achievements and conclusions are
not easily comparable due to a lack of uniformity when
computing and presenting the results, these works represent
novel contributions to pathological voice quality assessment
[1–6]. However, improving its performance is still clinically
important since the tool enables to accurately detect the
pathological voice quality in a quantitative way without
professional doctors and medical instruments.

In this paper, we propose a novel scheme of pathological
voice quality measurement, higher-order statistics (HOSs)
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analysis based on the linear prediction coefficient (LPC)
residual, to assess an overall quality of pathological voices.
HOSs have been recently applied in the automatic detection
of voice pathologies [7]. Although the HOSs hold promise
as one possible marker of classification between normal
and pathological voices, there have not yet been studied
applying HOSs in connection with an overall voice quality
under pathological voice quality assessments. And the LPC
residual of the speech signal corresponds to an estimate
of the excitation signal from a mathematical model of
the vocal tract. Some parameters extracted from the LPC
residual turn out to distinguish between normal speakers
and dysphonic patients [2, 5, 8]. These facts suggest that the
combination of the HOSs analysis and the LPC residual may
help to effectively construct some important information for
distinguishing pathological voice quality [8].

The rest of the paper is organized as follows. In Section 2,
a brief review of LPC residual, HOSs analysis, and classifier
is presented. The experiments which utilize HOSs of the LPC
residual and block diagram as a classification tool are shown
in Section 3, and in Section 4, the classification results to
classify an overall quality of pathological voice are discussed.
In Section 5, our result is compared with one of another
approach. Finally, the conclusions are presented in Section 6.

2. Methodology

2.1. LPC Residual. The LPC residual corresponds to the
excitation signal of the vocal tract model [9]. The LPC
residual of normal voice may be modeled as a deterministic
signal, consisting of the sinusoids with equal amplitudes. The
frequencies of these sinusoids may be harmonically related.
It has rather periodic and stable structure. However, the LPC
residual of pathological voice may be modeled as a sum of
incoherent sine waves whose phases are rather random. It
is characterized by the large variation in the pitch period
because the movement of the vocal folds is not balanced
and an incomplete closure may appear in glottal cycles
[10]. These have effect on an overall degree of the severity
of dysphonia. So, as the degree is higher, the voices tend
to have more and more irregular, aperiodic, and unstable.
That is, it depends on whether the voice quality is a slight
or serious according to the voice disorder [8]. Thus, the
use of the LPC residual may bring some information like
abnormal movement of vocal folds and turbulence noise for
pathological voice quality assessment [2, 5].

In researches studying the relationship between LPC
residual and disordered voices, the authors aimed to perform
the LPC characteristics as an acoustic parameter for classifi-
cation between normal and pathological voices. Marcelo de
Oliveira Rosa et al. suggested an adaptive estimation method
of LPC residual for voice pathology diagnosis. Through
inverse filtering (Kalman and Wiener filters) of the voice
signal, the LPC residual was estimated and seven acoustic
features were extracted from it to evaluate the laryngeal
diseases. The presented techniques showed that it is possible
to evaluate the extent of the larynx diseases and identify
them using adaptive filtering and acoustic measurements

[8]. Therefore, we conclude that they show the possibility
of being able to automatically detect an overall quality of
pathological voice related to the larynx diseases.

2.2. Higher-Order Statistics. HOS analysis has shown
promising results as a classification index of pathological
voice and also has the advantage of not requiring a
periodic or quasiperiodic voice signal to permit reliable
analysis. So, it is of particular value when dealing with
a mixture of Gaussian and non-Gaussian processes and
system nonlinearity. The application of HOS to speech
processing has been primarily motivated by their inherent
Gaussian suppression and phase preservation properties
[7, 11]. Researchers in this area have been based on the
assumption that speech has nonzero HOS characteristic that
is distinct from those of Gaussian noise [7]. It has been also
sufficiently used as a basis for voiced and unvoiced speech
detection. Thus it may be more valuable for solving the
noisy component generated in pathological voices which
are similar to characteristics of unvoiced sound [10]. It may
also be one possible acoustic marker that is sensitive to voice
impairment.

It is well known that a speech signal, x(n), which may be
normal or pathological, can be expressed as in (1) [11]:

x(n) = s(n) + w(n), (1)

where s(n) is a non-Gaussian signal generated by the
oscillation of the vocal folds and w(n) is Gaussian noise
which can be assumed to be zero in normal voices and not
to be zero in pathological voices.

Pathological voices are corrupted by noise, w(n), which
is directly related to the perceived roughness of the voice
[10]. If s(n) and w(n) are statistically independent, then the
energy of x(n) is the sum of speech and noise energies: Ex =
Es+Ew. Second-order statistics (SOSs) are directly affected in
an additive way by the presence of noise [11]. Hence, when
HOS analysis is applied to pathological voices, unstable and
discontinuous statistics of x(n) may be estimated because
HOS analysis is blind to Gaussian processes. On the other
hand, in normal voices, the HOS of only non-Gaussian
measurements may be extracted because a Gaussian noise
can be assumed to be zero. After all, the variation of a non-
Gaussian signal which is produced by vibration of the vocal
folds can be an important clue for quality assessment of the
pathological and normal voices.

Research implemented by Alonso et al. proposed new
seven HOS-based parameters that were obtained directly
or indirectly in the frequency and time domain for the
classification between normal and pathological voices. A
success rate of 98.3% was obtained by using both the
conventional and the HOS-based parameters with the NN
classifier [7]. This paper is a little short on the detailed
analyses why they propose new HOS parameters, that is, a
general trend of HOS, experimental objective, and how it can
be applied to pathological and normal voices. However, they
show the possibility of being able to automatically classify
the pathological voice with good performance using the HOS
parameters. This paper is the only one that applies the HOS
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analysis to pathological voice detection in time domain.
Therefore, it is additionally necessary to study how well each
HOS parameter can assess an overall quality of pathological
voices and to confirm the experiments with an authorized
database.

Among various HOSs, the normalized skewness, γ3, and
the normalized kurtosis, γ4, are widely used as characteristic
parameters. They are defined as in (2) [7, 11, 12]:

γ3 =
∑N

n=1

(
xn − μ

)3

(N − 1)σ3
, γ4 =

∑N
n=1

(
xn − μ

)4

(N − 1)σ4
, (2)

where xn is the nth sample value and N is the number of the
samples while μ and σ represent the mean and the standard
derivation of xn, respectively.

One way to quantify the higher-order cumulants is to
compare it with a Gaussian bell curve (a normal random
probability distribution) and then characterize the HOS
distribution using skewness and kurtosis. Skewness measures
symmetry. That is, the skewness for a normal distribution
is zero, and any symmetric data should have skewness near
zero. Positively skewed distributions appear to have a tail
extended to the right of the bell curve. Similarly, negatively
skewed distributions mean that the left tail is long relative
to the right tail. Kurtosis represents the “peakedness” of
the distribution, with steep distributions producing kurtosis
values larger than three (leptokurtic) and flat distributions
producing kurtosis values lower than three (platykurtic)
[12].

2.3. Classifier. Classification and regression tree (CART)
analysis is a common method to build statistical models
founded on tree-based techniques [13]. One of the most
important characteristics of the CART is that the optimal
decision tree contains the rules which are easily readable
by humans compared to other classification and regression
methods such as vector quantization (VQ) and NN. Decision
tree contains a binary question about some feature at each
node. The leaves of the tree contain the best prediction based
on the training data [13, 14]. To improve the performance
of pathological voice quality measurement, there have been
many studies on parameter extraction [2, 7, 8, 15, 16]. How-
ever, each parameter does not always guarantee the reliable
performance in various kinds of conditions. Therefore, it
may be necessary to use these parameters together to ensure
the robustness in various conditions. Statistical approach
can be considered as a solution to effectively combine the
multiple parameters. We use the CART algorithm to evaluate
the performance for the assessment of pathological voice
quality using multiple parameters.

3. Experiments

3.1. Database. In 1981, the Japan Society of Logopedics and
Phoniatrics distributed a DVD-ROM database of a total of
approximately 65 utterances scored with the GRBAS scale.
The GRBAS scale is the authorized perceptual evaluation
method proposed by above institute. For the clinician’s

assessment, it consists of the voice properties such as the
grade of the severity of dysphonia (G), roughness (R),
breathiness (B), asthenicity (A), and strain (S). It is also
scored on a four-point grading scale: a normal is 0, a slight,
1, a moderate, 2, and finally, a severe, 3, for five different
parameters to rate the degree of vocal quality [4, 6]. Only G
parameter is taken into account for this study. It is marked
as G0, G1, G2, and G3 voices shown in Table 1. These
perceptual grades are determined by the juries composed of
Japanese SALT.

Pathological voices used in this paper are composed of 63
male and female voices of aged from 7 to 78 (mean: 45.7). We
add 20 normal Korean voice data to this pathological data,
and finally, we have the 83 pathological and normal voice
data. Among the 83 voices, 20 voices are Korean normal; 17
is associated with a voice of grade 1, 26 with a voice of grade
2, and 20 with a voice of grade 3. Subject information used
in this paper is shown in Table 1. Since we are interested only
in pathologies which affect the vocal folds, the experiment is
carried out for the sustained vowel /a/ phonation (1–3 sec.).
All voice data are down-sampled to 16 kHz with 16 bits. 70%
and 30% of the data are used for the training and the testing
set to build each set for a 5-fold cross-validation scheme [17].

3.2. HOS Analysis Based on LPC Residual. Figure 1 shows the
distributions of γ3 and γ4 extracted from the LPC residual
of G0, G1, G2, and G3 voices. The preprocessing involves
taking 20 milliseconds frames with 10 milliseconds frames
overlapping from the signals. Each frame is then preempha-
sized by forward differencing to reduce the effects of drifting
signal amplitude, and it is multiplied by a hamming window,
prior to LPC analysis. Then, the Levinson-Durbin algorithm
is applied to derive the 10th-order all-pole LPC model.
Finally, the normalized third- and fourth-order cumulants
of the LPC residual are computed in each sentence. In the
γ3 distributions of Figure 1(a), the distributions of the G-
scaled voices are skewed to the right, with the means of
1.06 ± 0.46, 0.81 ± 0.41, 0.51 ± 0.46, and 0.32 ± 0.36,
respectively. Specifically, γ3 distribution of normal voices
is more skewed right and has a broad distribution with
ratings distributed from 0.18 to 2.10 than that of other
ones. In Figure 1(b), γ4 distributions have a leptokurtic one
(γ4 > 3), overall (means of 10.27 ± 2.79, 8.48 ± 2.26,
6.97 ± 1.30, and 6.81 ± 1.51, resp.). As the voices are a
normal, γ4 spreads out rather widely with a large range and
has more leptokurtic distribution. The distributions result
in the distinct characteristics for these cumulants in terms
of phase, periodicity, and harmonic components of G0, G1,
G2, and G3 voices. The results of statistical analysis of the
HOSs measurements are summarized in Table 2. The HOSs
of the LPC residual show a clear distribution between G-
scaled voices.

As discussed in Section 2.2, we can confirm that normal
signal that has little Gaussian noise tends to be zero shifting
when HOS is applied to it. On the other hand, pathological
voice that has mixed noises including a lot of Gaussian noise
tends to be distinguished from normal one according to the
grade of voice quality.
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Table 1: Summary of subject information. “F” and “M” in the second column stand for females and males, respectively.

Subject no. Sex Age (y) Diagnosis Voice quality Subject No. Sex Age (y) Diagnosis Voice quality

(1) M 28 Normal G0 (43) M 44 Polyps G2

(2) M 35 Normal G0 (44) F 30 Polyps G2

(3) F 25 Normal G0 (45) F 62 Polyps G2

(4) F 40 Normal G0 (46) F 32 Polyps G2

(5) F 21 Normal G0 (47) M 60 Polyps G2

(6) M 23 Normal G0 (48) M 56 Leukoplakia G2

(7) M 36 Normal G0 (49) M 26 Spasmodic dysphonia G2

(8) M 28 Normal G0 (50) F 52 Polyps G2

(9) F 33 Normal G0 (51) F 54 Polyps G2

(10) F 28 Normal G0 (52) M 55 Glottic cancer G2

(11) M 34 Normal G0 (53) F 21 Virilization G2

(12) F 29 Normal G0 (54) M 37 Cysts G2

(13) M 24 Normal G0 (55) F 54 Papilloma G2

(14) M 30 Normal G0 (56) M 62 Paralysis G2

(15) F 26 Normal G0 (57) F 78 Paralysis G2

(16) F 43 Normal G0 (58) M 23 Paralysis G2

(17) F 39 Normal G0 (59) M 63 Sulcus vocalis G2

(18) M 45 Normal G0 (60) M 58 Sulcus vocalis G2

(19) M 37 Normal G0 (61) F 61 Scarring G2

(20) M 22 Normal G0 (62) F 55 Scarring G2

(21) F 29 Nodules G1 (63) F 22 Scarring G2

(22) F 22 Nodules G1 (64) F 34 Laryngitis G3

(23) F 30 Nodules G1 (65) F 59 Laryngeal web G3

(24) F 37 Nodules G1 (66) M 70 Hemorrhage G3

(25) F 20 Nodules G1 (67) F 77 Polyps G3

(26) F 39 Nodules G1 (68) M 58 Glottic cancer G3

(27) F 22 Nodules G1 (69) M 64 Leukoplakia G3

(28) F 30 Nodules G1 (70) M 47 Cysts G3

(29) M 34 Laryngitis G1 (71) M 21 Papilloma G3

(30) F 49 Laryngeal web G1 (72) F 46 Paralysis G3

(31) M 7 Nodules G1 (73) M 57 Paralysis G3

(32) M 73 Polyps G1 (74) M 35 Paralysis G3

(33) F 53 Polyps G1 (75) M 79 Paralysis G3

(34) F 62 Virilization G1 (76) M 67 Paralysis G3

(35) F 19 Cysts G1 (77) M 69 Granuloma G3

(36) F 61 Cysts G1 (78) F 68 Polyps G3

(37) M 45 Granuloma G1 (79) M 39 Polyps G3

(38) F 23 Nodules G2 (80) F 50 Polyps G3

(39) M 38 Laryngitis G2 (81) F 53 Polyps G3

(40) M 50 Laryngitis G2 (82) F 43 Spasmodic dysphonia G3

(41) F 8 Nodules G2 (83) M 64 Glottic cancer G3

(42) M 49 Chronic laryngitis G2

3.3. Classifier. The CART software to be used in this paper
is a commercial product manufactured and sold by Salford
Systems (http://www.salford-systems.com/). The important
feature is that all data management functions to note about
CART are taken care of by the software. Once we have the
data file, we can conduct the CART analysis with various
commands.

A splitting rule is a method and strategy for growing
a tree [13, 14]. For classification trees, the default rule is
the Gini that generally works well across a broad range of
problems and we utilized this method.

The largest tree is the starting point for CART analysis.
CART first splits the root node, then splits the resulting
children, then splits the grandchildren, and so on. However,
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Table 2: Comparisons of G-scaled voices on the normalized skewness and kurtosis based on LPC residual.

skewness kurtosis

G0 G1 G2 G3 G0 G1 G2 G3

Mean 1.06 0.81 0.51 0.32 10.27 8.48 6.97 6.81

Median 0.99 0.74 0.56 0.28 9.84 7.57 6.92 6.45

Range 0.18–2.10 0.08–1.51 −0.19–1.34 −0.41–1.07 5.71–16.34 5.25–13.41 4.90–10.05 4.83–10.08

25%–75% range 0.72–1.41 0.59–1.11 0.00–0.71 0.09–0.61 7.97–11.96 6.91–9.78 5.75–7.68 5.34–8.07

Std. Dev 0.46 0.41 0.46 0.36 2.79 2.26 1.30 1.51

N 30 17 26 20 30 17 26 20
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Figure 1: Higher-order statistics. (a) Distributions of the estimated
normalized skewness. (b) Distributions of the estimated normalized
kurtosis.

Vioce sample LPC residual
extraction

HOS extraction

γ3, γ4

CART decision tree

Pathological/normal voice

Figure 2: Overall procedure of proposed algorithm. (γ3: the nor-
malized skewness, γ4: the normalized kurtosis).

this largest tree is quite a bit worse than the simple tree,
indicating that the large tree is seriously “overfit” [13, 14]. In
this software, several dimensions of the size of a tree-growing
problem can be controlled with the LIMIT command. We
prevented tree growth beyond a depth of 7 levels and did not
prone the tree. Once we have the largest tree constructed, we
can see the relative error profile. Then we chose the optimal
tree that has the minimum cost regardless of size.

3.4. Block Diagram. Figure 2 presents the overall procedure
of the proposed method for the pathological voice quality
assessment, that is, G0, G1, G2, and G3 voices. The 10th-
order LPC analysis is performed on speech sampled at
16 kHz. Then, the normalized skewnes and kurtosis are
calculated in the total LPC residuals. The final decision
is processed according to decision tree of the normalized
skewness and kurtosis through the CART analysis. The
experiment is repeated 5 times and the dataset is randomly
split in 5 different training and test sets, using each time
a different subset for testing the performance. After the
cross-validation, the final results are averaged across these
repetitions, and confidence intervals can be computed using
the standard deviation of the measures.
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Figure 3: Optimal decision tree formed by HOS parameters.

Equation (3) represents a statistic used to measure the
generalization error [17, 18]. Testing with N patterns and
obtaining an accuracy p, the confidence interval (CI) for this
measure is

CI = ±zα/2
√

p
(
1− p

)

N
, (3)

where the value z is obtained from a standard normal
distribution as a function of the required confidence level α.
Using α = 0.05 (95% of confidence), z is 1.96.

4. Results

In this paper, CART analysis is used to combine the
HOSs parameters and evaluate the performance. Since some
parameters make good decisions for the classification among
G0, G1, G2, and G3 voices and some do not, it is necessary
to design a rule to make the final decision regarding the
use of multiple inputs in the classifiers at the same time. By
using the information of the multiple parameters extracted
from pathological and normal voice, the CART makes a
final decision whether the current phonation is normal,
a slight, a moderate, or a severe pathological voice. The
optimal decision tree generated by the normalized skewness
and kurtosis as its inputs is shown in Figure 3. It excellently
reflects the distribution characteristics shown in Figure 1.

Table 3 shows the confusion matrix with the CI obtained
by averaging the results for each individual experiment. It is
based on the decision tree shown in Figure 3. Each matrix
cell indicates how many instances with the corresponding
actual class label are predicted by the model to have the
corresponding predicted class label. The diagonal numbers
indicate the performance of correctly classified signals. The
off-diagonal elements are associated with the performance of
misclassifications. In this table, the final, that is, G0 versus G1
versus G2 versus G3, classification performance is averagely
92.9%. A small part of the voices are not classified as any
of the defined classes and are designated as unclassified.
Actually, misclassification is inevitable because we are not
considered for the “roughness” and “breathiness” factors
which may affect the performance in “GRBAS” scale.

5. Comparison with Another Approach

We utilized an algorithm developed by Lingyun Gu et al. to
compare the results of our algorithm with ones of another
approach. It is recently published as automatic algorithm
based on pathological voice quality assessment [1]. They
tested several well-known speech processing parameters, that
is, IS, LLR, and LAR measures which evaluate the spectral
envelope of the given voice data. And the voice produced by
healthy people as the gold standard is used to compare with
pathological voice. Finally, dynamic time warping (DTW)
is used to align the two different speech segments and to
classify the system accuracy. 70% and 30% of our voice data
are used for the training and the testing set to build each set
for a 5-fold cross-validation scheme like our experiments.
Lingyun Gu et al. suggested that the IS measure showed a
string correlation with the subjective tests. It is concluded
that the IS measure is suggested to be more suitable than
LLR and LAR for use as a reliable tool to evaluate the overall
quality of disordered voice [1].

Table 4 shows the confusion matrix with the CI obtained
by averaging the results for IS, LLR, and LAR experiments.
In this table, the final, that is, G0 versus G1 versus G2 versus
G3, classification performance is averagely 75.7%, 71.4%,
and 67.2% for IS, LLR, and LAR, respectively. However, our
performance is averagely 92.9%. It is concluded that our
method using the HOSs parameters based on LPC residual is
more effective than the method implemented by Lingyun Gu
et al. It is also the best performance among published paper,
higher than the performance measured by other authors, for
automatic assessment of pathological voice quality.

6. Conclusion

The accurate assessment of pathological voice quality is a
major research that has attracted attention in the field of
biomedical engineering and voice disorder for many years.
A meaningful quality assessment should be consistent with
human responses and perception. Performance decisions
using subjective measures are based on a group of listeners’
opinion of the quality of an utterance. Although it is not
suggested to use objective quality methods to completely
replace subjective ones, the objective quality evaluations
have shown the strong ability to predict disordered voices
in many researches and the results correlate very well with
those evaluated by subjective quality measures. However, no
studies have investigated the HOSs characteristics of LPC
residual by means of the objective quality measure.

In this paper, we have applied HOS analysis to LPC
residual for an overall pathological voice quality assessment.
That is, this study represents a novel way to combine
the LPC residual signal and higher-order cumulants. The
normalized skewness and kurtosis of the LPC residual signals
show statistically significant distributions to characterize an
overall quality of pathological voice. A close correlation
between the HOSs parameters and pathological voice quality
is also demonstrated by means of the descriptive statistics.
For the performance measurements, the CART algorithm
is implemented. Especially, the optimal decision tree based
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Table 3: Confusion matrix (accuracy ± confidence interval%).

True Classification

G0 G1 G2 G3

Predicted classification

G0 95.0± 4.08 5.0± 4.08 0.0 0.0

G1 3.9± 2.78 92.1± 2.52 3.9± 2.78 0.0

G2 0.0 1.3± 1.79 94.3± 1.93 3.8± 3.10

G3 0.0 3.3± 2.35 6.7± 2.35 90.0± 4.08

Table 4: Confusion matrix (accuracy± confidence interval%).

True Classification

G0 G1 G2 G3

Predicted classification

IS

G0

75.0± 0.38 25.0± 0.38 0.0 0.0

LLR 75.0± 0.38 12.5± 0.29 12.5± 0.29 0.0

LAR 66.7± 0.41 26.7± 0.39 6.6± 0.22 0.0

IS

G1

16.7± 0.33 75.0± 0.38 8.3± 0.24 0.0

LLR 12.5± 0.29 75.0± 0.38 12.5± 0.29 0.0

LAR 13.8± 0.30 66.7± 0.41 19.5± 0.35 0.0

IS

G2

0.0 10.0± 0.26 77.6± 0.37 12.5± 0.29

LLR 0.0 13.8± 0.30 68.8± 0.41 17.5± 0.33

LAR 0.0 13.8± 0.30 68.8± 0.41 17.5 ± 0.33

IS

G3

0.0 10.2± 0.27 14.8± 0.31 75.0± 0.38

LLR 0.0 16.7± 0.33 16.7± 0.33 66.7± 0.41

LAR 0.0 6.6± 0.22 26.7± 0.39 66.7 ± 0.41

on the normalized skewness and kurtosis is proposed to
effective combination method of the multiple parameters.
The experiment demonstrates that the CART algorithm
which uses HOS parameters together can provide an average
classification performance, at 92.9%. Although many studies
give a good idea of the variety of approaches, all the results
are not easily comparable due to a lack of uniformity.
However, we apply an algorithm proposed by Lingyun Gu et
al. to our database, which is recently published as automatic
algorithm for pathological voice quality assessment. While
the best performance is averagely 75.7% in by Lingyun Gu
et al. method, it shows averagely 92.9% in our method.
Therefore, we can verify that our works provide the highest
accuracy by utilizing combination of HOS analysis and LPC
residual and suggesting the optimal decision tree. This is
important, since the method is beneficial in improving the
performance for diagnosing an overall quality of disordered
voice.

In the future, our proposed method should be tested
with large voice samples and rather long sentence. We will
be investigated to complete an objective assessment of the
voice quality according to the GRBAS scale. Finally, in actual
clinical circumstances, it will be tested for the application of
a monitoring system for patients.
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