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For p ∈ R, the power mean of order p of two positive numbers a and b is defined by
Mp(a, b) = ((ap + bp)/2)1/p, p /= 0, and Mp(a, b) =

√
ab, p = 0. In this paper, we establish two

sharp inequalities as follows: (2/3)G(a, b) + (1/3)H(a, b) � M−1/3(a, b) and (1/3)G(a, b) +
(2/3)H(a, b) � M−2/3(a, b) for all a, b > 0. Here G(a, b) =

√
ab and H(a, b) = 2ab/(a + b) denote

the geometric mean and harmonic mean of a and b, respectively.
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1. Introduction

For p ∈ R, the power mean of order p of two positive numbers a and b is defined by

Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0.

(1.1)

Recently, the power mean has been the subject of intensive research. In particular,
many remarkable inequalities forMp(a, b) can be found in literature [1–12]. It is well known
that Mp(a, b) is continuous and increasing with respect to p ∈ R for fixed a and b. If we
denote by A(a, b) = (a + b)/2, G(a, b) =

√
ab, andH(a, b) = 2ab/(a + b) the arithmetic mean,

geometric mean and harmonic mean of a and b, respectively, then

min{a, b} � H(a, b) = M−1(a, b) � G(a, b) = M0(a, b) � A(a, b) = M1(a, b) � max{a, b}.
(1.2)



2 Journal of Inequalities and Applications

In [13], Alzer and Janous established the following sharp double-inequality (see also
[14, page 350]):

Mlog 2/ log 3(a, b) � 2
3
A(a, b) +

1
3
G(a, b) � M2/3(a, b) (1.3)

for all a, b > 0.
In [15], Mao proved

M1/3(a, b) � 1
3
A(a, b) +

2
3
G(a, b) � M1/2(a, b) (1.4)

for all a, b > 0, and M1/3(a, b) is the best possible lower power mean bound for the sum
(1/3)A(a, b) + (2/3)G(a, b).

The purpose of this paper is to answer the questions: what are the greatest values p and
q, and the least values r and s, such that Mp(a, b) � (2/3)G(a, b) + (1/3)H(a, b) � Mr(a, b)
and Mq(a, b) � (1/3)G(a, b) + (2/3)H(a, b) � Ms(a, b) for all a, b > 0?

2. Main Results

Theorem 2.1. (2/3)G(a, b) + (1/3)H(a, b) � M−1/3(a, b) for all a, b > 0, equality holds if and
only if a = b, andM−1/3(a, b) is the best possible lower power mean bound for the sum (2/3)G(a, b)+
(1/3)H(a, b).

Proof. If a = b, then we clearly see that (2/3)G(a, b) + (1/3)H(a, b) = M−1/3(a, b) = a.
If a/= b and a/b = t6, then simple computation leads to

2
3
G(a, b) +

1
3
H(a, b) −M−1/3(a, b)

= b

[
2t3

3
+

2t6

3(1 + t6)
− 8t6

(1 + t2)3

]

=
2bt3

3(1 + t2)3
(
t4 − t2 + 1

) ×
[(

t2 + 1
)3(

t4 − t2 + 1
)
+ t3

(
t2 + 1

)2 − 12t3
(
t4 − t2 + 1

)]

=
2bt3

3(1 + t2)3
(
t4 − t2 + 1

) ×
[
t10 + 2t8 − 11t7 + t6 + 14t5 + t4 − 11t3 + 2t2 + 1

]

=
2bt3(t − 1)4

3(1 + t2)3
(
t4 − t2 + 1

) ×
(
t6 + 4t5 + 12t4 + 17t3 + 12t2 + 4t + 1

)

> 0.

(2.1)

Next, we prove that M−1/3(a, b) is the best possible lower power mean bound for the
sum (2/3)G(a, b) + (1/3)H(a, b).
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For any 0 < ε <
1
3
and 0 < x < 1, one has

[
M−1/3+ε((1 + x)2, 1)

]1/3−ε −
[
2
3
G((1 + x)2, 1) +

1
3
H((1 + x)2, 1)

]1/3−ε

=

[
1 + (1 + x)−2/3+2ε

2

]−1
−
[
2
3
(1 + x) +

2(1 + x)2

3(x2 + 2x + 2)

]1/3−ε

=
2(1 + x)2/3−2ε

1 + (1 + x)2/3−2ε
−
(

1 + 2x + (4/3)x2 + x3/3
1 + x + x2/2

)1/3−ε

=
f(x)

[
1 + (1 + x)2/3−2ε

]
(1 + x + x2/2)1/3−ε

,

(2.2)

where f(x) = 2(1 + x)2/3−2ε (1 + x + (x2/2))
1/3−ε − [1 + (1 + x)2/3 −2ε](1 + 2x + (4/3)x2 +

x3/3)1/3−ε.
Let x → 0, then the Taylor expansion leads to

f(x) = 2
[
1 +

2 − 6ε
3

x − (1 − 3ε)(1 + 6ε)
9

x2 + o
(
x2
)]

×
[

1 +
1 − 3ε

3
x +

(1 − 3ε)2

18
x2 + o

(
x2
)]

− 2
[
1 +

1 − 3ε
3

x − (1 − 3ε)(1 + 6ε)
18

x2 + o
(
x2
)]

×
[
1 +

2 − 6ε
3

x − 2ε(1 − 3ε)
3

x2 + o
(
x2
)]

= 2
[
1 + (1 − 3ε)x +

(1 − 3ε)(1 − 9ε)
6

x2 + o
(
x2
)]

− 2
[
1 + (1 − 3ε)x +

(1 − 3ε)(1 − 10ε)
6

x2 + o
(
x2
)]

=
ε(1 − 3ε)

3
x2 + o

(
x2
)
.

(2.3)

Equations (2.2) and (2.3) imply that for any 0 < ε < 1/3 there exists 0 < δ = δ(ε) < 1,
such that M−1/3+ε((1 + x)2, 1) > (2/3)G((1 + x)2, 1) + (1/3)H((1 + x)2, 1) for x ∈ (0, δ).

Remark 2.2. For any ε > 0, one has

lim
t→+∞

[
2
3
G(1, t) +

1
3
H(1, t) −M−ε(1, t)

]
= lim

t→+∞

[
2
3

√
t +

2t
3(1 + t)

−
(

2tε

1 + tε

)1/ε
]

= +∞.

(2.4)
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Therefore, M0(a, b) = G(a, b) is the best possible upper power mean bound for the
sum (2/3)G(a, b) + (1/3)H(a, b).

Theorem 2.3. (1/3)G(a, b) + (2/3)H(a, b) � M−2/3(a, b) for all a, b > 0, equality holds if and
only if a = b, andM−2/3(a, b) is the best possible lower power mean bound for the sum (1/3)G(a, b)+
(2/3)H(a, b).

Proof. If a = b, then we clearly see that (1/3)G(a, b) + (2/3)H(a, b) = M−2/3(a, b) = a.
If a/= b and a/b = t6, then elementary calculation yields

[
1
3
G(a, b) +

2
3
H(a, b)

]2
− [M−2/3(a, b)]

2

= b2

⎡

⎣

(
t3

3
+

4t6

3(1 + t6)

)2

−
(

2t4

1 + t4

)3
⎤

⎦

=
b2t6

9(1 + t6)2
(
1 + t4

)3

[(
t4 + 1

)3(
t6 + 4t3 + 1

)2 − 72t6
(
t6 + 1

)2
]

=
b2t6

9(1 + t6)2
(
1 + t4

)3

[(
t24 + 8t21 + 3t20 + 18t18 + 24t17 + 3t16 + 8t15 + 54t14 + 24t13

+2t12 + 24t11 + 54t10 + 8t9 + 3t8 + 24t7 + 18t6 + 3t4 + 8t3 + 1
)

−
(
72t18 + 144t12 + 72t6

)]

=
b2t6

9(1 + t6)2
(
1 + t4

)3

(
t24 + 8t21 + 3t20 − 54t18 + 24t17 + 3t16 + 8t15 + 54t14 + 24t13 − 142t12

+24t11 + 54t10 + 8t9 + 3t8 + 24t7 − 54t6 + 3t4 + 8t3 + 1
)

=
b2t6(t − 1)4

9(1 + t6)2
(
1 + t4

)3

(
t20 + 4t19 + 10t18 + 28t17 + 70t16 + 148t15 + 220t14 + 268t13

+ 277t12 + 240t11 + 240t10 + 240t9 + 277t8 + 268t7 + 220t6

+148t5 + 70t4 + 28t3 + 10t2 + 4t + 1
)
> 0.

(2.5)

Next, we prove that M−2/3(a, b) is the best possible lower power mean bound for the
sum (1/3)G(a, b) + (2/3)H(a, b).
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For any 0 < ε < 2/3 and 0 < x < 1, one has

[
M−2/3+ε(1, (1 + x)2)

]2/3−ε −
[
1
3
G(1, (1 + x)2) +

2
3
H(1, (1 + x)2)

]2/3−ε

=
2(1 + x)(4−6ε)/3

1 + (1 + x)(4−6ε)/3
−
(
1 + 2x + (7/6)x2 + (1/6)x3)(2−3ε)/3

(1 + x + (1/2)x2)(2−3ε)/3

=
f(x)

[
1 + (1 + x)(4−6ε)/3

]
(1 + x + (1/2)x2)(2−3ε)/3

,

(2.6)

where f(x) = 2(1 + x)(4−6ε)/3(1 + x + x2/2)(2−3ε)/3 − (1 + 2x + (7/6)x2 + (1/6)x3)(2−3ε)/3[1 +

(1 + x)(4−6ε)/3].
Let x → 0, then the Taylor expansion leads to

f(x) = 2
[
1 +

4 − 6ε
3

x +
(2 − 3ε)(1 − 6ε)

9
x2 + o

(
x2
)]

×
[

1 +
2 − 3ε

3
x +

(2 − 3ε)2

18
x2 + o

(
x2
)]

− 2
[
1 +

4 − 6ε
3

x +
(2 − 3ε)(1 − 4ε)

6
x2 + o

(
x2
)]

×
[
1 +

2 − 3ε
3

x +
(2 − 3ε)(1 − 6ε)

18
x2 + o

(
x2
)]

= 2
[
1 + (2 − 3ε)x +

(2 − 3ε)(4 − 9ε)
6

x2 + o
(
x2
)]

− 2
[
1 + (2 − 3ε)x +

(2 − 3ε)(4 − 10ε)
6

x2 + o
(
x2
)]

=
ε(2 − 3ε)

3
x2 + o

(
x2
)
.

(2.7)

Equations (2.6) and (2.7) imply that for any 0 < ε < 2/3 there exists 0 < δ = δ(ε) < 1,
such that

M−2/3+ε
(
1, (1 + x)2

)
> (1/3)G

(
1, (1 + x)2

)
+ (2/3)H

(
1, (1 + x)2

)
(2.8)

for x ∈ (0, δ).

Remark 2.4. For any ε > 0, one has

lim
t→+∞

[
1
3
G(1, t) +

2
3
H(1, t) −M−ε(1, t)

]
= lim

t→+∞

[
1
3

√
t +

4t
3(1 + t)

−
(

2tε

1 + tε

)1/ε
]

= +∞.

(2.9)
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Therefore, M0(a, b) = G(a, b) is the best possible upper power mean bound for the
sum (1/3)G(a, b) + (2/3)H(a, b).
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