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Since few years, the gastroenterologic examinations could have been realised by wireless video capsules. Although the images make
it possible to analyse some diseases, the diagnosis could be improved by the use of the 3D Imaging techniques implemented
in the video capsule. The work presented here is related to Cyclope, an embedded active vision system that is able to give
in real time both 3D information and texture. The challenge is to realise this integrated sensor with constraints on size,
consumption, and computational resources with inherent limitation of video capsule. In this paper, we present the hardware
and software development of a wireless multispectral vision sensor which allows to transmit, a 3D reconstruction of a scene
in realtime. multispectral acquisitions grab both texture and IR pattern images at least at 25 frames/s separately. The different
Intellectual Properties designed allow to compute specifics algorithms in real time while keeping accuracy computation. We present
experimental results with the realization of a large-scale demonstrator using an SOPC prototyping board.
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1. Introduction

Examination of the whole gastrointestinal tract represents a
challenge for endoscopists due to its length and inaccessi-
bility using natural orifices. Moreover, radiologic techniques
are relatively insensitive for diminutive, flat, infiltrative, or
inflammatory lesions of the small bowel. Since 1994, video
capsules (VCEs) [1, 2] have been developed to allow direct
examination of this inaccessible part of the gastrointestinal
tract and to help doctors to find the cause of symptoms such
as stomach pain, disease of Crohn, diarrhoea, weight loss,
rectal bleeding, and anaemia.

The Pillcam video capsule designed by Given Imaging
Company is the most popular of them. This autonomous
embedded system allows acquiring about 50 000 images of
gastrointestinal tract during more than twelve hours of an
analysis. The off-line image processing and its interpretation
by the practitioner permit to determine the origin of the
disease. However, recent benchmark [3] published shows
some limitations on this video capsule as the quality of

images and the inaccuracy on the size of the polyps. Accuracy
is a real need because the practitioner makes an ablation
of a polyp only if it exceeds a minimum size. Actually the
polyp size is estimated by practitioner’s experience with more
or less error for one practitioner to another. One of the
solutions could be to use techniques of 3D imagery, either
directly in the video capsule or on a remote computer.

This later solution is actually used in the Pillcam capsule
by using the 2–4 images that are taken per second and stored
wirelessly in a recorder that is worn around the waist. 3D
processing is performed off-line from the estimation of the
displacement of the capsule. However, the speed of video-
capsule is not constant; for example, in the oesophagus, it
is of 1.44 m/s, and in the stomach it is almost null and is
0.6 m/s in the intestine. Consequently, by taking images at
frequencies constant, certain areas of the transit will not be
rebuilt. Moreover, the regular transmission of the images
by the body consumes too much energy and limits the
autonomy of the video capsules to 10 hours. Ideally, the
quantity of information to be transmitted must be reduced
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at the only pertinent information like polyps or other 3D
objects. The first development necessary to the delivery
of such objects relies on the use of algorithm of pattern
recognition on 3D information inside the video capsule.

The introduction of 3D reconstruction techniques inside
a video capsule needs to define a new system that takes into
account the hard constraints of size, low power consumption,
and processing time. The most common 3D reconstruction
techniques are those based on passive or active stereoscopic
vision methods, where image sensors are used to provide the
necessary information to retrieve the depth. Passive method
consists of taking at least two images of a scene at two
different points of view. Unfortunately using this method,
only particular points, with high gradient or high texture,
can be detected [4]. The active stereo-vision methods offer
an alternative approach when processing time is critical.
They consist in replacing one of the two cameras by a
projection system which delivers a pattern composed by a
set of structured rays. In this latter case, only an image of
the deformation of the pattern by the scene is necessary to
reconstruct a 3D image. Many implementations based on
active stereo-vision have been realised in the past [5, 6] and
provided significant results on desktop computers. Generally,
these implementations have been developed to reconstruct
3D large objects as building [7–14].

In our research work, we have focused on an integrated
3D active vision sensor: “Cyclope.” The concept of this sensor
was first described in [4]. In this new article we focus on
the presentation of our first prototype which includes the
instrumentation and processing blocks. This sensor allows
making in real time a 3D reconstruction taking into account
the size and power consumption constraints of embedded
systems [15]. It can be used in wireless video capsules or
wireless sensor networks. In the case of video capsule in order
to be comfortable for the patient, the results could be stored
in a recorder around the waist. It is based on a multispectral
acquisition that must facilitate the delivery of a 3D textured
reconstruction in real time (25 images by second).

This paper is organised as follows, Section 2 describes
briefly Cyclope and deals with the principles of the active
stereo-vision system and 3D reconstruction method. In
Section 3 we present our original multispectral acquisition.
In Section 4 we present the implementation of the optical
correction developed to correct the lens distortion. Section 5
deals with the implementation of a new thresholding and
labelling methods. In Sections 6 and 7, we present the
processing of matching in order to give a 3D representation
of the scene. Section 8 deals with wireless communication
consideration. Finally, before a conclusion and perspectives
of this work, we present, in Section 9, a first functional
prototype and its performances which attest the feasibility of
this original approach.

2. Cyclope

2.1. Overview of the Architecture. Cyclope is an integrated
wireless 3D vision system based on active stereo-vision
technique. It uses many different algorithms to increase
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Figure 1: Cyclope Diagram.

accuracy and reduce processing time. For this purpose, the
sensor is composed of three blocks (see Figure 1).

(i) Instrumentation block: it is composed of a CMOS
camera and a structured light projector on IR band.

(ii) Processing block: it integrates a microprocessor core
and a reconfigurable array. The microprocessor is
used for sequential processing. The reconfigurable
array is used to implement parallels algorithms.

(iii) RF block: it is dedicated for the OTA (Over the Air)
communications.

The feasibility of Cyclope was studied by an implemen-
tation on an SOPC (System On Programmable Chip) target.
These three parts will be realised in different technologies:
CMOS for the image sensor and the processing units,
GaAs for the pattern projector, and RF–CMOS for the
communication unit. The development of such integrated
“SIP” (System In Package) is actually the best solution to
overcome the technological constraints and realise a chip
scale package. This solution is used in several embedded
sensors such as The “Human++” platform [16] or Smart
Dust [17].

2.2. Principle of the 3D Reconstruction. The basic principle of
3D reconstruction is the triangulation. Knowing the distance
between two cameras (or the various positions of the same
camera) and defining of the line of views, one passing by the
center of camera and the other by the object, we can find the
object distance.

The active 3D reconstruction is a method aiming to
increase the accuracy of the 3D reconstruction by the
projection on the scene of a structured pattern. The matching
is largely simplified because the points of interest in the
image needed to the reconstruction are obtained by the
extraction of the pattern; it also has the effect to increase the
speed of processing.

The setup of active stereo-vision system is represented
in Figure 2. The distance between the camera and the laser
projector is fixed. The projection of the laser beams on a
plane gives an IR spots matrix.
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The 3D reconstruction is achieved through triangulation
between laser and camera. Each point of the projected
pattern on the scene represents the intersection of two lines
(Figure 3):

(i) the line of sight, passing through the pattern point on
the scene and its projection in the image plan,

(ii) the laser ray, starting from the projection center and
passing through the chosen pattern point.

If we consider the active stereoscopic system as shown in
Figure 3, where p is the projection of P in the image plan and
e the projection of CL on the camera plan OC , the projection
of the light ray supporting the dot on the image plan is a
straight line. This line is an epipolar line [18–20].

To rapidly identify a pattern point on an image we can
limit the search to the epipolar lines.

For Cyclope the pattern is a regular mesh of points. For
each point ( j, k) of the pattern we can find the corresponding
epipolar line:

v = ajk · u + bjk, (1)

Image plan

C
f

B

P

p

z2

z1

p2

p1

π2 π1

Figure 4: Spot image movement versus depth.

where (u, v) are the image coordinates and the parameters
(ajk, bjk) are estimated through an off-line calibration pro-
cess.

In addition to the epipolar lines, we can establish the
relation between the position of a laser spot in the image and
its distance to the stereoscopic system.

On Figure 4, we consider a laser ray (5) projected on
two different plans π1 and π2 located, respectively, at z1 and
z2, the trajectory d of the coordinates in the image will be
constrained to the epipolar line.

By considering the two triangles CPp1 and CPp2, we can
express d as

d = B

[(
z1 − f

z1

)
−
(
z2 − f

z2

)]
= B f

(z1 − z2)
z1z2

, (2)

where B is the stereoscopic, f the focal length of the camera
and d the distance in pixels:

d =
√

(u1 − u2)2 + (v1 − v2)2. (3)

Given the epipolar line we can express d as a function of only
one image coordinates:

d =
√

1 + a2 (u1 − u2). (4)

From (2) and (4), we can express, for each pattern point
( j, k), the depth as a hyperbolic function:

z = 1
αjku + βjk

, (5)

where the αjk and βjk parameters are also estimated during
the off-line calibration of the system [21].

We can compute the inverse of the depth z to simplify
the implementation. Two operations are only needed: an
addition and a multiplication. The computation of the depth
of each point is independent of the others. So, all the laser
spots can be computed separately allowing the parallelisation
of the architecture.

3. An Energetic Approach for
Multispectral Acquisition

The main problem when you design a 3D reconstruction
processing for an integrated system is the limitation of



4 EURASIP Journal on Embedded Systems

Multispectral
image

acquisition

Distortion
correction

Thresholding Labeling

Center
detection

Matching3D
reconstruction

Wireless
communication

Figure 5: Acquisition and 3D reconstruction flow chart.

Texture image Pattern
image

400 nm 700 nm
Visible Near IR

λ

Figure 6: Multispectral image sensor.

the resources. However, we can obtain a good accuracy
considering hard constraints by using the following method
which is shown in Figure 5:

(1) the multispectral acquisition which makes the dis-
crimination between the pattern and the texture by
an energetic method;

(2) the correction of the error coordinates due to the
optical lens distortion;

(3) the processing before the 3D reconstruction as
thresholding, segmentation, labelling, and the com-
putation of the laser spot center;

(4) the computation of the matching and the third
dimension;

(5) the transmission of the data with a processor core and
an RF module.

The spectral response of the Silicon cuts near 1100 nm
and it covers UV to near Infrared domains. This important
characteristic allows defining a multispectral acquisition by
grabbing on the visible band the colour texture image and,
on the near infrared band, the depth information. Cyclope
uses this original acquisition method, which permits to
access directly at the depth information’s independently from
texture image processing (Figure 6).

The combination of the acquisition of the projected
pattern on the infrared band, the acquisition of the texture
on the visible band, and the mathematical model of the
active 3D sensor makes it possible to restore the 3D
textured representation of the scene. This acquisition needs
to separate texture and 3D datas. For this purpose we have
developed a multispectral acquisition [15]. Generally, filters
are used to cut the spectral response. We used here an

Figure 7: 64× 64 image sensor microphotograph.

energetic method, which has the advantage of being generic
for imagers.

To allow real-time acquisition of both pattern and
texture, we have developed a first 64 × 64 pixels CMOS
imager prototype in 0.6 μm for a total surface of 20 mm2

(Figure 7). This sensor has programmable light integration
and shutter time to allow dynamic change. It was designed
to have large response in the visible and near infrared. This
first CMOS imager prototype, which is not the subject of this
article, had allowed the validation of our original energetic
approach, but its small size needs to be increased to have
more information. So, in our demonstrator we have used
a greater CCD sensor (CIF resolution 352 × 288 pixels) to
obtain normal size images and validate the 3D processing
architecture.

The projector pulses periodically on the scene an
energetic IR pattern. An image acquisition with a short
integration time allows grabbing the image of the pattern
with a background texture which appears negligible. A
second image acquisition with a longer integration allows
to grab the texture when the projector is off. Figure 8 shows
the sequential scheduling of the images acquisition. To reach
a video rate of 25 images/s this acquisition sequence must
be done in less than 40 milisecond. The global acquisition
time is given in (6) where Trst is the reset time, Trd is the
time needed to read the entire image, and TintVI and TintIR
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are, respectively, the integration time for both visible and IR
image.

Ttotal = 2 · Trst + 2 · Trd + TintVI + TintIR. (6)

The typical values are

Trst = 0.5 ms,

Trd = 0.5 ms,

TintVI = 15 ms,

TintIR = 20μm.

(7)

4. Optical Distortion Correction

Generally, the lenses used in the VCE introduce large
deformations on acquired images because of their weak focal
[22]. This distortion is manifested in inadequate spatial rela-
tionships between pixels in the image and the corresponding
points in the scene. Such change in the shape of captured
object may have critical influence in medical applications,
where quantitative measurements in Endoscopy depend on
the position and orientation of the camera and its model.
The used camera model needs to be accurate. For this reason
we introduce firstly the pinhole camera model and later the
correction of geometric distortion that are added to enhance
it. For practical purposes two different methods are studied
to implement this correction, and it is up to researchers
to choose their own model depending on their required
accuracy level and computational cost.

Pinhole camera model (see Figure 9) is based on the
principle of linear projection where each point in the object
space is projected by a straight line through the projection
center into the image plane. This model can be used only
as an approximation of the real camera that is actually not
perfect and sustains a variety of aberration [23]. So, pinhole
model is not valid when high accuracy is required like in our
expected applications (Endoscopes, robotic surgery, etc.). In
this case, a more comprehensive camera model must be used,
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Figure 9: Pinhole camera model (Xw ,Yw ,Zw): World coordinates;
(O,Xc,Yc,Zc): camera coordinates; (O′,u, v): image plane coordi-
nates.

taking into account the corrections for the systematically
distorted image coordinates. As a result of several types
of imperfections in the design and assembly of lenses
composing the camera’s optical system, the real projection
of the point P in the image plane takes into account the
error between the real image observed coordinates and the
corresponding ideal (non observable) image coordinates:

u′ = u + δu(u, v),

v′ = v + δv(u, v),
(8)

where (u, v) are the ideal nonobservable, distortion-free
image coordinates, (u′, v′) are the corresponding real coor-
dinates, and δu and δv are, respectively, the distortion along
the u and v axes. Usually, the lens distortion consists of
radial symmetric distortion, decentering distortion, affinity
distortion, and nonorthogonally deformations. Several cases
are presented on Figure 10.

The effective distortion can be modelled by

δu(u, v) = δur + δud + δup,

δv(u, v) = δvr + δvd + δvp,
(9)

where δur represent radial distortion [24], δud represent
decentering distortion, and δup represent thin prism distor-
tion. Assuming that only the first- and second-order terms
are sufficient to compensate the distortion, and the terms of
order higher than three are negligible, we obtain a fifth-order
polynomials camera model (expression 8), where (ui, vi) are
the distorted image coordinates in pixels, and (ũi, ṽi) are true
coordinates (undistorted):
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(
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3
i ṽ
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i + 2p2ũiṽi + 3p1ṽ
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Figure 10: (a) The ideal undistorted grid. (b) Barrel distortion. (c) Pincushion distortion.

An approximation of the inverse model is done by (11):
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′
i ṽ
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′
i + a8

)
r2
i + 1

,

ṽi

=
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where

ũ′i =
ui − u0

DuSU
,

ṽ′i =
vi − v0

Dv
,

r2
i =

√
ṽ
′2
i + ṽ

′2
i .

(12)

The unknown parameters a1, . . . , a8 are solved using
direct least mean-squares fitting [25] in the off-line calibra-
tion process.

4.1. Off-Line Lens Calibration. There are many proposed
methods that can be used to estimate intrinsic camera and
lens distortion parameters, and there are also methods that
produce only a subset of the parameter estimates. We chose
a traditional calibration method based on observing a planar
checkerboard in front of our system at different poses and
positions (see Figure 11) to solve the equations of unknown
parameters (11). The results of the calibration procedure are
presented in Table 1.

4.2. Hardware Implementation. After the computation of
parameters in (11) through an off-line calibration process,
we used them to correct the distortion of each frame. With
the input frame captured by the camera denoted as the source
image and the corrected output as the target image, the task
of correcting the source distorted image can be defined as
follows: for every pixel location in the target image, compute
its corresponding pixel location in the source image. Two
implementation techniques of distortion correction have
been compared:

Direct Computation. Calculate the image coordinates
through evaluating the polynomials to determine intensity
values for each pixel.

Figure 11: Different checkerboard positions used for calibration
procedure.

Table 1: Calibration results.

Parameter Value Error

u0 (pixels) 178.04 1.28

v0 (pixels) 144.25 1.34

f DuSU (pixels) 444.99 1.21

f Dv (pixels) 486.39 1.37

a1 −0.3091 0.0098

a2 −0.0033 0.0031

a3 0.0004 0.0001

a4 0.0014 0.0004

a5 0.0021 0.0002

a6 0.0002 0.0001

a7 0.0024 0.0005

a8 0.0011 0.0002

Lookup Table. Calculate the image coordinates through
evaluating the polynomials correction in advance, storing
them in a lookup table which is referenced at run-time.
All parameters needed for LUT generation are known
beforehand; therefore for our system, the LUT is computed
only once and off-line.

However, since the source pixel location can be a real
number, using it to compute the actual pixel values of
the target image requires some form of pixel interpolation.
For this purpose we have used the nearest neighbour
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Table 2: Area and Clock characteristics of two approaches.

Implementation Area (%) Clock (MHz)

Direct Computation 58 10

Look Up Table 6 24

interpolation approach that means that the pixel value
closest to the predicted coordinates is assigned to the target
coordinates. This choice is reasonable because it is a simple
and fast method for computation, and visible image artefacts
have no subject with our system.

Performance results of these two techniques are pre-
sented in terms of (i) execution time and (ii) FPGA logic
resource requirements.

The proposed architectures described above have been
described in VHDL in a fixed point fashion, implemented on
a Xilinx Virtex II FPGA device and simulated using industry
reference simulator (ModelSim). The pixel values of both the
input distorted and the output corrected images use an 8-bit
word length integer number. The coordinates use an 18-bit
word length.

The results are presented in Figures 12 and 13 and
Table 2.

The execution time for the direct computation imple-
mentation is comparatively very slow. This is due to the
fact that the direct computation approach consumes a
much greater amount of logic resources than the Look-up
Table approach. Moreover the slow clock cycle (10 MHz)
could be increased by splitting the complex arithmetic
logic into several smaller stages. The significant difference
between these two approaches is that the direct computation
approach requires more computation time and arithmetic
operations, while the LUT approach requires more memory
accesses and more RAM Blocks occupation. Regarding
latency, both approaches can be executed with respect to
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Figure 13: Execution time for both direct computation and LUT-
based approaches.

real-time constraint of video cadence (25 frames per sec-
ond). Depending on the applications, the best compromise
between time and resources must be chosen by the user. For
our application, arithmetic operations are intensively needed
for later stages in the preprocessing block, while memory
blocks are available; so we chose to use the LUT approach
to benefit in time and resources.

5. Thresholding and Labelling

After lens distortion correction, the laser spots projected
must be extracted from the gray level image for delivering
a 3D representation of the scene. Laser spots on the image
appear with variable sizes (depending on the absorption
of the surface and the projection angle). At this level,
a preprocessing block has been developed and hardware
implemented to make an adaptive thresholding in order to
give a binary image and a labelling to classify each laser spot
to compute later their center.

5.1. Thresholding Algorithm. Several methods exist from
a static threshold value defined by user up to dynamic
algorithm as Otsu method [26].

We have chosen to develop a new approach less complex
than Otsu or others well-known dynamic methods in order
to reduce the processing time [27]. The simple method is
described in (Figure 14):

(i) building the histogram of grey-level image,

(ii) finding the first maxima of the Gaussian correspond-
ing to the Background; compute its mean μ and
standard deviation σ ,

(iii) calculating the threshold value with (13):
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Threshold = σ · α + μ, (13)

where α is an arbitrary constant. A parallel architecture of
processing has been designed to compute the threshold and
to give a binary image. Full features of this implementation
are given in [28].

5.2. Labeling. After this first stage of extraction of spot laser
from the background, it is necessary to classify each laser
spot in order to compute separately their center. Several
methods have been developed in the past. We chose to
use a classical two passes component connected labeling
algorithms with an 8-connectivity. We designed a specific
optimized Intellectual Property in VHDL. This intellectual
property uses fixed point number.

6. Computation of Spots Centers

The threshold and labeling processes applied to the captured
image allow us to determine the area of each spot (number
of pixels). The coordinates of center of these spots could be
calculated as follows:

ugI =
∑

i∈I ui
NI

,

vgI =
∑

i∈I vi
NI

,

(14)

where ugI and vgI and the abscissa and ordinate of Ith spot
center. ui and vi are the coordinates of pixels constructing the
spot. NI is the number of pixels of Ith spot (area in pixels).

To obtain an accuracy 3D reconstruction, we need to
compute the spots centers with higher possible precision
without increasing the total computing time to satisfy the
real-time constraint. The hardest step in center detection part
is the division operations A/B in (14). Several methods exist
to solve this problem.

6.1. Implementation of a Hardware Divider. The simplest
method is the use of hardware divider but they are com-
putationally expensive and consume a considerable amount
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Figure 15: Smallest rectangle containing active pixel.

of resources. This not acceptable for a real-time embedded
systems. Some other techniques are used to compute the
center of laser spots avoiding the use of hardware dividers.

6.2. Approximation Method. Some studies suggest approx-
imation methods to avoid implementation of hardware
dividers. Such methods like that implemented in [29] replace
the active pixels by the smallest rectangle containing this
region and then replace the usual division by simple shifting
(division by 2):

u∗gI =
Max(ui) + Min(ui)

2
,

v∗gI =
Max(vi) + Min(vi)

2
.

(15)

This approach is approximated in (15), where (ui, vi)
are the active pixel coordinates, and (u∗gI , v

∗
gI) are the

approximated coordinates of the spot center.
The determination of rectangle limits needs two times

scanning of the image, detecting in every scanning step,
respectively, the minimum and maximum of pixels coordi-
nates. For each spot, we should compare the coordinates of
every pixel by last registered minimum and maximum to
assign new values toUm,UM ,Vm, andVM . (m: Minimum; M:
maximum). While Np is the average area of spots (number
of pixels), we can estimate the number of operations needed
to calculate the center of each spot by 4Np + 6. And in
global, Nop ≈ 25 ∗ N ∗ (4Np + 6) operations are needed
to calculate the centers of N spots (video-cadence of 25 fps).
Such approximation is simple and easy to use but still needs
considerable time to be calculated. Beside, the error is not
negligible. The error in such method is nearly 0.22 pixel,
and the maximum error is more than 0.5 pixel [29]. Taking
the spot of Figure 15 as an example of inaccuracy of such
a method, the real center position of these pixels is (4.47;
6.51). But when applying this approximation method, the
center position will be (5; 6). This inaccuracy will result
mismatching problem that affects the measurement result
when reconstructing object.
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6.3. Our Method. The area of each spot (number of pixels)
is always a positive integer, while its value is limited in
a predeterminate interval [Nmin,Nmax], where Nmin and
Nmax are, respectively, the minimum and maximum areas
of laser spot in the image. The spot areas depend on
object illumination, distance between object and camera,
and the angle of view of the scene. Our method consists
in a memorisation of 1/N where N represent the spot pixel
number and can take value in [1,Nlimit]. Nlimit represent the
maximum considered size, in pixels, of a spot.

In this case we need only to compute a multiplication,
that is resume here:

ugI = (u1 + u2 + · · · + uI)∗ 1
NI

,

vgI = (v1 + v2 + · · · + vI)∗ 1
NI

.

(16)

The implementation of such a filter is very easy, regarding
that the most of DSP functions are provided for earlier
FPGAs. For example, Virtex-II architecture [30] provides an
18 × 18 bits Multiplier with a latency of about 4.87 ns at
205 MHz and optimised for high-speed operations. Addi-
tionally, the power consumption is lower compared to a slice
implementation of an 18-bit by 18-bit multiplier [31]. For
N luminous spots source, the number of operations needed
to compute the centers coordinates is Nop ≈ 25 ∗ N ∗ NP ,
and Np is the average area of spots. When implementing our
approach to Virtex II Pro FPGA (XC2VP30), it was clear that
we gain in execution time and size. Comparison of different
implementation approaches is described in the next section.

7. Matching Algorithm

The set of parameters for the epipolar and depth models
are used during run time to make point matching (identify
the original position of a pattern point from its image) and

calculate the depth using the coordinates of each laser spot
center.

For this purpose we have developed a parallel architec-
ture visible in Figure 16, described in detail in [32].

Starting from the point abscissa (u) we calculate its
estimated ordinate (ṽ) if it belongs to a epipolar line. We
compare this estimation with the true ordinate (v).

These operations are made for all the epipolar line
simultaneously. After thresholding the encoder returns the
index of the corresponding epipolar line.

The next step is to calculate the z coordinate from the
u coordinate and the appropriate depth model parameters
(α,β)

These computation blocs are synchronous and pipelined,
allowing, thus, high processing rates.

7.1. Estimation Bloc. In this bloc the estimated ordinate is
calculated ṽ = a · u + b. The (a, b) parameters are loaded
from memory.

7.2. Comparison Bloc. In this bloc the absolute value of the
difference between the ordinate v and its estimation ṽ is
calculated. This difference is then thresholded.

The thresholding avoids a resource consuming sort stage.
The threshold was a priori chosen as half the minimum dis-
tance between two consecutive epipolar lines. The threshold
can be adjusted for each comparison bloc.

This bloc returns a “1” result if the distance is underneath
the threshold.

7.3. Encoding Bloc. If the comparison blocs return a unique
“1” result, then the encoder returns the corresponding
epipolar line index.

If no comparison bloc returns a “true” result, the point is
irrelevant and considered as picture noise.
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Figure 17: Wireless communication.

If more than one comparison blocs returns “1”, then we
consider that we have a correspondence error and a flag is set.

The selected index is then carried to the next stage where
the z coordinate is calculated. It allows the selection of the
right parameters to the depth model.

We compute (1/z), rather than z as we said earlier, to have
a simpler computation unit. This computation bloc is then
identical to the estimation bloc.

8. Wireless Communication

Finally, after computation, the 3D coordinates of the laser
dots accompanied by the image of texture are sent to an
external reader. So, Cyclope is equipped with a block of
wireless communication which allows us to transmit the
image of texture, the coordinates 3D of the centers of the
spots laser, and even to remotely reconfigure the digital
processing architecture (an Over The Air FPGA). While
attending the IEEE802.15 Body Area Network standard [33],
the frequency assigned for implanted device RF communica-
tion is around 403 MHz and referred to as the MICS (Medical
Implant Communication System) band due to essentially
three reasons:

(i) a small antenna,

(ii) a minimum losses environment which allows to
design low-power transmitter,

(iii) a free band without causing interference to other
users of the electromagnetic radio spectrum [34].

In order to make rapidly a wireless communication of
our prototype, we chose to use Zigbee module at 2.45 GHz
available on the market contrary to modules MCIS. We
are self-assured that later frequency is not usable for the
communication between the implant and an external reader,
due to the electromagnetic losses of the human body. Two
Xbee-pro modules from the Digi Corporation have been
used. One for the demonstrator and the second plugged on a
PC host where a human machine interface has been designed
to visualise in real-time the 3D textured reconstruction of the
scene.

Communication between wireless module and the FPGA
circuit is performed by a standard UART protocol. this prin-
ciple is shown on Figure 17. To make this communication
we integrated a Microblaze softcore processor with UART
functionality. The Softcore recovers all the data stored in
memory (texture and 3D coordinates) and sends them to the
wireless module.

RF block

Processing
block

Instrumentation
block

ZigBee

FPGA

CCD

Laser

Figure 18: Demonstrator

9. Demonstrator, Testbench and Results

9.1. Experimental Demonstrator. To demonstrate the feasi-
bility of our system, a large-scale demonstrator has been
realised. It uses an FPGA prototyping board based on a Xilinx
Virtex2Pro, a pulsed IR LASER projector [35] coupled with
a diffraction network that generates a 49-dot pattern and a
CCD imager.

Figure 18 represents the experimental set. It is composed
of a standard 3 mm lens, the CCD camera with an external
8 bits DAC, a projector IR pattern, and a Virtex2pro
prototyping board.

FPGA is used mainly for computation unit but also to
control image acquisition, laser synchronisation, analog-to-
digital conversion, and image storage and displays the result
through a VGA interface.

Figure 19 shows the principal parts of the control and
storage architecture as set in the FPGA. Five parts have been
designed:

(i) a global sequencer to control the entire process,

(ii) a reset and integration time configuration unit,

(iii) a VGA synchronisation interface,

(iv) a dual port memory to store the images and to allow
asynchronous acquisition and display operations,

(v) a wirless communication module based on the
ZigBee protocol.

A separated pulsed IR projector has been added to the
system to demonstrate the system functionality.
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The computation unit was described in VHDL and
implemented on FPGA XilinX VirtexIIpro (XC2VP30) with
30816 logic cells and 136 hardware multipliers [31]. The
synthesis and placement were achieved for 49 parallel
processing elements. We use here 28% of the LUTs and 50
hardware multipliers, for a working frequency of 148 Mhz.

9.2. Architecture Performance. To estimate the evolution
of the architecture performances, we have used a generic
description and repeat the synthesis and placement for
different pattern sizes (number of parallel operations).
Figure 20 shows that in every case our architecture mapped
on an FPGA can work at least at almost 90 Mhz and then
obtain a real time constraint of 40 milliseconds.

Table 3: Performances of the distortion correction.

Slices 1795 (13%)

Latency 11.43 ms

Error < 0.01 pixels

(a) Image without correction (b) Image with correction

Figure 21: (a) Checkerboard image before distortion correction.
(b) Checkerboard image after correction.

9.3. Error Estimation of the Optical Correction. The imple-
mentation results of distortion correction method are sum-
marised in Table 3. In this table we have implemented the
correction model only to the active light spots. However,
Figure 21 present an image before and after our lens
distortion correction.

Regarding size and latency, it is clear that the results are
suitable for our application.

Comparing our used method to compute the spots
centers with two other methods (see Table 4), it is clear
that our approach has higher accuracy and smaller size than
approximation method. Since it has nearly the same accuracy
as method using hardware divider, it still uses less resources.
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Figure 22: Error comparison before and after applying distortion
correction and centers recomputing.

Regarding latency, the results of all three approaches respect
real time constraint of video cadence (25 frames per second).
Comparing many measures on the depth estimation before
and after the implementation of our improvements, the
results indicate that the precision of the system increased, so
that the residual error is reduced about 33% (Figure 22).

These results were interpolated with a scale factor to
measure the error lens in the case of integration inside a
video capsule, and the results can be shown in Figure 23.
This scaling was calculated with a distance between the
laser projector and the imager of 1 cm. It is the maximal
distance that can be considered for endoscopy. This distance
corresponds to the diameter of the PillCam video capsule.
We can show that the correction of the distortion produced
by the lens increases the accuracy of our sensor.

9.4. Error Estimation of the 3D Reconstruction. In order to
validate our reconstruction architecture, we have compared
the results obtained with the synthesised IP (Table 5) and
those obtained from a floating point mathematical model
which was already validated by experimentation. As we
can see, the calculation error margin is relatively weak in
comparison with the distance variations and shows that our
approach to translate a complex mathematical model into a
digital processing for embedded system is valid.

Table 6 shows the error of reconstruction for different
distances and sizes of the stereoscopic base. We can see that
for a base of 5 mm we are able to have a 3D reconstruction
with an error above to 4% at a distance of 10 cm. This
precision is perfectly enough in the context of the human
body exploration and an integration of a stereoscopic base
with a such size is relatively simple.
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Figure 23: Error comparison before and after applying distortion
correction and centers recomputing after scaling for integration.

Table 4: Centers computation performances.

Method Slices Latency Error

(μs) (pixel)

Approximation 287 4.7 0.21

Hardware divider 1804 1.77 0.0078

Our approach 272 2.34 0.015

Table 5: Results Validation.

Coordinates couples Model results IP results

abscise/ordinate (pixel) (meter) (meter)

401/450 1.57044 1.57342

357/448 1.57329 1.57349

402/404 1.57223 1.57176

569/387 1.22065 1.21734

446/419 1.11946 1.11989

478/319 1.07410 1.07623

424/315 1.04655 1.04676

375/267 1.03283 1.03297

420/177 1.03316 1.03082

Table 6: Precision versus the size of the stereoscopic base.

Base of 0.5 cm Base of 1.5 cm

Distance Error Distance Error

(cm) (%) (cm) (%)

5 1.8 5 0.61

10 3.54 10 1.21

50 15.52 50 5.77

100 26.87 100 10.91
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Figure 24: Visualisation of the results by our application.

9.5. Example of Reconstruction. We have used the calibration
results to reconstruct the volume of an object (a 20 cm
diameter cylinder). The pattern was projected on the scene
and the snapshots were taken.

The pattern points were extracted and associated to laser
beams using the epipolar constraint. The depth of each point
was then calculated using the appropriate model. The texture
image was mapped on the reconstructed object and rendered
in an VRML player.

We have created an application written in C++ for
visualising the Cyclope’s results (Figure 24). The application
gets the textural information and the barycenter spatial
position of the 49 infrared laser spots from a wireless
communication module. After the result reception, it draws
the texture of three binary maps representing the location of
the 49 barycenters on a 3D coordinates system (XY ,ZX , and
ZY).

The recapitulation of the hardware requirement is pre-
sented Table 7. We can observe that the design is small
and if we make an equivalence in logics gates, it should be
integrated in a small area chip like IGLOO AGL 1000 device
from Actel. Such a device has a size of 10 × 10 mm2 and its
core can be integrated in a VCE which has a diameter around
1 cm. At this moment, we did not make implementation on
this last platform. It is a feasibility study but the first results
prove that this solution is valid if we consider the needed
ressources.

We present also an estimation of the energetic consump-
tion which was realised with two tools. This estimation
is visible in Table 8. The first tool is XPE ( Xilinx Power
Estimation) from Xilinx to evaluate the power consumption
of a Virtex, and the second is IGLOOpowercalculator from
Actel to evaluate the power consumption of a low power
consumption FPGA.

Table 7: Recapitulation of the performances.

Architecture Clb slices Latches LUT RAM

Camera 309 337 618 4

Optical correction∗ 92/94 8/8 176/190 32/56

Thresholding 107 192 214 1

Labelling 114 102 227 0

Matching 1932 3025 3864 0

Communication 170 157 277 3

Total used∗ 2323/2325 3821 1555/1569 40/64

Total free 13693 29060 27392 136
∗Direct computation/Look up table.

Table 8: Processing block power consumption estimation.

Device Power consumption Duration

1 battery 3 battery

Virtex 1133 mW 29 min 1h 26 min

IGLOO 128,4 mW 4 hours 12 hours

These two tools use the processing frequency, the number
of logic cells, the number of D flip-flop, and the amount of
memory of the design to estimate the power consumption.
To realise our estimation, we use the results summarised in
Table 7. Our estimation is made with an activity rate of 50%
that is the worst case.

To validate the power consumption estimation in an
embedded context, we consider that a 3V-CR1220 battery
( 3V-CR1220 is a 3 Volt battery, its diameter is of 1.2 cm,
and its thickness is of 2 mm) which has a maximum of
180 mAh power consumption, that is to say an ideal power
of 540 mWh. This battery is fully compatible with a VCE like
the Pillcam from Given Imaging.

As we can see, the integration of a Virtex in a VCE is
impossible because of the SRAM memory that consumes too
much energy. If we consider the IGLOO technology based on
flash memory, we can observe that its power consumption
is compatible with a VCE. Such technology permits four
hours of autonomy with only one battery, and twelve hours
of autonomy if we used three 3V-CR1220 in the VCE. This
result is encouraging because at this time the mean duration
of an examination is ten hours.

10. Conclusion and Perspectives

We have presented in this paper Cyclope, a sensor designed
to be a 3D video capsule.

we have explained a method to acquire the images at a 25-
frame/s video rate with a discrimination between the texture
and the projected pattern. This method uses an energetic
approach, a pulsed projector, and an original 64× 64 CMOS
image sensor with programmable integration time. Multiple
images are taken with different integration times to obtain
an image of the pattern which is more energetic than
the background texture. Our CMOS imager validates this
method.
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Also we present a 3D reconstruction processing that
allows a precise and real-time reconstruction. This process-
ing which is specifically designed for an integrated sensor
and its integration in an FPGA-like device has a low power
consumption compatible with a VCE examination.

The method was tested on a large scale demonstrator
using an FPGA prototyping board and a 352 × 288 pixels
CCD sensor. The results show that it is possible to integrate
a stereoscopic base which is designed for a integrated sensor
and to keep a good precision for a human body exploration.

The next step to this work is the chip level integration of
both the image sensor and the pattern projector. Evaluate the
power consumption of the pulsed laser projector considering
the optical efficiency of the diffraction head.

The presented version of Cyclope is the first step toward
the final goal of the project. After this, the goal is to realise
a real-time pattern recognition with processing-like support
vector machine or neuronal network. The final issue of
Cyclope is to be a real smart sensor that can realize a part
of a diagnosis inside the body and then increase its fiability.
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