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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let ϕ :
C → R be a real-valued function and Θ : C × C → R be an equilibrium bifunction, that is,
Θ(u, u) = 0 for each u ∈ C. We consider the following mixed equilibrium problem (MEP)
which is to find x∗ ∈ C such that

Θ
(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) ≥ 0, ∀y ∈ C. (MEP)

In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problem (EP), which is to find
x∗ ∈ C such that

Θ
(
x∗, y

) ≥ 0, ∀y ∈ C. (EP)

Denote the set of solutions of (MEP) by Ω and the set of solutions of (EP) by Γ. The mixed
equilibrium problems include fixed point problems, optimization problems, variational
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inequality problems, Nash equilibrium problems, and the equilibrium problems as special
cases; see, for example, [1–5]. Some methods have been proposed to solve the equilibrium
problems, see, for example, [5–21].

In 2005, Combettes and Hirstoaga [6] introduced an iterative algorithm of finding the
best approximation to the initial data when Γ/= ∅ and proved a strong convergence theorem.
Recently by using the viscosity approximation method S. Takahashi and W. Takahashi [8]
introduced another iterative algorithm for finding a common element of the set of solutions
of (EP) and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Let
S : C → H be a nonexpansive mapping and f : C → C be a contraction. Starting with
arbitrary initial x1 ∈ H, define the sequences {xn} and {un} recursively by

Θ
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Sun, ∀n ≥ 0.

(TT)

S. Takahashi and W. Takahashi proved that the sequences {xn} and {un} defined by (TT)
converge strongly to z ∈ Fix(S) ∩ Γ with the following restrictions on algorithm parameters
{αn} and {rn}:

(i) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(ii) lim infn→∞ rn > 0;

(iii) (A1):
∑∞

n=0 |αn+1 − αn| < ∞; and (R1):
∑∞

n=0 |rn+1 − rn| < ∞.

Subsequently, some iterative algorithms for equilibrium problems and fixed point
problems have further developed by some authors. In particular, Zeng and Yao [16]
introduced a new hybrid iterative algorithm for mixed equilibrium problems and fixed point
problems and Mainge and Moudafi [22] introduced an iterative algorithm for equilibrium
problems and fixed point problems.

On the other hand, for solving the equilibrium problem (EP), Moudafi [23] presented a
new iterative algorithm and proved a weak convergence theorem. Ceng et al. [24] introduced
another iterative algorithm for finding an element of Fix(S) ∩ Γ. Let S : C → C be a k-strict
pseudocontraction for some 0 ≤ k < 1 such that Fix(S) ∩ Γ/= ∅. For given x1 ∈ H, let the
sequences {xn} and {un} be generated iteratively by

Θ
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1 − αn)Sun, ∀n ≥ 1,

(CAY)

where the parameters {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);

(ii) {rn} ⊂ (0,∞) and lim infn→∞rn > 0.

Then, the sequences {xn} and {un} generated by (CAY) converge weakly to an element of
Fix(S) ∩ Γ.

At this point, we should point out that all of the above results are interesting and
valuable. At the same time, these results also bring us the following conjectures.
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Questions

(1) Could we weaken or remove the control condition (iii) on algorithm parameters in
S. Takahashi and W. Takahashi [8]?

(2) Could we construct an iterative algorithm for k-strict pseudocontractions such that
the strong convergence of the presented algorithm is guaranteed?

(3) Could we give some proof methods which are different from those in [8, 12, 16, 24]?

It is our purpose in this paper that we introduce a general iterative algorithm for
approximating a common element of the set of fixed points of a demicontractive mapping
and the set of solutions of a mixed equilibrium problem. Subsequently, we prove the strong
convergence of the proposed algorithm under some mild assumptions. Our results give
positive answers to the above questions.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H.

Let T : C → C be a mapping. We use Fix(T) to denote the set of the fixed points of T .
Recall what follows.

(i) T is called demicontractive if there exists a constant 0 ≤ k < 1 such that

‖Tx − x∗‖2 ≤ ‖x − x∗‖2 + k‖x − Tx‖2 (2.1)

for all x ∈ C and x∗ ∈ Fix(T), which is equivalent to

〈x − Tx, x − x∗〉 ≥ 1 − k

2
‖x − Tx‖2. (2.2)

For such case, we also say that T is a k-demicontractive mapping.

(ii) T is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ (2.3)

for all x, y ∈ C.

(iii) T is called quasi-nonexpansive if

‖Tx − x∗‖ ≤ ‖x − x∗‖ (2.4)

for all x ∈ C and x∗ ∈ Fix(T).

(iv) T is called strictly pseudocontractive if there exists a constant 0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(x − Tx) − (y − Ty)‖2 (2.5)

for all x, y ∈ C.
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It is worth noting that the class of demicontractive mappings includes the class of
the nonexpansive mappings, the quasi-nonexpansive mappings and the strictly pseudo-
contractive mappings as special cases.

Let us also recall that T is called demiclosed if for any sequence {xn} ⊂ H and x ∈ H,
we have

xn −→ x weakly, (I − T)xn −→ 0 strongly =⇒ x ∈ Fix(T). (2.6)

It is well-known that the nonexpansive mappings, strictly pseudo-contractive mappings are
all demiclosed. See, for example, [25–27].

An operator A : C → H is said to be δ-strongly monotone if there exists a positive
constant δ such that

〈Ax −Ay, x − y〉 ≥ δ‖x − y‖2 (2.7)

for all x, y ∈ C.
Now we concern the following problem: find x∗ ∈ Fix(T) ∩Ω such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T) ∩Ω. (2.8)

In this paper, for solving problem (2.8)with an equilibrium bifunctionΘ : C×C → R,
we assume that Θ satisfies the following conditions:

(H1) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(H2) for each fixed y ∈ C, x �→ Θ(x, y) is concave and upper semicontinuous;

(H3) for each x ∈ C, y �→ Θ(x, y) is convex.

A mapping η : C × C → H is called Lipschitz continuous, if there exists a constant
λ > 0 such that

‖η(x, y)‖ ≤ λ‖x − y‖, ∀x, y ∈ C. (2.9)

A differentiable function K : C → R on a convex set C is called

(i) η-convex if

K
(
y
) −K(x) ≥ 〈K′(x), η

(
y, x

)〉, ∀x, y ∈ C, (2.10)

where K′ is the Frechet derivative of K at x;

(ii) η-strongly convex if there exists a constant σ > 0 such that

K
(
y
) −K(x) − 〈K′(x), η

(
y, x

)〉 ≥
(σ
2

)
‖x − y‖2, ∀x, y ∈ C. (2.11)
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Let C be a nonempty closed convex subset of a real Hilbert space H, ϕ : C → R be
real-valued function and Θ : C × C → R be an equilibrium bifunction. Let r be a positive
number. For a given point x ∈ C, the auxiliary problem for (MEP) consists of finding y ∈ C
such that

Θ
(
y, z

)
+ ϕ(z) − ϕ

(
y
)
+
1
r
〈K′(y

) −K′(x), η
(
z,y

)〉 ≥ 0, ∀z ∈ C. (2.12)

Let Sr : C → C be the mapping such that for each x ∈ C, Sr(x) is the solution set of the
auxiliary problem, that is, ∀x ∈ C,

Sr(x) =
{
y ∈ C : Θ

(
y, z

)
+ ϕ(z) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
z, y

)〉 ≥ 0, ∀z ∈ C

}
. (2.13)

We need the following important and interesting result for proving our main results.

Lemma 2.1 ([16, 28]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
ϕ : C → R be a lower semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium
bifunction satisfying conditions (H1)–(H3). Assume what follows.

(i) η : C × C → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology.

(ii) K : C → R is η-strongly convex with constant σ > 0 and its derivative K′ is sequentially
continuous from the weak topology to the strong topology.

(iii) For each x ∈ C, there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y ∈ C \Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r
〈K′(y

) −K′(x), η
(
zx, y

)〉 < 0. (2.14)

Then there hold the following:

(i) Sr is single-valued;

(ii) Sr is nonexpansive ifK′ is Lipschitz continuous with constant ν > 0 such that σ ≥ λν and

〈
K′(x1) −K′(x2), η(u1, u2)

〉 ≥ 〈
K′(u1) −K′(u2), η(u1, u2)

〉
, ∀(x1, x2) ∈ C × C, (2.15)

where ui = Sr(xi) for i = 1, 2;

(iii) Fix(Sr) = Ω;

(iv) Ω is closed and convex.
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3. Main Results

LetH be a real Hilbert space, ϕ : H → R be a lower semicontinuous and convex real-valued
function, Θ : H × H → R be an equilibrium bifunction. Let A : H → H be a mapping
and T : H → H be a mapping. In this section, we first introduce the following new iterative
algorithm.

Algorithm 3.1. Let r be a positive parameter. Let {λn} be a sequence in [0,∞) and {αn} be a
sequence in [0, 1). Define the sequences {xn}, {yn}, and {zn} by the following manner:

x0 ∈ C chosen arbitrarily,

Θ(zn, x) + ϕ(x) − ϕ(zn) +
1
r
〈K′(zn) −K′(xn), η(x, zn)〉 ≥ 0, ∀x ∈ C,

yn = zn − λnAzn,

xn+1 = (1 − αn)yn + αnTyn.

(3.1)

Now we give a strong convergence result concerning Algorithm 3.1 as follows.

Theorem 3.2. Let H be a real Hilbert space. Let ϕ : H → R be a lower semicontinuous and convex
functional. Let Θ : H × H → R be an equilibrium bifunction satisfying conditions (H1)–(H3). Let
A : H → H be an L-Lipschitz continuous and δ-strongly monotone mapping and T : H → H be a
demiclosed and k-demicontractive mapping such that Fix(T) ∩Ω/= ∅. Assume what follows.

(i) η : H ×H → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H,

(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ H, x �→ η(y, x) is sequentially continuous from the weak topology
to the weak topology.

(ii) K : H → R is η-strongly convex with constant σ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0 such that σ ≥ λν.

(iii) For each x ∈ H; there exist a bounded subset Dx ⊂ H and zx ∈ H such that, for any
y /∈Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
zx, y

)〉
< 0. (3.2)

(iv) αn ∈ [γ, (1 − k)/2] for some γ > 0, limn→∞λn = 0 and
∑∞

n=0 λn = ∞.

Then the sequences {xn}, {yn}, and {zn} generated by (3.1) converge strongly to x∗ which solves the
problem (2.8) provided Sr is firmly nonexpansive.
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Proof. First, we prove that {xn}, {yn}, and {zn} are all bounded. Without loss of generality,
we may assume that 0 < δ < L. Given μ ∈ (0, 2δ/L2) and x, y ∈ H, we have

‖(μA − I)x − (μA − I)y‖2 = μ2‖Ax −Ay‖2 + ‖x − y‖2 − 2μ〈Ax −Ay, x − y〉

≤ μ2L2‖x − y‖2 + ‖x − y‖2 − 2μδ‖x − y‖2

=
(
1 − 2μδ + μ2L2

)
‖x − y‖2,

(3.3)

that is,

‖(μA − I
)
x − (

μA − I
)
y‖ ≤

√
1 − 2μδ + μ2L2‖x − y‖. (3.4)

Take x∗ ∈ Fix(T) ∩Ω. From (3.1), we have

‖yn+1 − (x∗ − λn+1Ax∗)‖ = ‖(zn+1 − λn+1Azn+1) − (x∗ − λn+1Ax∗)‖

=
∥∥∥∥

(
1 − λn+1

μ

)
(zn+1 − x∗) − λn+1

μ

((
μA − I

)
zn+1 −

(
μA − I

)
x∗)

∥∥∥∥

≤
(
1 − λn+1

μ

)
‖zn+1 − x∗‖ + λn+1

μ
‖(μA − I

)
zn+1 −

(
μA − I

)
x∗‖.

(3.5)

Therefore,

‖yn+1 − (x∗ − λn+1Ax∗)‖ ≤
(
1 − λn+1ω

μ

)
‖zn+1 − x∗‖, (3.6)

where ω = 1 −
√
1 − 2μδ + μ2L2 ∈ (0, 1).

Note that zn+1 = Srxn+1 and Sr are firmly nonexpansive. Hence, we have

‖zn+1 − x∗‖2 = ‖Srxn+1 − Srx
∗‖2

≤ 〈Srxn+1 − Srx
∗, xn+1 − x∗〉

= 〈zn+1 − x∗, xn+1 − x∗〉

=
1
2

(
‖zn+1 − x∗‖2 + ‖xn+1 − x∗‖2 − ‖xn+1 − zn+1‖2

)
,

(3.7)

which implies that

‖zn+1 − x∗‖2 ≤ ‖xn+1 − x∗‖2 − ‖xn+1 − zn+1‖2. (3.8)
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From (2.2) and (3.1), we have

‖xn+1 − x∗‖2 = ‖(1 − αn)yn + αnTyn − x∗‖2

= ‖(yn − x∗) − αn(yn − Tyn)‖2

= ‖yn − x∗‖2 − 2αn〈yn − Tyn, yn − x∗〉 + α2
n‖yn − Tyn‖2

≤ ‖yn − x∗‖2 − 2αn
1 − k

2
‖yn − Tyn‖2 + α2

n‖yn − Tyn‖2

= ‖yn − x∗‖2 − αn(1 − k − αn)‖yn − Tyn‖2

≤ ‖yn − x∗‖2.

(3.9)

From (3.6)–(3.9), we have

‖yn+1 − x∗‖ ≤ ‖yn+1 − (x∗ − λn+1Ax∗)‖ + λn+1‖Ax∗‖

≤
(
1 − λn+1ω

μ

)
‖zn+1 − x∗‖ + λn+1‖Ax∗‖

≤
(
1 − λn+1ω

μ

)
‖xn+1 − x∗‖ + λn+1‖Ax∗‖

≤
(
1 − λn+1ω

μ

)
‖yn − x∗‖ + λn+1‖Ax∗‖

=
(
1 − λn+1ω

μ

)
‖yn − x∗‖ + λn+1ω

μ

{ μ

ω
‖Ax∗‖

}

≤ max
{
‖yn − x∗‖, μ‖Ax∗‖

ω

}

≤ · · ·

≤ max
{
‖y0 − x∗‖, μ‖Ax∗‖

ω

}
.

(3.10)

This implies that {yn} is bounded, so are {xn} and {zn}.
From (3.1), we can write yn − Tyn = (1/αn)(yn − xn+1). Thus, from (3.9), we have

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2 − αn(1 − k − αn)‖yn − Tyn‖2

≤ ‖yn − x∗‖2 − 1 − k − αn

αn
‖yn − xn+1‖2.

(3.11)
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Since αn ∈ (0, (1 − k)/2], (1 − k − αn)/αn ≥ 1. Therefore, from (3.8) and (3.11), we obtain

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2 − ‖yn − xn+1‖2

= ‖zn − x∗ − λnAzn‖2 − ‖zn − xn+1 − λnAzn‖2

= ‖zn − x∗‖2 − 2λn〈Azn, zn − x∗〉 + λ2n‖Azn‖2

− ‖zn − xn+1‖2 + 2λn〈Azn, zn − xn+1〉 − λ2n‖Azn‖2

= ‖zn − x∗‖2 − 2λn〈xn+1 − x∗, Azn〉 − ‖xn+1 − zn‖2

≤ ‖xn − x∗‖2 − ‖xn − zn‖2 − 2λn〈xn+1 − x∗, Azn〉 − ‖xn+1 − zn‖2.

(3.12)

We note that {xn} and {zn} are bounded. So there exists a constant M ≥ 0 such that

|〈xn+1 − x∗, Azn〉| ≤ M ∀n ≥ 0. (3.13)

Consequently, we get

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 + ‖xn+1 − zn‖2 + ‖xn − zn‖2 ≤ 2Mλn. (3.14)

Now we divide two cases to prove that {xn} converges strongly to x∗.

Case 1. Assume that the sequence {‖xn − x∗‖} is a monotone sequence. Then {‖xn − x∗‖} is
convergent. Setting limn→∞‖xn − x∗‖ = d.

(i) If d = 0, then the desired conclusion is obtained.

(ii) Assume that d > 0. Clearly, we have

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 −→ 0, (3.15)

this together with λn → 0 and (3.14) implies that

‖xn+1 − zn‖2 + ‖xn − zn‖2 −→ 0, (3.16)

that is to say

‖xn+1 − zn‖ −→ 0, ‖xn − zn‖ −→ 0. (3.17)

Let z ∈ H be a weak limit point of {znk}. Then there exists a subsequence of {znk}, still
denoted by {znk}which weakly converges to z. Noting that λn → 0, we also have

ynk = znk − λnkAznk −→ z weakly. (3.18)
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Combining (3.1) and (3.17), we have

‖Tynk − ynk‖ =
1
αnk

‖ynk − xnk+1‖

=
1
αnk

‖xnk+1 − znk + λnkAznk‖

≤ ‖xnk+1 − znk‖ + λnk‖Aznk‖
−→ 0.

(3.19)

Since T is demiclosed, then we obtain z ∈ Fix(T).

Next we show that z ∈ Ω. Since zn = Srxn, we derive

Θ(zn, x) + ϕ(x) − ϕ(zn) +
1
r
〈K′(zn) −K′(xn), η(x, zn)〉 ≥ 0, ∀x ∈ C. (3.20)

From the monotonicity of Θ, we have

1
r
〈K′(zn) −K′(xn), η(x, zn)〉 + ϕ(x) − ϕ(zn) ≥ −Θ(zn, x) ≥ Θ(x, zn), (3.21)

and hence

〈
K′(znk) −K′(xnk)

r
, η(x, znk)

〉
+ ϕ(x) − ϕ(znk) ≥ Θ(x, znk). (3.22)

Since (K′(znk) − K′(xnk))/r → 0 and znk → z weakly, from the weak lower semicontinuity
of ϕ and Θ(x, y) in the second variable y, we have

Θ(x, z) + ϕ(z) − ϕ(x) ≤ 0, (3.23)

for all x ∈ C. For 0 < t ≤ 1 and x ∈ C, let xt = tx + (1 − t)z. Since x ∈ C and z ∈ C, we have
xt ∈ C and hence Θ(xt, z) + ϕ(z) − ϕ(xt) ≤ 0. From the convexity of equilibrium bifunction
Θ(x, y) in the second variable y, we have

0 = Θ(xt, xt) + ϕ(xt) − ϕ(xt)

≤ tΘ(xt, x) + (1 − t)Θ(xt, z) + tϕ(x) + (1 − t)ϕ(z) − ϕ(xt)

≤ t
[
Θ(xt, x) + ϕ(x) − ϕ(xt)

]
,

(3.24)

and hence Θ(xt, x) + ϕ(x) − ϕ(xt) ≥ 0. Then, we have

Θ(z, x) + ϕ(x) − ϕ(z) ≥ 0 (3.25)

for all x ∈ C and hence z ∈ Ω.
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Therefore, we have

z ∈ Fix(T) ∩Ω. (3.26)

Thus, if x∗ is a solution of problem (2.8), we have

lim inf
k→∞

〈znk − x∗, Ax∗〉 = 〈z − x∗, Ax∗〉 ≥ 0. (3.27)

Suppose that there exists another subsequence {zni}which weakly converges to z′. It is easily
checked that z′ ∈ Fix(T) ∩Ω and

lim inf
i→∞

〈zni − x∗, Ax∗〉 =
〈
z′ − x∗, Ax∗〉 ≥ 0. (3.28)

Therefor, we have

lim inf
n→∞

〈zn − x∗, Ax∗〉 ≥ 0. (3.29)

Since A is δ-strongly monotone, we have

〈xn+1 − x∗, Azn〉 ≥ δ‖zn − x∗‖2 + 〈zn − x∗, Ax∗〉 + 〈xn+1 − zn,Azn〉. (3.30)

By (3.17)–(3.30), we get

lim inf
n→∞

〈xn+1 − x∗, Azn〉 ≥ δd2. (3.31)

From (3.12), for 0 < ε < δd2, we deduce that there exists a positive integer number n0 large
enough, when n ≥ n0,

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 ≤ −2λn
(
δd2 − ε

)
. (3.32)

This implies that

‖xn+1 − x∗‖2 − ‖xn0 − x∗‖2 ≤ −2
(
δd2 − ε

) n∑

k=n0

λk. (3.33)

Since
∑∞

n=0 λn = ∞ and {xn} is bounded, hence the last inequality is a contraction. Therefore,
d = 0, that is to say, xn → x∗.

Case 2. Assume that {‖xn − x∗‖} is not a monotone sequence. Set Γn = ‖xn − x∗‖2 and let
τ : N → N be a mapping for all n ≥ n0 by

τ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}. (3.34)
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Clearly, τ is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and Γτ(n) ≤ Γτ(n)+1 for
n ≥ n0. From (3.14), we have

‖xτ(n)+1 − zτ(n)‖2 + ‖xτ(n) − zτ(n)‖2 ≤ 2Mλτ(n) −→ 0, (3.35)

thus

‖xτ(n)+1 − zτ(n)‖ −→ 0, ‖xτ(n) − zτ(n)‖ −→ 0. (3.36)

Therefore,

‖xτ(n)+1 − xτ(n)‖ −→ 0. (3.37)

Since Γτ(n) ≤ Γτ(n)+1, for all n ≥ n0, from (3.12), we get

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2 + ‖xτ(n)+1 − zτ(n)‖2 + ‖xτ(n) − zτ(n)‖2

≤ −2λτ(n)
〈
xτ(n)+1 − x∗, Azτ(n)

〉
,

(3.38)

which implies that

〈
xτ(n)+1 − x∗, Azτ(n)

〉 ≤ 0 ∀n ≥ n0. (3.39)

Since {zτ(n)} is bounded, there exists a subsequence of {zτ(n)}, still denoted by {zτ(n)} which
converges weakly to q ∈ H. It is easily checked that q ∈ Fix(T) ∩Ω. Furthermore, we observe
that

δ‖zτ(n) − x∗‖2 ≤ 〈
zτ(n) − x∗, Azτ(n) −Ax∗〉

=
〈
xτ(n)+1 − x∗, Azτ(n)

〉
+
〈
zτ(n) − xτ(n)+1, Azτ(n)

〉 − 〈
zτ(n) − x∗, Ax∗〉.

(3.40)

Hence, for all n ≥ n0,

δ‖zτ(n) − x∗‖2 ≤ 〈
zτ(n) − xτ(n)+1, Azτ(n)

〉 − 〈
zτ(n) − x∗, Ax∗〉. (3.41)

Therefore

lim sup
n→∞

‖zτ(n) − x∗‖2 ≤ − 1
δ

〈
q − x∗, Ax∗〉 ≤ 0, (3.42)

which implies that

lim
n→∞

‖zτ(n) − x∗‖ = 0. (3.43)
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Thus,

lim
n→∞

‖xτ(n) − x∗‖ = 0. (3.44)

It is immediate that

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0. (3.45)

Furthermore, for n ≥ n0, it is easily observed that Γn ≤ Γτ(n)+1 if n/= τ(n) (i.e., τ(n) < n),
because Γj > Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Γn ≤ max
{
Γτ(n),Γτ(n)+1

}
= Γτ(n)+1. (3.46)

Hence limn→∞Γn = 0, that is, {xn} converges strongly to x∗. Consequently, it easy to prove
that {yn} and {zn} converge strongly to x∗. This completes the proof.

Remark 3.3. The advantages of these results in this paper are that less restrictions on the
parameters {λn} are imposed.

As direct consequence of Theorem 3.2, we obtain the following.

Corollary 3.4. Let H be a real Hilbert space. Let ϕ : H → R be a lower semicontinuous and convex
functional. Let Θ : H × H → R be an equilibrium bifunction satisfying conditions (H1)–(H3). Let
A : H → H be an L-Lipschitz continuous and δ-strongly monotone mapping and T : H → H be a
nonexpansive mapping such that Fix(T) ∩Ω/= ∅. Assume what follows.

(i) η : H ×H → H is Lipschitz continuous with constant λ > 0 such that;

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ H, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology.

(ii) K : H → R is η-strongly convex with constant σ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0 such that σ ≥ λν.

(iii) For each x ∈ H; there exist a bounded subset Dx ⊂ H and zx ∈ H such that, for any
y /∈Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
zx, y

)〉
< 0. (3.47)

(iv) αn ∈ [γ, (1 − k)/2] for some γ > 0, limn→∞λn = 0 and
∑∞

n=0 λn = ∞.

Then the sequences {xn}, {yn}, and {zn} generated by (3.1) converge strongly to x∗ which solves the
problem (2.8) provided Sr is firmly nonexpansive.
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Corollary 3.5. Let H be a real Hilbert space. Let ϕ : H → R be a lower semicontinuous and convex
functional. Let Θ : H × H → R be an equilibrium bifunction satisfying conditions (H1)–(H3). Let
A : H → H be an L-Lipschitz continuous and δ-strongly monotone mapping and T : H → H be a
strictly pseudo-contractive mapping such that Fix(T) ∩Ω/= ∅. Assume what follows.

(i) η : H ×H → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ H, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology.

(ii) K : H → R is η-strongly convex with constant σ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0 such that σ ≥ λν.

(iii) For each x ∈ H; there exist a bounded subset Dx ⊂ H and zx ∈ H such that, for any
y /∈Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
zx, y

)〉
< 0. (3.48)

(iv) αn ∈ [γ, (1 − k)/2] for some γ > 0, limn→∞λn = 0 and
∑∞

n=0 λn = ∞.

Then the sequences {xn}, {yn} and {zn} generated by (3.1) converge strongly to x∗ which solves the
problem (2.8) provided Sr is firmly nonexpansive.
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