
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2009, Article ID 520976, 16 pages
doi:10.1155/2009/520976

Research Article
Approximate Fixed Points for Nonexpansive and
Quasi-Nonexpansive Mappings in Hyperspaces

Zeqing Liu,1 Jeong Sheok Ume,2 and Shin Min Kang3

1 Department of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, China
2 Department of Applied Mathematics, Changwon National University, Changwon 641-773, South Korea
3 Department of Mathematics, Research Institute of Natural Science, Gyeongsang National University,
Chinju 660-701, South Korea

Correspondence should be addressed to Jeong Sheok Ume, jsume@changwon.ac.kr

Received 9 May 2009; Accepted 14 December 2009

Recommended by W. A. Kirk

This paper provides a few convergence results of the Ishikawa iteration sequence with errors for
nonexpansive and quasi-nonexpansive mappings in hyperspaces. The results presented in this
paper improve and generalize some results in the literature.

Copyright q 2009 Zeqing Liu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

Browder [1] and Kirk [2] established that a nonexpansive mapping T which maps a
closed bounded convex subset C of a uniformly convex Banach space into itself has a
fixed point in C. Since then, many researchers have studied, under various conditions, the
convergence of the Mann and Ishikawa iteration methods dealing with nonexpansive and
quasi-nonexpansive mappings (see [3–11] and the references therein). Rhoades [9] pointed
out that the Picard iteration schemes for nonexpansive mappings need not converge. Senter
and Dotson [10] obtained conditions under which the Mann iteration schemes generated
by nonexpansive and quasi-nonexpansiv mappings in uniformly convex Banach spaces,
converge to fixed points of these mappings, respectively. Ishikawa [7] established that the
Mann iteration methods can be used to approximate fixed points of nonexpansive mappings
in Banach spaces. Deng [3] obtained similar results for Ishikawa iteration processes in
normed linear spaces and Banach spaces.

Our aim is to prove several convergence theorems of the Ishikawa iteration sequence
with errors for nonexpansive and quasi-nonexpansive mappings in hyperspaces. Our results
presented in this paper extend substantially the results due to Deng [3], Ishikawa [7], and
Senter and Dotson [10].
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Assume that X is a nonempty subset of a normed linear space (E, ‖ · ‖) and CC(X)
denotes the family of all nonempty convex compact subsets of X, and H is the Hausdorff
metric induced by the norm ‖ · ‖. For x ∈ E, X ⊂ E, A,B ∈ CC(X), I ⊆ CC(X), T : (I,H) →
(CC(X),H), and t ∈ R = (−∞,∞), let

d(x, ,A) = inf{‖x − a‖ : a ∈ A}, D(A, I) = inf{H(A,C) : C ∈ I},
IX = {{x} : x ∈ X}, A + B = {a + b : a ∈ A, b ∈ B}, tA = {ta : a ∈ A},

co(I) =

{
n∑
i=1

tiAi : ti ≥ 0,
n∑
i=1

ti = 1, Ai ∈ I, n ≥ 1

}
, F(T) = {A ∈ I : TA = A}.

(1.1)

It is easy to see that tA + (1 − t)A = A and tA + (1 − t)B ∈ CC(E) for all t ∈ [0, 1] and
A,B ∈ CC(E). Hence CC(E) is convex. Hu and Huang [12] proved that if (E, ‖ · ‖) is a Banach
space, then (CC(X),H) is a complete metric space. Nowwe introduce the following concepts
in hyperspaces.

Definition 1.1. Let I be a nonempty subset of CC(E) and let T : (I,H) → (CC(E),H) be a
mapping. Assume that {tn}n≥0, {t′n}n≥0, {sn}n≥0, and {s′n}n≥0 are arbitrary real sequences in
[0, 1] satisfying tn + t′n ≤ 1 and sn + s′n ≤ 1 for n ≥ 1 and {Pn}n≥0 and {Qn}n≥0 are any bounded
sequences of the elements in CC(E).

(i) For A0 ∈ I, the sequence {An}n≥0 defined by

Bn =
(
1 − sn − s′n

)
An + snTAn + s′nPn,

An+1 =
(
1 − tn − t′n

)
An + tnTBn + t′nQn, n ≥ 0

(1.2)

is called the Ishikawa iteration sequence with errors provided that {An, Bn : n ≥
0} ⊆ I.

(ii) If s′n = t′n = 0 for all n ≥ 0 in (1.2), the sequence {An}n≥0 defined by

Bn = (1 − sn)An + snTAn, An+1 = (1 − tn)An + tnTBn, n ≥ 0, (1.3)

is called the Ishikawa iteration sequence provided that {An, Bn : n ≥ 0} ⊆ I.

(iii) If sn = s′n = 0 for all n ≥ 0 in (1.2), the sequence {An}n≥0 defined by

An+1 =
(
1 − tn − t′n

)
An + tnTAn + t′nQn, n ≥ 0, (1.4)

is called the Mann iteration sequence with errors provided that {An : n ≥ 0} ⊆ I.

(iv) If s′n = t′n = sn = 0 for all n ≥ 0 in (1.2), the sequence {An}n≥0 defined by

An+1 = (1 − tn)An + tnTAn, n ≥ 0, (1.5)

is called the Mann iteration sequence provided that {An : n ≥ 0} ⊆ I.
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Definition 1.2. Let I be a nonempty subset of CC(E). A mapping T : (I,H) → (CC(E),H) is
said to be

(i) nonexpansive if H(TA, TB) ≤ H(A,B) for all A,B ∈ I;

(ii) quasi-nonexpansive if F(T)/= ∅ andH(TA, P) ≤ H(A,P) for allA ∈ I and P ∈ F(T).

Definition 1.3. Let I be a nonempty subset of CC(E). A mapping T : (I,H) → (CC(E),H)
with F(T)/= ∅ is said to be satisfy the following.

(i) Condition A if there is a continuous function f : [0,∞) → [0,∞)with f(0) = 0 and
f(t) > 0 for t ∈ (0,∞), such that H(A, TA) ≥ f(D(A,F(T))) for all A ∈ I.

(ii) Condition B if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0
and f(t) > 0 for t ∈ (0,∞), such that H(A, TA) ≥ f(D(A,F(T))) for all A ∈ I.

Remark 1.4. In case I = IX , where X is a nonempty subset of E, and T : IX → IE ⊆ CC(E) is
a mapping, then Definitions 1.1, 1.2, and 1.3(ii) reduce to the corresponding concepts in [1–
11, 13]. It is well known that every nonexpansive mapping with nonempty fixed point set is
quasi-nonexpansive, but the converse is not true; see [8]. Examples 3.1 and 3.4 in this paper
reveal that the class of nonexpansive mappings with nonempty fixed point set is a proper
subclass of quasi-nonexpansive mappings with both Condition A and Condition B.

The following lemmas play important roles in this paper.

Lemma 1.5 (see [12]). Let (E, ‖ · ‖) be a Banach space and I a compact subset of (CC(E),H). Then
(co(I),H) is compact, where co(I) stands for the closure of co(I).

Lemma 1.6 (see [4]). Suppose that {an}n≥0, {bn}n≥0, and {cn}n≥0 are three sequences of nonnegative
numbers such that an+1 ≤ (1 + bn)an + cn for all n ≥ 0. If

∑∞
n=0 bn and

∑∞
n=0 cn converge, then

limn→∞an exists.

Lemma 1.7 (see [14]). Let (X, d) be a metric space. Let A and B be compact subsets of X. Then for
any a ∈ A, there exists b ∈ B such that d(a, b) ≤ H(A,B), whereH is the Hausdorff metric induced
by d.

Lemma 1.8. Let (E, ‖ · ‖) be a normed linear space. Then

H((1 − t − s)A+tB+sC, (1 − t − s)L + tM + sN) ≤ (1 − t − s)H(A,L) + tH(B,M) + sH(C,N)
(1.6)

for all A,B,C, L,M,N ∈ CC(E) and t, s ∈ [0, 1] with s + t ≤ 1.

Proof. Set

r = (1 − t − s)H(A,L) + tH(B,M) + sH(C,N). (1.7)

For any a ∈ A, b ∈ B, c ∈ C, by Lemma 1.7 we infer that there exist l ∈ L, m ∈ M, n ∈ N such
that

‖a − l‖ ≤ H(A,L), ‖b −m‖ ≤ H(B,M), ‖c − n‖ ≤ H(C,N), (1.8)
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which imply that

‖(1 − t − s)a + tb + sc − (1 − t − s)l − tm − sn‖ ≤ (1 − t − s)‖a − l‖ + t‖b −m‖ + s‖c − n‖ ≤ r.
(1.9)

That is,

sup{d((1 − t − s)a + tb + sc, (1 − t − s)L + tM + sN) : a ∈ A, b ∈ B, c ∈ C} ≤ r. (1.10)

Similarly we have

sup{d((1 − t − s)l + tm + sn, (1 − t − s)A + tB + sC) : l ∈ L, m ∈ M, n ∈ N} ≤ r. (1.11)

Thus (1.6) follows from (1.10) and (1.11). This completes the proof.

Lemma 1.9. Let (E, ‖ · ‖) be a normed linear space and I a nonempty closed subset of (CC(E),H).
If T : (I,H) → (CC(E),H) is quasi-nonexpansive, then F(T) is closed.

Proof. Let {Pn}n≥0 be in F(T) with limn→∞H(Pn, P) = 0. Since T is quasi-nonexpansive, it
follows that

H(P, TP) ≤ H(Pn, P) +H(Pn, TP) ≤ 2H(Pn, P) −→ 0 (1.12)

as n → ∞. Hence P ∈ F(T). That is, F(T) is closed. This completes the proof.

2. Main Results

Our results are as follows.

Theorem 2.1. Let (E, ‖·‖) be a normed linear space and let I be a nonempty subset ofCC(E). Assume
that T : (I,H) → (CC(E),H) is nonexpansive and A0 ∈ I. Suppose that there exists a constant t
satisfying

0 < tn + t′n ≤ t < 1, n ≥ 0, (2.1)

∞∑
n=0

tn = ∞,
∞∑
n=0

sn < ∞,
∞∑
n=0

s′n < ∞,
∞∑
n=0

t′n < ∞,
∞∑
n=0

t′n
(
tn + t′n

)−1
< ∞. (2.2)

If the Ishikawa iteration sequence with errors {An}n≥0 is bounded, then limn→∞H(An, TAn) = 0.

Proof. Since T is nonexpansive, {An}n≥0, {Pn}n≥0, and {Qn}n≥0 are bounded, it follows that

a := sup{H(A,B) : A ∈ {An, Bn, Pn,Qn : n ≥ 0}, B ∈ {An, Bn, TAn, TBn : n ≥ 0}} < ∞. (2.3)
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Let n and k be arbitrary nonnegative integers. In view of (1.2), (2.3), Lemma 1.8, and the
nonexpansiveness of T , we conclude that

H(Bn,An) ≤ snH(An, TAn) + as′n, (2.4)

H(TBn,An) ≤ H(TBn, TAn) +H(TAn,An) ≤ (1 + sn)H(An, TAn) + as′n, (2.5)

H(An+1, An) ≤ tnH(TBn,An) + at′n ≤ tn(1 + sn)H(An, TAn) + a
(
tns

′
n + t′n

)
, (2.6)

H(An+1, TAk) ≤
(
1 − tn − t′n

)
H(An, TAk) + tnH(TBn, TAk) + at′n

≤ (1 − tn − t′n
)
H(An, TAk) + tnH(Bn,Ak) + at′n,

(2.7)

which yields that

H(An, TAk) ≥
(
1 − tn − t′n

)−1(
H(An+1, TAk) − tnH(Bn,Ak) − at′n

)
. (2.8)

Using (1.2), (2.3)–(2.6), Lemma 1.8, and the nonexpansiveness of T , we have

H(Bn,An+k+1) ≤ H(Bn,An+1) +
k∑
i=1

H(An+i, An+i+1)

≤ (1 − sn − s′n
)
H(An,An+1) + snH(TAn,An+1) + as′n

+
k∑
i=1

[
(1 + sn+i)tn+iH(An+i, TAn+i) + a

(
tn+is

′
n+i + t′n+i

)]

≤ (1 − sn − s′n
)[
tn(1 + sn)H(TAn,An) + a

(
tns

′
n + t′n

)]
+ sn
[(
1 − tn − t′n

)
H(TAn,An) + tnH(TBn, TAn) + at′n

]
+ as′n

+
k∑
i=1

(1 + sn+i)tn+iH(An+i, TAn+i) + a
k∑
i=1

(
tn+is

′
n+i + t′n+i

)

≤
(
tn + sn − sntn − s2ntn − s′ntn − snt

′
n − s′ntnsn

)
H(An, TAn)

+ a
(
1 − sn − s′n

)(
tns

′
n + t′n

)
+ sntn

(
snH(An, TAn) + as′n

)

+ asnt
′
n + as′n +

k∑
i=1

(1 + sn+i)tn+iH(An+i, TAn+i) + a
k∑
i=1

(
tn+is

′
n+i + t′n+i

)

≤
k∑
i=0

(tn+i + sn+i)H(An+i, TAn+i) + a

[
s′n +

k∑
i=0

(
tn+is

′
n+i + t′n+i

)]
,

(2.9)



6 Fixed Point Theory and Applications

H(TAn+1, An+1) ≤
(
1 − tn − t′n

)
H(An, TAn+1) + tnH(TBn, TAn+1) + t′nH(Qn, TAn+1)

≤ (1 − tn − t′n
)
(H(An+1, TAn+1) +H(An,An+1)) + tnH(Bn,An+1) + at′n

≤ (1 − tn − t′n
)
H(An+1, TAn+1)

+
(
1 − tn − t′n

)[
(1 + sn)tnH(An, TAn) + a

(
tns

′
n + t′n

)]
+ tn
[
(tn + sn)H(An, TAn) + a

(
s′n + tns

′
n + t′n

)]
+ at′n

≤ (1 − tn − t′n
)
H(An+1, TAn+1) + tn(1 + 2sn)H(An, TAn) + 2a

(
tns

′
n + t′n

)
(2.10)

which implies that

H(An+1, TAn+1) ≤
(
tn + t′n

)−1[
tn(1 + 2sn)H(An, TAn) + 2a

(
tns

′
n + t′n

)]
≤ (1 + 2sn)H(An, TAn) + 2a

(
s′n + tn

(
t′n + t′n

)−1)
.

(2.11)

Lemma 1.6, (2.2), and (2.11) yield that there exists a nonnegative constant r satisfying

lim
n→∞

H(An, TAn) = r, (2.12)

which implies that for any ε > 0 there exists a positive integer N such that

r − ε ≤ H(An, TAn) ≤ r + ε for n ≥ N. (2.13)

Now we prove by induction that the following inequality holds for all n ≥ 1:

H
(
Ap, TAp+n

) ≥ (r + ε)

(
1 +

n−1∑
i=0

tp+i

)
− 2ε

n−1∏
i=0

(
1 − tp+i − t′p+i

)−1

− (r + ε)
n−1∑
i=0

⎡
⎣tp+i

⎛
⎝n−1∑

j=i

sp+j

⎞
⎠ i∏

k=0

(
1 − tp+k − t′p+k

)−1⎤⎦

− a
n−1∑
i=0

⎧⎨
⎩
⎡
⎣tp+i

⎛
⎝s′p+i +

n−1∑
j=i

(
tp+js

′
p+j + t′p+j

)⎞⎠ + t′p+i

⎤
⎦

×
i∏

k=0

(
1 − tp+k − t′p+k

)−1}
, p ≥ N.

(2.14)
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According to (1.2), (2.8), (2.9), and (2.13), we derive that

H
(
Ap, TAp+1

)
≥
(
1 − tp − t′p

)−1(
H
(
Ap+1, TAp+1

) − tpH
(
Bp,Ap+1

) − at′p
)

≥
(
1 − tp − t′p

)−1(
r − ε − (r + ε)tp

(
tp + sp

) − atp
(
s′p + tps

′
p + t′p

)
− at′p

)
=
(
1−tp−t′p

)−1[
r − ε−(r + ε)

(
1 − 2

(
1 − tp

)
+
(
1 − tp

)2 + tpsp
)
− a
(
tp
(
s′p + tps

′
p + t′p

)
+ t′p
)]

≥ (r + ε)
(
1 + tp

) − 2ε
(
1 − tp − t′p

)−1 − (r + ε)tpsp
(
1 − tp − t′p

)−1
− a
[
tp
(
s′p + tps

′
p + t′p

)
+ t′p
](

1 − tp − t′p
)−1

, p ≥ N.

(2.15)

Hence (2.14) holds for n = 1. Suppose that (2.14) holds for n = m ≥ 1. That is,

H
(
Ap, TAp+m

) ≥ (r + ε)

(
1 +

m−1∑
i=0

tp+i

)
− 2ε

m−1∏
i=0

(
1 − tp+i − t′p+i

)−1

− (r + ε)
m−1∑
i=0

⎡
⎣tp+i

⎛
⎝m−1∑

j=i

sp+j

⎞
⎠ i∏

k=0

(
1 − tp+k − t′p+k

)−1⎤⎦

− a
m−1∑
i=0

⎧⎨
⎩
⎡
⎣tp+i

⎛
⎝s′p+i +

m−1∑
j=i

(
tp+js

′
p+j + t′p+j

)⎞⎠ + t′p+i

⎤
⎦

×
i∏

k=0

(
1 − tp+k − t′p+k

)−1}
, p ≥ N.

(2.16)

In view of (1.2), (2.8), (2.9), and (2.16), we infer that

H
(
Ap, TAp+m+1

)
≥
(
1 − tp − t′p

)−1(
H
(
Ap+1, TAp+m+1

) − tpH
(
Bp,Ap+m+1

) − at′n
)

≥
(
1 − tp − t′p

)−1{
(r + ε)

(
1 +

m−1∑
i=0

tp+1+i

)
− 2ε

m−1∏
i=0

(
1 − tp+1+i − t′p+1+i

)−1

− (r + ε)
m−1∑
i=0

⎡
⎣tp+1+i

⎛
⎝m−1∑

j=i

sp+1+j

⎞
⎠ i∏

k=0

(
1 − tp+1+k − t′p+1+k

)−1⎤⎦

− a
m−1∑
i=0

⎡
⎣
⎛
⎝tp+1+i

⎛
⎝s′p+1+i +

m−1∑
j=i

(
tp+1+js

′
p+1+j + t′p+1+j

)⎞⎠ + t′p+1+i

⎞
⎠

×
i∏

k=0

(
1 − tp+1+k − t′p+1+k

)−1] − tp
m−1∑
i=0

(
tp+i + sp+i

)
(r + ε)

−atp
(
s′p +

m∑
i=0

(
tp+is

′
p+i + t′p+i

))
− at′p

}
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= −2ε
m∏
i=0

(
1 − tp+i − t′p+i

)−1
+
(
1 − tp − t′p

) −1
(r + ε)

×
[
1 +

m∑
i=0

tp+1+i − 1 + 2
(
1 − tp

) − (1 − tp
)2 − tp

m∑
i=1

tp+i − tp
m∑
i=0

sp+i

]

− (r + ε)
m−1∑
i=0

⎡
⎣tp+1+i

⎛
⎝m−1∑

j=i

sp+1+j

⎞
⎠ i+1∏

k=0

(
1 − tp+k − t′p+k

)−1⎤⎦

− a

{[
tp

(
s′p +

m∑
i=0

(
tp+is

′
p+i + t′p+i

))
+ t′p

](
1 − tp − t′p

)−1

+
m−1∑
i=0

⎡
⎣
⎛
⎝tp+1+i

⎛
⎝s′p+1+i +

m−1∑
j=i

(
tp+1+js

′
p+1+j + t′p+1+j

)⎞⎠ + t′p+1+i

⎞
⎠

×
i+1∏
k=0

(
1 − tp+k − t′p+k

)−1⎤⎦
⎫⎬
⎭

= −2ε
m∏
i=0

(
1 − tp+i − t′p+i

)−1
+ (r + ε)

(
1 − tp

)(
1 − tp − t′p

)−1(
1 +

m∑
i=0

tp+i

)

− (r + ε)

⎧⎨
⎩tp
(
1 − tp − t′p

)−1 m∑
i=0

sp+i +
m−1∑
i=0

⎡
⎣tp+1+i

⎛
⎝m−1∑

j=i

sp+1+j

⎞
⎠ i+1∏

k=0

(
1 − tp+k − t′p+k

)−1⎤⎦
⎫⎬
⎭

− a
m∑
i=0

⎧⎨
⎩
⎡
⎣tp+i

⎛
⎝s′p+i +

m∑
j=i

(
tp+js

′
p+j + t′p+j

)⎞⎠ + t′p+i

⎤
⎦ i∏

k=0

(
1 − tp+k − t′p+k

)−1⎫⎬
⎭

≥ (r + ε)

(
1 +

m∑
i=0

tp+i

)
− 2ε

m∏
i=0

(
1 − tp+i − t′p+i

)−1

+ (r + ε)
m∑
i=0

⎡
⎣tp+i

⎛
⎝ m∑

j=i

sp+j

⎞
⎠ i∏

k=0

(
1 − tp+k − t′p+k

)−1⎤⎦

− a
m∑
i=0

⎧⎨
⎩
⎡
⎣tp+i

⎛
⎝s′p+i +

m∑
j=i

(
tp+js

′
p+j + t′p+j

)⎞⎠ + t′p+i

⎤
⎦ i∏

k=0

(
1 − tp+k − t′p+k

)−1⎫⎬
⎭, p ≥ N.

(2.17)

That is, (2.14) holds for n = m + 1. Hence (2.14) holds for all n ≥ 1.
We now assert that r = 0. If not, then r > 0. Let m be an arbitrary positive integer and

ε = min
{
r, 2−1rt(2r + a)−1(1 − t)m, r(1 − t)m

(
2 + at−1

)−1}
. (2.18)
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According to (2.1), (2.2), and (2.12), we know that there exists a positive integer N = N(ε)
satisfying (2.13) and

max

{
n+p∑
k=n

sk, s
′
i +

n+p∑
k=n

(
tks

′
k + t′k

)}
< ε for n, i ≥ N, p ≥ 1. (2.19)

It follows from (2.1), (2.2), (2.13), (2.14), and (2.19) that

H(AN, TAN+m) ≥ (r + ε)

(
1 +

m−1∑
i=0

tN+i

)
− 2ε

m−1∏
i=0

(
1 − tN+i − t′N+i

)−1

− (r + ε)
m−1∑
i=0

⎡
⎣tN+i

⎛
⎝m−1∑

j=i

sN+j

⎞
⎠ i∏

k=0

(
1 − tN+k − t′N+k

)−1⎤⎦

− a
m−1∑
i=0

⎧⎨
⎩
⎡
⎣tN+i

⎛
⎝s′N+i +

m−1∑
j=i

(
tN+js

′
N+j + t′N+j

)⎞⎠ + t′N+i

⎤
⎦

×
i∏

k=0

(
1 − tN+k − t′N+k

)−1}

≥ (r + ε)

(
1 +

m−1∑
i=0

tN+i

)
− 2ε(1 − t)−m

− (r + ε)ε
m−1∑
i=0

tN+i(1 − t)−i−1 − a
m−1∑
i=0

[(
tN+iε + t′N+i

)
(1 − t)−i−1

]

≥ (r + ε)

(
1 +

m−1∑
i=0

tN+i

)
− 2ε(1 − t)−m − (r + ε)ε

m−1∑
i=0

⎡
⎣tN+i

i∑
j=0

(1 − t)−j−1
⎤
⎦

− aε
m−1∑
i=0

tN+i

i∑
j=0

(1 − t)−j−1 − a
m−1∑
i=0

⎡
⎣(1 − t)−i−1

i∑
j=0

t′N+j

⎤
⎦

≥ (r + ε)

(
1 +

m−1∑
i=0

tN+i

)
− 2ε(1 − t)−m − (r + ε)εt−1(1 − t)−m

m−1∑
i=0

tN+i

− aεt−1(1 − t)−m
m−1∑
i=0

tN+i − aε
m−1∑
i=0

(1 − t)−i−1

≥
(
r + ε − (r + ε + a)εt−1(1 − t)−m

)m−1∑
i=0

tN+i

+
(
r + ε − 2ε(1 − t)−m − aεt−1(1 − t)−m

)

≥
(
r − (2r + a)εt−1(1 − t)−m

)m−1∑
i=0

tN+i +
(
r −
(
2 + at−1

)
ε(1 − t)−m

)

≥ 2−1r
m−1∑
i=0

tN+i −→ ∞

(2.20)
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as m → ∞. Thus (2.3) and (2.20) yield that a = ∞, which is absurd. Hence r = 0. This
completes the proof.

Theorem 2.2. Let (E, ‖ ·‖) be a Banach space and I a nonempty closed subset of CC(E). Assume that
T : (I,H) → (CC(E),H) is nonexpansive and there exists a compact subset Ω of CC(E) such that
T(I) ∪ {Pn,Qn : n ≥ 0} ⊆ Ω. If (2.1) and (2.2) hold, then T has a fixed point in I. Moreover, given
A0 ∈ I, the Ishikawa iteration sequence with errors {An}n≥0 converges to a fixed point of T .

Proof. Setting I0 = co({A0} ∪Ω), by Lemma 1.5 and the compactness Ω we conclude that I0
is compact. It is evident that {An}n≥0 ⊆ I0, which yields that {An}n≥0 is bounded. Since I is
closed and {An}n≥0 ⊆ I, we conclude that there exist a subsequence {Ani}i≥0 of {An}n≥0 and
A ∈ I such that

lim
i→∞

H(Ani ,A) = 0. (2.21)

It follows from (2.21), Theorem 2.1, and the nonexpansiveness of T that

H(A, TA) ≤ H(A,Ani) +H(Ani , TAni) +H(TAni , TA)

≤ 2H(A,Ani) +H(Ani , TAni) −→ 0
(2.22)

as i → ∞. That is, A = TA. Put

b = sup{H(Pn,A),H(Qn,A) : n ≥ 0}. (2.23)

In view of (1.2), Lemma 1.8 and the nonexpansiveness of T , we derive that

H(An+1, A) ≤ (1 − tn − t′n
)
H(An,A) + tnH(TBn,A) + bt′n

≤ (1 − tn − t′n
)
H(An,A)

+ tn
((
1 − sn − s′n

)
H(An,A) + snH(TAn,A) + bs′n

)
+ bt′n

(2.24)

for n ≥ 0. It follows from Lemma 1.6, (2.2), (2.23), and (2.24) that limi→∞H(An,A) exists.
Using (2.21)we get that limi→∞H(An,A) = 0. This completes the proof.

Theorem 2.3. Let (E, ‖ · ‖) be a Banach space and I a nonempty closed subset of CC(E). Suppose
that T : (I,H) → (CC(E),H) is a qusi-nonexpansive mapping and satisfies Condition A. Assume
that (2.1) and (2.2) hold andA0 is in I. If F(T) is bounded, then the Ishikawa iteration sequence with
errors {An}n≥0 converges to a fixed point of T in I.

Proof. Let b = sup{H(Pn,A),H(Qn,A) : n ≥ 0 and A ∈ F(T)}. Then b < ∞. As in the
proof of Theorem 2.2, we get that (2.24) holds and limi→∞H(An,A) exists, where A ∈ F(T).
Consequently, {An}n≥0 is bounded and

D(An+1, F(T)) ≤ D(An, F(T)) + b
(
s′n + t′n

) ∀n ≥ 0. (2.25)
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It follows from Lemma 1.6, (2.2), and (2.25) that limn→∞D(An, F(T)) = s ≥ 0. In view of
Theorem 2.1 and Condition A, we have

lim
n→∞

H(An, TAn) = 0, f(D(An, F(T))) ≤ H(An, TAn) ∀n ≥ 0. (2.26)

Using the continuity of f , we know that f(s) = 0. That is, s = 0 and

lim
n→∞

D(An, F(T)) = 0. (2.27)

Clearly (2.27) ensures that for any i ≥ 0 there existNi ≥ 1 and Pi ∈ F(T) such thatH(ANi, Pi) <
2−i, which implies from (2.24) that

H(An, Pi) < 2−i + b
n−1∑
k=Ni

(
s′k + t′k

)
for n ≥ Ni. (2.28)

We require Ni+1 > Ni for all i ≥ 0. Notice that for any j > i ≥ 0

H
(
Pi, Pj

) ≤
j−1∑
k=i

(H(Pk,ANk+1) +H(ANk+1 , Pk+1))

≤
j−1∑
k=i

(
2−k + b

Nk+1−1∑
m=Nk

(
s′m + t′m

)
+ 2−k−1

)

= 3
(
2−i − 2−j

)
+ b

Nj−1∑
l=Ni

(
s′l + t′l

)
.

(2.29)

Thus (2.2) and (2.29) yield that {Pi}i≥0 is a Cauchy sequence in F(T). It follows from
Lemma 1.9 that there exists P ∈ F(T) satisfying limi→∞Pi = P . For any ε > 0 there exists
i0 > 0 such that

max

⎧⎨
⎩2−i0 ,H(Pi0 , P), b

n−1∑
k=Ni0

(
s′k + t′k

)⎫⎬⎭ < 3−1ε for n > Ni0 . (2.30)

Using (2.28) and (2.30) we have

H(An, P) ≤ H(An, Pi0) +H(Pi0 , P)

≤ 2−i0 + b
n−1∑

k=Ni0

(
s′k + t′k

)
+H(Pi0 , P)

< ε

(2.31)

for n > Ni0 . That is, {An}n≥0 converges to P ∈ F(T). This completes the proof.
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A proof similar to that of Theorem 2.3 gives the following result and is thus omitted.

Theorem 2.4. Let (E, ‖ · ‖) be a Banach space and let I be a nonempty closed subset of CC(E).
Suppose that T : (I,H) → (CC(E),H) is a qusi-nonexpansive mapping and satisfies Condition B.
Assume that A0 is in I and there exists a constant t satisfying

0 < tn ≤ t < 1, n ≥ 0,
∞∑
n=0

tn = ∞,
∞∑
n=0

sn < ∞. (2.32)

Then the Ishikawa iteration sequence {An}n≥0 converges to a fixed point of T in I.

Let X be a nonempty subset of (E, ‖ · ‖). It is easy to see that (IX,H) is isometric to
(X, ‖ · ‖). Thus Theorems 2.1–2.4 yield the following results.

Corollary 2.5. Let X be a nonempty subset of a normed linear space (E, ‖ · ‖). Assume that T :
(X, ‖ · ‖) → (E, ‖ · ‖) is nonexpansive andA0 ∈ X. Suppose that (2.1) and (2.2) hold. If the Ishikawa
iteration sequence with errors {An}n≥0 is bounded, then limn→∞‖An − TAn‖ = 0.

Remark 2.6. Corollary 2.5 extends Theorem1 in [3] and Lemma2 in [7] from the Ishikawa
iteration scheme and Mann iteration scheme into the Ishikawa iteration scheme with errors,
respectively.

Corollary 2.7. Let X be a nonempty closed subset of a Banach space (E, ‖ · ‖). Assume that T :
(X, ‖ · ‖) → (E, ‖ · ‖) is nonexpansive and there exists a compact subset Y of E with T(X)∪{Pn,Qn :
n ≥ 0} ⊆ Y . Suppose that (2.1) and (2.2) hold. Then T has a fixed point in X. Moreover for any
A0 ∈ X, the Ishikawa iteration sequence with errors {An}n≥0 converges to a fixed point of T .

Remark 2.8. Theorem3 in [3] and Theorem1 in [7] and [8] are special cases of Corollary 2.7.

Corollary 2.9. Let X be a nonempty closed subset of a Banach space (E, ‖ · ‖) and let T : (X, ‖ · ‖) →
(E, ‖·‖) be quasi-nonexpansive. Assume that (2.1) and (2.2) hold and T satisfies Condition A. If F(T)
is bounded, then for any A0 ∈ X, the Ishikawa iteration sequence with errors {An}n≥0 converges to a
fixed point of T in X.

Corollary 2.10. LetX be a nonempty closed subset of a Banach space (E, ‖ ·‖) and let T : (X, ‖ ·‖) →
(E, ‖ · ‖) be quasi-nonexpansive. Assume that (2.32) holds and A0 is in X. If T satisfies Condition B,
then the Ishikawa iteration sequence {An}n≥0 converges to a fixed point of T in X.

Remark 2.11. Corollary 2.10 extends, improves, and unifies Theorem4 in [3], Theorem2 in [7]
and [8] in the following ways:

(i) the Mann iteration method in [7, 8], and Ishikawa iteration method in [3] are
replaced by the more general Ishikawa iteration method with errors;

(ii) the nonexpansive mappings in [3, 7, 8] are replaced by the more general quasi-
nonexpansive mappings.
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3. Examples and Problems

Now we construct a few nontrivial examples to illustrate the results in Section 2. The
following example reveals that Corollary 2.10 extends properly Theorem4 in [3], Theorem2
in [7] and [8].

Example 3.1. Let E = R with the usual norm | · | and let X = [0, 1]. Define T : X → E and
f : [0,∞) → [0,∞) by

Tx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
4
x, for x ∈

[
0,

1
2

]
,

1
2
x, for x ∈

(
1
2
, 1
]
,

(3.1)

and f(t) = (1/4)t for t ≥ 0. Set tn = (2 +
√
n)−1 and sn = (1 + n2)−1 for n ≥ 0 and A0 ∈ X. Then

F(T) = {0} and

|Tx − 0| ≤ 3
4
|x − 0|, |x − Tx| ≥ 1

4
|x| = f(d(x, F(T))) for x ∈ X. (3.2)

Thus the assumptions of Corollary 2.10 are satisfied. However, Theorem4 in [3], Theorem2
in [7] and [8] are not applicable since

∣∣∣∣T 1
2
− T

17
32

∣∣∣∣ = 7
64

>
1
32

=
∣∣∣∣12 − 17

32

∣∣∣∣, (3.3)

that is, T is not nonexpansive.

The examples below show that Theorems 2.1–2.4 extend substantially Corollaries 2.5–
2.10, respectively.

Example 3.2. Let E = R2 with the usual norm | · | and let X = [0, 1]2. For any (a, b) ∈
X, Δ(0, 0)(a, 0)(0, b) stands for the triangle with vertices (0, 0), (a, 0), and (0, b). Let I =
{Δ(0, 0)(a, 0)(0, b) : (a, b) ∈ X} and {Pn}n≥0 and {Qn}n≥0 be in I. Define T : I → CC(E)
by

TΔ(0, 0)(a, 0)(0, b) = Δ(0, 0)
(
2−1(a + b), 0

)(
0, 4−1

∣∣∣b2 − a2
∣∣∣) for (a, b) ∈ X. (3.4)
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Put tn = (2 +
√
n)−1, t′n = (2 + n7/4)−1, sn = s′n = (3 + n3/2)−1 for n ≥ 0 and A0 ∈ X. It follows

that I is a compact subset of CC(E), F(T) = {Δ(0, 0)(0, 0)(0, 0)} and

H(TΔ(0, 0)(a, 0)(0, b), TΔ(0, 0)(c, 0)(0, d))

= H
(
Δ(0, 0)

(
2−1(a + b), 0

)(
0, 4−1

∣∣∣b2 − a2
∣∣∣),Δ(0, 0)

(
2−1(c + d), 0

)(
0, 4−1

∣∣∣d2 − c2
∣∣∣))

= max
{
2−1|a + b − c − d|, 4−1

∥∥∥∣∣∣b2 − a2
∣∣∣ − ∣∣∣d2 − c2

∣∣∣∥∥∥}
≤ max{|a − c|, |b − d|}
= H(Δ(0, 0)(a, 0)(0, b),Δ(0, 0)(c, 0)(0, d))

(3.5)

for (a, b), (c, d) ∈ X. That is, the conditions of Theorems 2.1 and 2.2 are fulfilled. Hence we
can invoke our Theorems 2.1 and 2.2 show that the Ishikawa iteration sequence with errors
{An}n≥0 converges to Δ(0, 0)(0, 0)(0, 0) and limn→∞H(An, TAn) = 0.

Example 3.3. Let E,X, I, {Pn}n≥0, {Qn}n≥0, {sn}n≥0, {s′n}n≥0, {tn}n≥0, {t′n}n≥0, and A0 be as in
Example 3.2. Define T : I → CC(E) and f : [0,∞) → [0,∞) by

TΔ(0, 0)(a, 0)(0, b) = Δ(0, 0)
(
a3
(
1 + a2

)−1
, 0
)(

0, b3
(
1 + b2

)−1)
for (a, b) ∈ X,

f(t) = t
(
1 + t2

)−1
for t ∈ [0,∞).

(3.6)

Obviously, F(T) = {Δ(0, 0)(0, 0)(0, 0)},

H(TΔ(0, 0)(a, 0)(0, b),Δ(0, 0)(0, 0)(0, 0))

= H

(
Δ(0, 0)

(
a3
(
1 + a2

)−1
, 0
)(

0, b3
(
1 + b2

)−1)
,Δ(0, 0)(0, 0)(0, 0)

)

= max
{
a3
(
1 + a2

)−1
, b3
(
1 + b2

)−1}

≤ max{a, b}
= H(Δ(0, 0)(a, 0)(0, b),Δ(0, 0)(0, 0)(0, 0)),

H(Δ(0, 0)(a, 0)(0, b), TΔ(0, 0)(a, 0)(b, 0))

= H

(
Δ(0, 0)(a, 0)(b, 0),Δ(0, 0)

(
a3
(
1 + a2

)−1
, 0
)(

0, b3
(
1 + b2

)−1))

= max
{
f(a), f(b)

}
≥ f(max{a, b})
= f(D(Δ(0, 0)(a, 0)(0, b), F(T)))

(3.7)

for (a, b) ∈ X. Therefore the conditions of Theorem 2.3 are fulfilled.
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Example 3.4. Let E,X, I, and A0 be as in Example 3.2. Define T : I → CC(E), f : [0,∞) →
[0,∞) and h : [0, 1] → [1, 2] by

TΔ(0, 0)(a, 0)(0, b) = Δ(0, 0)
(
2−1ah(a), 0

)(
0, 2−1b2

)
for (a, b) ∈ X,

f(t) = 8−1t for t ≥ 0 ,

h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7
4
, for x ∈

[
0,

1
2

]
,

1, for x ∈
(
1
2
, 1
]
.

(3.8)

It follows that F(T) = {Δ(0, 0)(0, 0)(0, 0)},

H(TΔ(0, 0)(a, 0)(0, b),Δ(0, 0)(0, 0)(0, 0))

= max
{
2−1ah(a), 2−1b2

}
≤ max{a, b}
= H(Δ(0, 0)(a, 0)(0, b),Δ(0, 0)(0, 0)(0, 0)),

H(Δ(0, 0)(a, 0)(0, b), TΔ(0, 0)(a, 0)(0, b))

= H
(
Δ(0, 0)(a, 0)(b, 0),Δ(0, 0)

(
2−1ah(a), 0

)(
0, 2−1b2

))

= max
{
a
(
1 − 2−1h(a)

)
, b
(
1 − 2−1b2

)}
≥ 8−1 max{a, b}
= f(D(Δ(0, 0)(a, 0)(0, b), F(T)))

(3.9)

for (a, b) ∈ X. Obviously, the assumptions of Theorem 2.4 are fulfilled. On the other hand, T
is not nonexpansive since

H

(
TΔ(0, 0)

(
1
2
, 0
)(

0,
1
2

)
, TΔ(0, 0)

(
9
16

, 0
)(

0,
1
2

))

=
1
2

∣∣∣∣12h
(
1
2

)
− 9
16

h

(
9
16

)∣∣∣∣
=

5
32

>
1
16

= H

(
Δ(0, 0)

(
1
2
, 0
)(

0,
1
2

)
,Δ(0, 0)

(
9
16

, 0
)(

0,
1
2

))
.

(3.10)

We conclude with the following problems.

Problem 3.5. Can Condition A in Theorem 2.3 be replaced by Condition B?
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Problem 3.6. Can the boundedness of F(T) in Theorem 2.3 be removed?

Problem 3.7. Can Theorem 2.4 be extended to the Ishikawa iteration method with errors?
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