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1. Introduction

Let f : I ⊆ R → R be a convexmapping defined on the interval I of real numbers and a, b ∈ I,
with a < b, then

f

(
a + b

2

)
≤
∫b
a

f(x)dx ≤ f(a) + f(b)
2

(1.1)

holds, this inequality is known as the Hermite-Hadamard inequality. For refinements,
counterparts, generalizations and new Hadamard-type inequalities, see [1–8].

A positive function f is called log-convex on a real interval I = [a, b], if for all x, y ∈
[a, b] and λ ∈ [0, 1],

f
(
λx + (1 − λ)y

) ≤ fλ(x)f1−λ(y). (1.2)

If f is a positive log-concave function, then the inequality is reversed. Equivalently, a function
f is log-convex on I if f is positive and log f is convex on I. Also, if f > 0 and f ′′ exists on I,
then f is log-convex if and only if f · f ′′ − (f ′)2 ≥ 0.
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The logarithmic mean of the positive real numbers a, b, a/= b, is defined as

L(a, b) =
b − a

log b − log a
. (1.3)

A version of Hadamard’s inequality for log-convex (concave) functions was given in [9], as
follows.

Theorem 1.1. Suppose that f is a positive log-convex function on [a, b], then

1
b − a

∫b
a

f(x)dx ≤ L
(
f(a), f(b)

)
. (1.4)

If f is a positive log-concave function, then the inequality is reversed.

For refinements, counterparts and generalizations of log-convexity see [9–13].
A convex function on the coordinates was introduced by Dragomir in [8]. A function

f : Δ → R which is convex in Δ is called coordinated convex on Δ if the partial mapping
fy : [a, b] → R, fy(u) = f(u, y) and fx : [c, d] → R, fx(v) = f(x, v), are convex for all
y ∈ [c, d] and x ∈ [a, b].

An inequality of Hadamard’s type for coordinated convex mapping on a rectangle
from the plane R2 established by Dragomir in [8], is as follows.

Theorem 1.2. Suppose that f : Δ → R is coordinated convex on Δ, then

f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a)(d − c)

∫b
a

∫d
c

f
(
x, y
)
dy dx

≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)
4

.

(1.5)

The above inequalities are sharp.

The maximummodulus principle in complex analysis states that if f is a holomorphic
function, then themodulus |f | cannot exhibit a true local maximum that is properlywithin the
domain of f . Characterizations of the maximum principle for sub(super)harmonic functions
are considered in [14], as follows.

Theorem 1.3. Let G ⊆ R
2 be a region and let f : G → R be a sub(super)harmonic function. If there

is a point λ ∈ G with f(λ) ≥ f(x), for all x ∈ G then f(x) is a constant function.

Theorem 1.4. Let G ⊆ R
2 be a region and let f and g be bounded real-valued functions defined on G

such that f is subharmonic and g is superharmonic. If for each point a ∈ ∂∞G

lim
x→a

sup f(x) ≤ lim
x→a

inf g(x), (1.6)

then f(x) < g(x) for all x ∈ G or f = g and f is harmonic.
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In this paper, a new version of the maximum (minimum) principle in terms of
convexity, and some inequalities of the Hadamard type are obtained.

2. On Coordinated Convexity and Sub(Super)Harmonic Functions

Consider the 2-dimensional interval Δ := [a, b] × [c, d] in R2. A function f : Δ → R is called
convex in Δ if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) (2.1)

holds for all x,y ∈ Δ and λ ∈ [0, 1].
As in [8], we define a log-convex function on the coordinates as follows: a function

f : Δ → R+ will be called coordinated log-convex on Δ if the partial mappings fy : [a, b] → R,
fy(u) = f(u, y) and fx : [c, d] → R, fx(v) = f(x, v), are log-convex for all y ∈ [c, d] and
x ∈ [a, b]. A formal definition of a coordinated log-convex function may be stated as follows.

Definition 2.1. A function f : Δ → R+ will be called coordinated log-convex on Δ, for all t, s ∈
[0, 1] and (x, y), (u, v) ∈ Δ, if the following inequality holds,

f
(
tx + (1 − t)y, su + (1 − s)w

)

≤ fts(x, u)fs(1−t)(y, u)ft(1−s)(x,w)f (1−t)(1−s)(y,w). (2.2)

Equivalently, we can determine whether or not the function f is coordinated log-
convex by using the following lemma.

Lemma 2.2. Let f : Δ → R+. If f is twice differentiable then f is coordinated log-convex onΔ if and
only if for the functions fy : [a, b] → R, defined by fy(u) = f(u, y) and fx : [c, d] → R, defined
by fx(v) = f(x, v), we have

fx · f ′′
x − (f ′

x

)2 ≥ 0, fy · f ′′
y −
(
f ′
y

)2 ≥ 0. (2.3)

Proof. The proof is straight forward using the elementary properties of log-convexity in one
variable.

Proposition 2.3. Suppose that g : [a, b] → R+ is twice differentiable on (a, b) and log-convex on
[a, b] and h : [c, d] → R+ is twice differentiable on (c, d) and log-convex on [c, d]. Let f : Δ =
[a, b] × [c, d] → R+ be a twice differentiable function defined by f(x, y) = g(x)h(y), then f is
coordinated log-convex on Δ.

Proof. This follows directly using Lemma 2.2.

The following result holds.

Proposition 2.4. Every log-convex function f : Δ = [a, b] × [c, d] → R+ is log-convex on the
coordinates, but the converse is not generally true.
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Proof. Suppose that f : Δ → R is convex in Δ. Consider the function fx : [c, d] → R+,
fx(v) = f(x, v), then for λ ∈ [0, 1], and v,w ∈ [c, d], we have

fx(λv + (1 − λ)w) = f(x, λv + (1 − λ)w)

= f(λx + (1 − λ)x, λv + (1 − λ)w)

≤ fλ(x, v)f1−λ(x,w)

= fλ
x (v)f

1−λ
x (w),

(2.4)

which shows the log-convexity of fx. The proof that fy : [a, b] → R+, fy(u) = f(u, y),
is also log-convex on [a, b] for all y ∈ [c, d] follows likewise. Now, consider the mapping
f0 : [0, 1]

2 → R+ given by f0(x, y) = exy. It is obvious that f0 is log-convex on the coordinates
but not log-convex on [0, 1]2. Indeed, if (u, 0), (0, w) ∈ [0, 1]2 and λ ∈ [0, 1], we have:

log f0(λ(u, 0) + (1 − λ)(0, w)) = log f0(λu, (1 − λ)w) = λ(1 − λ)uw,

λ log f0(u, 0) + (1 − λ) log f0(0, w) = 0.
(2.5)

Thus, for all λ ∈ (0, 1) and u,w ∈ (0, 1), we have

log f0(λ(u, 0) + (1 − λ)(0, w)) > λ log f0(u, 0) + (1 − λ) log f0(0, w) (2.6)

which shows that f0 is not log-convex on [0, 1]2.

In the following, a Jensen-type inequality for coordinated log-convex functions is
considered.

Proposition 2.5. Let f be a positive coordinated log-convex function on the open set (a, b) × (c, d)
and let xi ∈ (a, b), yj ∈ (c, d). If αi, βj > 0 and

∑n
i=0 αi = 1,

∑m
j=0 βj = 1, then

log f

(
n∑
i=1

αixi,
m∑
i=1

βjyj

)
≤

n∑
i=1

m∑
j=1

αiβj log f
(
xi, yj

)
. (2.7)

Proof. Let xi ∈ (a, b), αi > 0 be such that
∑m

j=0 αi = 1, and let yi ∈ (c, d), βj > 0 be such that∑m
j=0 βj = 1, then we have,

f

⎛
⎝ n∑

i=1

αixi,
m∑
j=1

βjyj

⎞
⎠ ≤

n∏
i=1

fαi

⎛
⎝xi,

m∑
j=1

βjyj

⎞
⎠ ≤

n∏
i=1

m∏
j=1

fαiβj
(
xi, yj

)
, (2.8)

and, since f is positive,

log f

⎛
⎝ n∑

i=1

αixi,
m∑
j=1

βjyj

⎞
⎠ ≤

n∑
i=1

m∑
j=1

αiβj log f
(
xi, yj

)
, (2.9)

which is as required.
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Remark 2.6. Let f(x, y) = xy, then the following inequality holds:

log

⎡
⎣
(

n∑
i=1

αixi

)⎛
⎝ m∑

j=1

βjyj

⎞
⎠
⎤
⎦ ≤

n∑
i=1

m∑
j=1

αiβj log xiyj . (2.10)

The above result may be generalized to the integral form as follows.

Proposition 2.7. Let f be a positive coordinated log-convex function on the
◦
Δ:= (a, b) × (c, d), and

let x(t) : [r1, r2] → R be integrable with a < x(t) < b, and let y(t) : [s1, s2] → R be integrable
with c < y(t) < d. If α : [r1, r2] → R is positive,

∫ r2
r1
α(t)dt = 1, and (αx)(t) is integrable on [r1, r2]

and β : [s1, s2] → R is positive,
∫s2
s1
β(t)dt = 1, and (βy)(t) is integrable on [s1, s2], then

log f

(∫ r2
r1

α(t)x(t)dt,
∫s2
s1

β(u)y(u)du

)

≤
∫ r2
r1

∫ s2
s1

α(t)β(u) log f
(
x(t), y(u)

)
dudt.

(2.11)

Proof. Applying Jensen’s integral inequality in one variable on the x-coordinate and on the
y-coordinate we get the required result. The details are omitted.

Theorem 2.8. Let f : Δ → R+ be a positive coordinated log-convex function in Δ, then for all
distinct x1, x2, x3 ∈ [a, b], such that x1 < x2 < x3 and distinct y1, y2, y3 ∈ [c, d] such that y1 <
y2 < y3, the following inequality holds:

fx2y2+y3x3
(
x1, y1

) · fy1x2+y2x3
(
x1, y3

) · fx1y2+x2y3
(
x3, y1

)
· fx1y1+y2x2

(
x3, y3

) · fx1y3+x3y1
(
x2, y2

)
≥ fx2y3+y2x3

(
x1, y1

) · fy1x3+x2y2
(
x1, y3

) · fx1y3+x2y2
(
x3, y1

)
· fx1y2+y1x2

(
x3, y3

) · fx1y1+x3y3
(
x2, y2

)
.

(2.12)

Proof. Let x1, x2, x3 be distinct points in [a, b] and let y1, y2, y3 be distinct points in [c, d].
Setting α = (x3 − x2)/(x3 − x1), x2 = αx1 + (1 − α)x3 and let β = (y3 − y2)/(y3 − y1), y2 =
βy1 + (1 − β)y3, we have

log f
(
x2, y2

)
= log f

(
αx1 + (1 − α)x3, βy1 +

(
1 − β
)
y3
)

≤ αβ log f
(
x1, y1

)
+ α
(
1 − β
)
log f

(
x1, y3

)
+ β(1 − α) log f

(
x3, y1

)
+ (1 − α)

(
1 − β
)
log f

(
x3, y3

)

=
x3 − x2

x3 − x1

y3 − y2

y3 − y1
log f

(
x1, y1

)
+
x3 − x2

x3 − x1

y2 − y1

y3 − y1
log f

(
x1, y3

)

+
x2 − x1

x3 − x1

y3 − y2

y3 − y1
log f

(
x3, y1

)
+
x2 − x1

x3 − x1

y2 − y1

y3 − y1
log f

(
x3, y3

)
,

(2.13)
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and we can write

log
fx2y2+y3x3

(
x1, y1

)
fy1x2+y2x3

(
x1, y3

)
fx1y2+x2y3

(
x3, y1

)
fx1y1+y2x2

(
x3, y3

)
fx1y3+x3y1

(
x2, y2

)
fx2y3+y2x3

(
x1, y1

)
fy1x3+x2y2

(
x1, y3

)
fx1y3+x2y2

(
x3, y1

)
fx1y2+y1x2

(
x3, y3

)
fx1y1+x3y3

(
x2, y2

) ≥ 0.

(2.14)

From this inequality it is easy to deduce the required result (2.12).

The subharmonic functions exhibit many properties of convex functions. Next, we give
some results for the coordinated convexity and sub(super)harmonic functions.

Proposition 2.9. Let f : Δ ⊆ R2 → R be coordinated convex (concave) on Δ. If f is a twice
differentiable on Δ◦, then f is sub(super)harmonic on Δ◦.

Proof. Since f is coordinated convex on Δ then the partial mappings fy : [a, b] → R, fy(u) =
f(u, y) and fx : [c, d] → R, fx(v) = f(x, v), are convex for all y ∈ [c, d] and x ∈ [a, b].
Equivalently, since f is differentiable we can write

0 ≤ f ′′
x =

∂2f

∂2y
(2.15)

for all y ∈ (c, d), and

0 ≤ f ′′
y =

∂2f

∂2x
(2.16)

for all x ∈ (a, b), which imply that

f ′′
x + f ′′

y =
∂2f

∂2x
+
∂2f

∂2y
≥ 0 (2.17)

which shows that f is subharmonic. If f is coordinated concave on Δ, replace “≤” by “≥”
above, we get that f is superharmonic on Δ◦.

We now give two version(s) of the Maximum (Minimum) Principle theorem using
convexity on the coordinates.

Theorem 2.10. Let f : Δ ⊆ R2 → R be a coordinated convex (concave) function on Δ. If f is
twice differentiable in Δ◦ and there is a point a = (a1, a2) ∈ Δ◦ with f(a1, a2) ≥ (≤)f(x, y), for all
(x, y) ∈ Δ then f is a constant function.

Proof. By Proposition 2.9, we get that f is sub(super)harmonic. Therefore, by Theorem 1.3
and the maximum principal the required result holds (see [14, page 264]).



Journal of Inequalities and Applications 7

Theorem 2.11. Let f and g be two twice differentiable functions in Δ◦. Assume that f and g are
bounded real-valued functions defined on Δ such that f is coordinated convex and g is coordinated
concave. If for each point a = (a1, a2) ∈ ∂∞Δ

lim
(x,y)→ (a1,a2)

sup f
(
x, y
) ≤ lim

(x,y)→ (a1,a2)
inf g

(
x, y
)
, (2.18)

then f(x, y) < g(x, y) for all (x, y) ∈ Δ or f = g and f is harmonic.

Proof. By Proposition 2.9, we get that f is subharmonic and g is superharmonic. Therefore,
by Theorem 1.4 and using the maximum principal the required result holds, (see [14, page
264]).

Remark 2.12. The above two results hold for log-convex functions on the coordinates, simply,
replacing f by log f , to obtain the results.

3. Some Inequalities and Applications

In the following we develop a Hadamard-type inequality for coordinated log-convex
functions.

Corollary 3.1. Suppose that f : Δ = [a, b] × [c, d] → R+ is log-convex on the coordinates of Δ,
then

log f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a)(d − c)

∫b
a

∫d
c

log f
(
x, y
)
dy dx

≤ log 4
√
f(a, c)f(a, d)f(b, c)f(b, d).

(3.1)

For a positive coordinated log-concave function f , the inequalities are reversed.

Proof. In Theorem 1.2, replace f by log f and we get the required result.

Lemma 3.2. For A,B,C ∈ R
+ with A,B,C > 1, the function

ψ
(
β
)
= Cβ A

βB − 1
ln
(
AβB
) , 0 ≤ β ≤ 1 (3.2)

is convex for all β ∈ [0, 1]. Moreover,

∫1
0
ψ
(
β
)
dβ ≤ ψ(0) + ψ(1)

2
, (3.3)

for all A,B,C > 1.

Proof. Since ψ is twice differentiable for all β ∈ (0, 1) with A,B,C > 1, we note that for all 0 <
β1 ≤ β2 < 1, ψ(β1) ≤ ψ(β2), which shows that ψ is increasing and thus ψ ′ is nonnegative which
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is equivalent to saying that ψ ′ is increasing and hence ψ is convex. Now, using inequality
(1.1), we get

∫1
0
Cβ A

βB − 1
ln
(
AβB
)dβ =

∫1
0
ψ
(
β
)
dβ ≤ ψ(0) + ψ(1)

2
=

1
2

[
B − 1
ln(B)

+ C · AB − 1
ln(AB)

]
, (3.4)

which completes the proof.

Theorem 3.3. Suppose that f : Δ = [a, b] × [c, d] → R+ is log-convex on the coordinates of Δ. Let

A =
f(a, c)
f(b, c)

f(b, d)
f(a, d)

, B =
f(a, d)
f(b, d)

, C =
f(b, c)
f(b, d)

, (3.5)

then the inequalities

I =
1

(b − a)(d − c)

∫d
c

∫b
a

f
(
x, y
)
dx dy

≤ f(b, d) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, A = B = C = 1,(
B − 1
ln B

)(
C − 1
ln C

)
, A = 1,

H(C), B = 1,

H(B), C = 1,

C − 1
ln C

, A = B = 1,

B − 1
ln B

, A = C = 1,

−γ + ln(− ln A) + Ei(1,− ln A)
ln A

, B = C = 1,

1
2

[
B − 1
ln(B)

+ C · AB − 1
ln(AB)

]
, A, B, C > 1,

∫1
0
Cβ A

βB − 1
ln
(
AβB
)dβ, otherwise

(3.6)

hold, where γ is the Euler constant,

H(x) =
Ei(1,− ln x) + ln(ln x) − Ei(1,− ln(Ax)) − ln(ln(Ax))

ln A

+

⎧⎪⎨
⎪⎩

2 ln(ln A) − ln(− ln A)
ln A

,
ln x

ln A
< 0, − ln x

ln A
< 1,

0, otherwise,

Ei(x) = V.P.

∫∞
−x

e−t

t
dt

(3.7)
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is the exponential integral function. For a coordinated log-concave function f , the inequalities are
reversed.

Proof. Since f : Δ = [a, b] × [c, d] → R+ is log-convex on the coordinates of Δ, then

f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)

≤ fαβ(a, c)fβ(1−α)(b, c)fα(1−β)(a, d)f (1−α)(1−β)(b, d)

= fαβ(a, c)fβ(b, c)f−αβ(b, c)fα(a, d)f−αβ(a, d)

× f(b, d)f−β(b, d)f−α(b, d)fαβ(b, d)

=
[
f(a, c)
f(b, c)

f(b, d)
f(a, d)

]αβ[f(a, d)
f(b, d)

]α[ f(b, c)
f(b, d)

]β
f(b, d).

(3.8)

Integrating the previous inequality with respect to α and β on [0, 1]2, we have,

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0

[
f(a, c)
f(b, c)

f(b, d)
f(a, d)

]αβ[f(a, d)
f(b, d)

]α[ f(b, c)
f(b, d)

]β
dαdβ.

(3.9)

Therefore, by (3.9) and for nonzero, positive A, B, C, we have the following cases.

(1) If A = B = C = 1, the result is trivial.

(2) If A = 1, then

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0

[
f(a, d)
f(b, d)

]α[ f(b, c)
f(b, d)

]β
dαdβ

= f(b, d)

(∫1
0
Bαdα

)(∫1
0
Cβdβ

)

= f(b, d)
(
B − 1
ln B

)(
C − 1
ln C

)
.

(3.10)
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(3) If B = 1, then

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0
AαβCβdαdβ

= f(b, d)
∫1
0

AαC − 1
ln(AαC)

dα

= f(b, d)

⎡
⎢⎣
⎛
⎜⎝
⎧⎪⎨
⎪⎩

2 ln(ln A) − ln(− ln A)
ln A

,
ln C

ln A
< 0, − ln C

ln A
< 1

0, otherwise

⎞
⎟⎠

+
Ei(1,− ln C) + ln(ln C) − Ei(1,− ln(AC)) − ln(ln(AC))

ln A

⎤
⎥⎦.

(3.11)

(4) If C = 1, then

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0
AαβBαdαdβ

= f(b, d)
∫1
0

AβB − 1
ln
(
AβB
)dβ

= f(b, d)

⎡
⎢⎣
⎛
⎜⎝
⎧⎪⎨
⎪⎩

2 ln(ln A) − ln(− ln A)
ln A

,
ln B

ln A
< 0, − ln B

ln A
< 1

0, otherwise

⎞
⎟⎠

+
Ei(1,− ln B) + ln(ln C) − Ei(1,− ln(AB)) − ln(ln(AB))

ln A

⎤
⎥⎦.

(3.12)

(5) If A = B = 1, then

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0
AαβBαCβdαdβ = f(b, d)

∫1
0
Cβdβ = f(b, d)

C − 1
ln C

.

(3.13)
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(6) If A = C = 1, then

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0
AαβBαCβdαdβ = f(b, d)

∫1
0
Bαdα = f(b, d)

B − 1
ln B

.

(3.14)

(7) If B = C = 1, then

∫1
0

∫1
0
f
(
αa + (1 − α)b, βc +

(
1 − β
)
d
)
dαdβ

≤ f(b, d)
∫1
0

∫1
0
AαβBαCβdαdβ

= f(b, d)
∫1
0

∫1
0

(
Aβ
)α

dαdβ

= f(b, d)
∫1
0

Aα − 1
ln Aα

dα

= −f(b, d)γ + ln(− ln A) + Ei(1,− ln A)
ln A

.

(3.15)

(8) If A,B,C > 1, then

f(b, d)
∫1
0

∫1
0
AαβBαCβdαdβ = f(b, d)

∫1
0
Cβ

[
AβB − 1
ln
(
AβB
)
]
dβ. (3.16)

Therefore, by Lemma 3.2, we deduce that

f(b, d)
∫1
0

∫1
0
AαβBαCβdαdβ ≤ f(b, d)

2

[
B − 1
ln(B)

+ C · AB − 1
ln(AB)

]
. (3.17)

(9) If A,B,C /= 1, we have

f(b, d)
∫1
0

∫1
0
AαβBαCβdαdβ = f(b, d)

∫1
0
Cβ

[
AβB − 1
ln
(
AβB
)
]
dβ, (3.18)

which is difficult to evaluate because it depends on the values of A,B, and C.

Remark 3.4. The integrals in (3), (4), and (7) in the proof of Theorem 2.11 are evaluated using
Maple Software.



12 Journal of Inequalities and Applications

Corollary 3.5. In Theorem 3.3, if

(1) f(x, y) = f(x), then

1
b − a

∫b
a

f(x)dx ≤ L
(
f(a), f(b)

)
, (3.19)

and for instance, if f1(x) = ex
p
, p ≥ 1 we deduce

1
b − a

∫b
a

ex
p

dx ≤ L
(
ea

p

, eb
p
)
. (3.20)

(2) f(x, y) = f1(x)f2(y), then

I ≤ L
(
f1(a), f1(b)

)
L
(
f2(c), f2(d)

)
, (3.21)

and for instance, if f1(x, y) = ex
p+yq

, p, q ≥ 1, we deduce

1
(b − a)(d − c)

∫b
a

∫d
c

ex
p+yq

dx dy ≤ L
(
ea

p

, eb
p
)
L
(
ec

p

, ed
p
)
. (3.22)

Proof. Follows directly by applying inequality (1.4).
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[12] J. Pečarić and A. U. Rehman, “On logarithmic convexity for power sums and related results,” Journal
of Inequalities and Applications, vol. 2008, Article ID 389410, 9 pages, 2008.

[13] F. Qi, “A class of logarithmically completely monotonic functions and application to the best bounds
in the second Gautschi-Kershaw’s inequality,” Journal of Computational and Applied Mathematics, vol.
224, no. 2, pp. 538–543, 2009.

[14] J. B. Conway, Functions of One Complex Variable. I, Springer, New York, NY, USA, 7th edition, 1995.


	1. Introduction
	2. On Coordinated Convexity and Sub(Super) Harmonic Functions
	3. Some Inequalities and Applications
	Acknowledgment
	References

