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Wavelet-based automated global image registration (WAGIR) is fundamental for most remote sensing image processing algorithms
and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing,
an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block
resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling
process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1
BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X
than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units.
The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM
with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.
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1. Introduction

With the rapid innovations of remote sensing technology,
more and more remote sensing image processing algorithms
are enforced to be finished onboard instead of at ground
station to meet the requirement of processing numerous
remote sensing data realtimely. Image registration [1, 2]
is the basis of many image processing operations, such
as image fusion, image mosaic, and geographic naviga-
tor. Considering the computation-intensive and memory-
intensive characteristics of remote sensing image regis-
tration and the limited computing power of onboard
computers, to implement image registration efficiently and
effectively with dedicated architecture is of great signifi-
cance.

In the past twenty years, FPGA technology has been
developed significantly. The volume and performance of
FPGA chip have increased greatly to adapt many large-
scale applications. Due to its excellent reconfigurabil-
ity and convenient design flow, FPGA has been the

most popular choice for hardware designers to imple-
ment kinds of application-specific architectures. Therefore,
to implement the remote sensing image registration in
FPGA efficiently is just the point of this paper. Though
Carstro-Pareja et al. [3, 4] have proposed a fast auto-
matic image registration (FAIR) architecture of mutual
information-based 3D image registration for medical imag-
ing applications, few works addressing hardware accelera-
tion of the remote sensing image registration have been
reported.

Many approaches have been proposed for remote
sensing image registration. As for hardware implementa-
tion, only the automated algorithms are suitable because
onboard computing demands that the algorithms should
be accurate and robust and operate without manual
intervention. Proposed automated remote sensing image
registration algorithms can be classified into two cate-
gories, CPs-based algorithms [5-12] and global algorithms
[13-22]. In the former, some matched control points
(CPs) are extracted from both images automatically to



decide the final mapping function. However, the prob-
lem is that it is difficult to automatically determine effi-
cient CPs. The selected CPs need to be accurate, suf-
ficient, and with even distribution. Missing or spurious
CPs make CPs-based algorithms unreliable and unsta-
ble [23]. Hence, CPs-based algorithms are not in our
consideration.

Automated global registration, however, is an approach
that does not rely on point-to-point matching. The final
mapping function is computed globally over the images.
Therefore, the algorithms are stable and robust and easy
to be automatically processed. One of the disadvantages of
global registration is that it is computationally expensive.
Fortunately, the wavelet decomposition helps to relieve this
situation because it provides us a way to obtain the final
result progressively. A wavelet-based automated global image
registration (WAGIR) algorithm for the remote sensing
application proposed by Moigne et al. [13—15] has been
proved to be efficient and effective. In WAGIR, the lowest-
resolution wavelet subbands are firstly registered with a
rough accuracy and a wider search interval, and a local best
result is obtained. Nextly, this result is refined repeatedly after
the iterative registrations on the higher-resolution subbands.
The final result is obtained at the highest-resolution sub-
bands, viz. the original images.

Many parallel schemes of WAGIR are proposed in previ-
ous works, such as parameter-parallel scheme (PP), image-
parallel (IP) scheme, hybrid-parallel (HP) scheme which
merges PP and IP, and group-parallel (GP) scheme [13, 24—
27] which are implemented targeting large, expensive super-
computers, cluster system or grid system that are impractical
to be deployed onboard. In this paper, we propose a
block wavelet-based automated global image registration
(BWAGIR) architecture based on a block resampling scheme.
The architecture with 1 processing unit outperforms the CL
cluster system with 1 node by at least 7.4X, and the MPM
massively parallel machine with 1 node by at least 3.4X. And
the BWAGIR with 5 units achieves a speedup of about 3X
against the CL with 16 nodes and a comparable speed with
the MPM with 30 nodes. More importantly, our work is
targeting onboard computing.

The remainder of this paper is organized as follows. In
Section 2, the traditional WAGIR algorithm is reviewed and
analyzed based on the hierarchy architecture. The proposed
block resampling scheme is detailed in Section 3. And the
architecture of BWAGIR is presented in Section 4. Section 5
gives out the proof-of-concept implementation and the
experimental results with comparison to several related
works. Finally, this paper is concluded in Section 6.

C(A,B) =
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2. Wavelet-Based Automatic Global Image
Registration Algorithm

Image registration is the process that determines the most
accurate match between two images of the same scene
or object. In the global registration process, one image is
registered according to another known standard image. We
refer to the former as input image, the latter as reference
image, the best matching image as registered image, and the
image after each resampling process as resampled image.

2.1. Review of WAGIR Algorithm. WAGIR can be described
as the pseudocode in Algorithm 1. Here assume that the
LL subbands form the feature space; 2D rotations and
translations are considered as search space; the search
strategy follows the multiresolution approach provided by
wavelet decomposition; the cross correlation coefficient is
adopted as similarity metric. Firstly, an N-level wavelet
decomposes the input image and the reference image with
size of M x M into nLLi and nLLr sequences where n
represents corresponding decomposition level. Then NLLi
and NLLr with the lowest resolution are registered with
accuracy of §2N. A local best combination of rotations and
translations (best0, bestX, bestY) is obtained and used as
the search center of registering the next level subbands,
(N —1)LLi and (N — 1)LLr. And another combination with
accuracy of §2V~! is gained. This process iterates until the
overall best result with expected accuracy &, is retrieved
after registering the original input image (OLLi) and reference
images (OLLr). Finally, a resampling process is carried out to
get the registered image.

At each level, the algorithm shown in Algorithm 2 is
employed to register nLLi and nLLr. The result of previous
level (6C,XC,YC) is used as the search center. For each
combination of rotations and translations, the algorithm
shown in Algorithm 3 is performed to get a resampled
image of nLLr. Then a correlation coefficient is calculated
to measure the similarity between the resampled nLLr and
the nLLi. The combination corresponding to the maximal
correlation coefficient is the best result of current level. The
resampling algorithm is performed by sequentially selecting
one registered image location once, calculating the corre-
sponding coordinate of the selected location in the reference
image, accessing the neighboring 4 x 4 pixel window in the
reference image, calculating the corresponding interpolation
weights according to the computed coordinate, and finally
calculating the pixel value of the selected location by the
cubic convolution interpolation method. The correlation
coefficient is calculated with (1):

Z Z] =0 (A,] XBU) - (I/MZ)(Z Z?/IOIA11> X (Zf\ial Z;\Q)IBU)

T 5 ) -t )

(1)
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Input: input image and reference image
Output: registered image
1 Initialize registration process (wavelet level —N, search scope — rotation
angle: (Bscope_L, Oscope_R), horizontal offset: (Xscope_L, Xscope_R), and
vertical offset: (Yscope_L, Yscope_L));
2 Perform wavelet decomposition of the input image and reference image;
3 best 0 = 0; best X = 0; best Y = 0;
4 step O = 82N; step X = 62N step Y = §2N;
5for (n = N;n > 0; n—) do
(width, height) = (image_width/2", image_height/2");
/[registering at current wavelet level based on the results of previous level.
Perform Register (nLLi, nLLr, best 0, bestX, bestY, step 0, stepX, stepY);
(Bscope_L, Oscope_R) = (—step 0, step 6);
(Xscope_L, Xscope_R) = (—stepX, stepX);
(Yscope_L, Yscope_R) = (—stepY; stepY);
step 0 /=2; stepX /=2; stepY /= 2;
bestX* = 2; bestY*= 2; //size of next wavelet subband is twice of current
6 Resample (input image, best 0, bestX, bestY, registered image);
// last resampe to obtain the result image.
7 Over.

ArLGoriTHM 1: Main WAGIR algorithm.

Register (the registering algorithm)
Input: nLLi, nLLr, Ocenter, Xcenter, Ycenter, step, stepX, stepY
Output: local best 0, bestX, and bestY
1 (angle, x, y) = (Oscope_L, Xscope_L, Yscope_L); //control variables
2 max _co = —1; // record the maximum correlation
// the registration processing
3 while (angle <= Oscope_R) do
while (x <= Xscope_R) do
while (y <= Yscope_R) do
(6C, XC, YC) = (Ocenter + angle, Xcenter + x, Ycenter + y);
// resample nLLr with 8C, XC, YC to get registered image_out
Perform Resample (nLLr, image_out, 0C, XC, YC);
// compute the correlation betwwen image_out and nLLi
corre = Correlation (image_out, nLLi);
if (corre > max_co) then
max_co = corre;
(best0, bestX, bestY) = (0C, XC, yC);
y =y +stepY;
x = x + stepX;
y = Yscope_L;
angle = angle + step0;
x = Xscope_L;
4 Over.

ArcoriTHM 2: The registering algorithm.

2.2. Analysis of WAGIR Algorithm. All analysis are based on
a common assumption of the hierarchy architecture shown
in Figure 1. The off-chip external memory is used to store
the tremendously growing image data. The on-chip memory
serves as an buffer to bridge the speed gap between external
memory and accelerator.

In WAGIR, for each possible combination of rotations
and translations, a resampling process is performed, and a

correlation coefficient is calculated to decide which one is the
best transformation between the input image and reference
image. Runtime profiles from a software implementation of
WAGIR listed in Table 1 show that the resampling process
(without the time to compute the correlation coefficient) is
the most time-consuming, and the calculation of correlation
coefficient is essential because each resampling process
corresponds one calculation of correlation coefficient though
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Resample (the resample algorithm)
Input: nLLr; trans, transX, transY
Output: image_out

2 cubicTable (4, 4, tab);
3for (ty = 0; ty < h; ty++) do
for (tx = 0; tx < w; tx++) do
//The inverse mapping function

(x_int, y_int) = (int x, int y);

pixel_d = 0;
for (ch = 0;¢ch < 4; ch++) do

pixel_d += (xct)* (kst);
ct++; st++

if (pixel_d < 0) then pixel_d = 0;
pixel = (char)pixel_d;

4 Over

1 (w, h) = (width/2", height/2"); //width and height of the input nLLr
//compute the cubic convolution weights for a xLen X tab X yLen X tab template

x = cos(transf) * (tx — transX — w/2) + sin(transf) * (ty — transY — h/2) + w/2;
y = —sin(trans) * (tx — transX — w/2) + cos(transf) * (ty — transY — h/2) + h/2;

(x_fra, y_fra) = (x — x_int, y — y_int);
(f-x, foy) = ((int)(x_fraxtab), (int)(y_fraxtab));
//read the corresponding xLen * yLen weights from cubicTable to ct
ct = cubicTable + (f_y * tab + f _x) % mem_size;
if ((0 < x_int < (w—2)) & (0 < y_int < (h—2))) then
// read the corresponding xLen X yLen coefficients from nLLr to st
Read (nLLr, x_int — 1, y_int — 1, xLen, yLen, st);

for (cw = 0; cw < 4; cw++) do

if (pixel_d > 255) then pixel_d = 255;

*(image_out +ty * w+ tx) = pixel;

ArLgoriTHM 3: The resampling algorithm.

TaBLe 1: Runtime profiles from a software implementation of
WAGIR (three-level wavelet decomposition, grayscale image, pro-
filing platform is Intel Celeron(R) 1.7 GHz CPU, 256M DDR266
SDRAM %2, Microsoft VC 6.0 and WindowsXP Prof.).

Image size Wavelet dec.  Resampling process — Correlation cal.

512 x 512 0.4 95.6 0.0001
1K X 1K 0.6 94.2 0.0001
2K x 2K 0.6 93.8 0.0000
3K x 3K 0.7 93.7 0.0000

it consumes a little execution time. For example, to register
an input image and a reference image with size of M X M
in search space [0L, OR] X [xL,xR] X [yL, yR], (BR — OL) X
(xR — xL) x (yR — yL) resampling processes and (6R —
OL) x (xR — xL) X (yR — yL) calculations of coefficient are
needed. For each resampling process, M X M resampling
operations are needed. Though wavelet decomposition can
relieve this situation, the computation requirement remains
significant. Therefore, to accelerate WAGIR is just to acceler-
ate the resampling process and the calculation of correlation
coefficient.

In addition to the great computation requirement,
WAGIR also has great memory requirement. In each resam-
pling process, for each location of the resampled image,
a neighboring 4 X 4 pixel window in the reference image

is needed. That means that 16 M> memory accesses are
required for each resampling process. Meanwhile, a total
of 2 M? accesses are also required for each calculation of
correlation coefficient. Considering the great amount of
resampling processes and calculations of correlation coeffi-
cient, the total access amount comes out of a massive num-
ber. Even worse, the whole reference image may be needed
maximally to compute one row pixels of the resampled image
when the rotation angle is =7/4 as shown in Figure 2. This
demands that the on-chip memory should be capable to
hold the whole image. If not, the amount of memory access
grows significantly. And also, each resampled image should
be buffered on-chip because it is needed in calculation of
correlation coefficient. It is infeasible to assign so great on-
chip memory for hardware implementation because of the
mass size of remote sensing images and scarcity of on-chip
memory resources. Therefore, a good memory scheduling
strategy is imperative.

3. Block Resampling Scheme

To accommodate the great computation and memory
requirements of WAGIR, a block resampling scheme is
employed. The foundation is to produce the resampled
image block by block because the computations of different
locations are absolutely independent and irrelevant. The
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Block Resample (the block resample algorithm)
Input: nLLr; trans, transX, transY
Output: image_out

2 cubicTable (4, 4, tab);
3 for (s = 0; s <h/S; s++) do
for (r=0; r <w/S; r++) do
for (ty = 0; ty <S;ty++) do
for (tx = 0; tx <S; tx++) do
//The inverse mapping function

(x_int, y_int) = (int x, int y);

pixel_d = 0;
for (ch = 0; ch < 4;ch++) do
for (cw =0; cw < 4; cw++) do
pixel_d += (kct)* (kst);
ct++; st++;

pixel = (char)pixel_d;

4 Over

1 (wh) = (width/2", height/2"); // width and height of the input nLLr
//compute the cubic convolution weights for a xLen X tab X yLen X tab template

x = cos(transf) * (tx — transX — w/2) + sin(trans0) * (ty — transY — h/2) + w/2;
y = —sin(transf) * (tx — transX — w/2) + cos(transf) * (ty — transY — h/2) + h/2;

(x_fra, y_fra) = (x — x_int, y — y_int);
(f=x, f-y) = ((int)(x_fraxtab), (int)(y_fraxtab));
//read the corresponding xLen * yLen weights from cubicTable to ct
ct = cubicTable + (f_y * tab + f _x) * mem_size;
if ((0<x_int< (w—2)) & (0<y.int< (h—2)))then
// read the corresponding xLen X yLen coefficients from nLLr to st
Read(nLLr, x_int-1, y_int-1, xLen, yLen, st);

if (pixel_d > 255) then pixel_ d = 255;
if (pixel_d < 0) then pixel_d = 0;

*(image_out +ty * w+tx) = pixel;

ALGoriTHM 4: Block resampling algorithm.

external memory

Accelerating
architecture

I
I
Off-chip i
:
I
1

FIGURE 1: Assumption of hierarchy architecture.

pseudocode in Algorithm 4 describes the block resampling
scheme in which the resampled image is computed sequen-
tially in consecutive S X S subblocks.

The reason what causes the great memory requirement
is that the resampled image is generated row by row in
traditional resampling algorithm. This way of computation
results in great scope of preloading the reference image.
According to the mapping function (2), the scope of required
reference image pixels to compute one row pixels of the
resampled image is [0, M] X [0, M] maximally, that is, the
whole reference image. But the scope to compute an S X S
subblock is just [((1 — v/2)/2)S,((1 + +/2)/2)S] x [((1 —
V2)/2)8, ((1 + +/2)/2)S]. Because S < M, the preloading
scope is decreased greatly. Accordingly, the size of required

on-chip memory is reduced significantly:

M
x = cos(trans 0) * (tx — trans X — 7)
. M M
+ sin(trans 0) * (ty —trans Y — ?> + >
. M
y = —sin(trans 0) * (tx —trans X — ?)

+ cos(trans 0) * (ty —trans Y — 7) + =

Another benefit gained from the block resampling
scheme is that the calculations of all pixels within one block
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Registered image

FIGURE 2: Memory requirement of WAGIR.

only need once preloading, and the amount of memory
access is decreased. In traditional resampling algorithm,
the pixels of reference image must be loaded from the
external memory again and again if there is no enough on-
chip memory to store the whole image. But in the block
resampling scheme, the block size is decided by the available
on-chip memory.

4. The BWAIR Architecture

As mentioned above, the resampling process and the cal-
culation of correlation coefficient account for major of the
execution time. Therefore the BWAIR architecture aims to
accelerate WAGIR by accelerating the resampling algorithms
and the calculation of corresponding correlation coefficient.

The BWAGIR architecture is detailed in Figure 3. The
coordinate calculation module computes the coordinate of
the pixel in reference image corresponding to each location
in the resampled image. The interpolation weights calculation
module is responsible to compute the 16 weights for the 4 x 4
interpolation window. The reference image RAM controller
loads the neighboring 4 x 4 window. The resampled pixel
calculation module is in charge of computing the values of
resampled pixels. The input image RAM controller loads the
input image pixels for calculation of correlation coefficient.
The correlation calculation module computes the correlation
coefficient. And the FIFOs are set to bridge the speed gap
among the modules mentioned above.

Proposed BWAGIR architecture optimizes the resam-
pling process and the calculation of correlation coefficient
by means of parallelizing the resample process and corre-
sponding calculation of correlation coefficient, pipelining all
calculation modules, and parallel memory access.

4.1. Parallelizing Resampling and Calculation of Correlation.
In a standard software implementation, the resampling
process and the calculation of correlation coefficient are
performed sequentially. The calculation of correlation coef-
ficient starts after all the pixels of the resampled image are
produced. This means that the resampled image must be
written back into the external memory or stored in extra on-
chip memory after the resampling and then read back when

calculating the correlation coefficient. Extra memory volume
and memory access are evident.

In BWAGIR architecture, we partition the correlation
calculation into two steps.

(1) Calculate the sum of pixels of input image
(M Z?/if)l Ajj), the sum of pixels of resampled
image (M1 Z;VLBI Bjj), the sum of square of pixels
of input image (X2, Z?Sl Afj), the sum of square
of pixels of resampled image (3" Z;Vif)l B,-zj),
and the sum of the production of pixels of input
image and corresponding pixels of resampled image
! Z;Vi?)l(Aij X Bij)).

(2) Calculate the final correlation coefficient according to
(D).

This partition can avoid the extra memory volume and
memory access. Once a pixel in the resampled image is
produced, it is computed in step 1 and then discarded. Once
step 1 finishes the calculations of all pixels, the five sums
are sent to step 2 to finalize the calculation of correlation

coefficient. Therefore, the resampling process parallel with
the calculation of correlation coefficient.

4.2. Pipelining. All the calculation modules are pipelined to
improve the system throughput and operating frequency.
As shown in Figure 3, the BWAGIR is divided into four
macrostages according to the processing flow. The first stage
calculates the coordinate of the pixel in the reference image
corresponding to each location of resampled image and
writes the integral and fractional components into according
FIFOs. At the second stage, the Reference Image RAM
Controller reads the neighboring 4 X 4 reference image pixel
window, and at the same time, 16 interpolation weights are
produced by the Interpolation Weights Calculation Module.
Stage 3 calculates the value of each location in the resampled
image by multiplying the pixels with its corresponding
weights and adding these product together. Finally, the
Correlation Calculation Module computes the correlation
coefficient by means described in Section 4.1. With pipelin-
ing, the total time of performing the resampling process and
corresponding correlation calculation once becomes equal to
the product of the worst pipeline stage time and the number
of pixels in the resampled image.
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FiGure 3: The BWAGIR architecture.
TaBLE 2: Comparison of the registration time (milliseconds) with the CL cluster system.
Size CL BWAGIR
Inode 2nodes 5nodes 15nodes 16nodes Lunit 5units
PP 103.11 51.80 20.82 7.64 6.86
512 % 512 1P 102.98 61.00 38.54 27.50 27.44 8.7 18
HP 103.22 51.60 20.83 7.94 8.82
GP 103.22 51.79 20.85 7.25 6.80
PP 345.93 173.77 69.86 25.62 23.02
1K x 1K IP 345.94 187.43 88.72 44.66 43.31 39.4 79
HP 345.90 172.22 69.84 25.01 24.56
GP 345.95 172.32 69.86 24.21 22.90
PP 2849.95 1445.13 575.63 213.55 192.41
3K % 3K IP 2849.88 1440.52 626.68 231.41 218.20 385.7 755
HP 2849.97 1442.60 575.62 207.36 191.83
GP 2849.96 1439.75 576.02 204.50 191.87

4.3. Parallel Memory Access. Parallelizing the resampling
process and calculation of correlation coefficient demands
parallel access to input image and reference image. But the
way of accessing the input image differs with that of accessing
the reference image. The input image is accessed sequentially,
and the reference image is accessed by 4 X 4 window.
Therefore, two external memories are used to store the
input image and the reference image, respectively. And they
are preloaded into the respective on-chip RAMs block by
block.

As mentioned above, the performance of the pipeline is
decided by the worst stage calculation time. The four pipeline
stages differ in data source and operation. The worst case
is the second stage because a 4 X 4 neighborhood, that is,
16 pixels, is loaded from on-chip reference image RAM. If
these pixels are loaded normally, it takes at least 16 cycles
to calculating each location in the resampled image. This
restraints the throughput of the pipeline significantly. As a
rule, multibank memory organization can settle this problem
by distributing the sequential multiple access to different
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TasLE 3: Comparison of the registration time (milliseconds) with the MPM parallel machine.
Size MPM BWAGIR
Inode 5nodes 15nodes 16nodes 30nodes lunit 5units
PP 39.052 7.917 3.116 2.635 1.714
512 % 512 IP 39.051 10.414 5.350 5.022 4.189 8.7 18
HP 39.050 7.917 2.850 2.916 1.564
GP 39.055 7.917 2.750 2.633 1.450
PP 145.625 29.317 11.318 9.567 6.184
1K % 1K Ip 145.629 32.188 12.841 12.142 8.683 39.4 79
HP 145.633 29.067 10.117 9.816 5.415
GP 145.633 29.183 10.082 9.665 5.271
PP 1327.00 276.336 102.926 86.233 68.517
3K % 3K 1P 1326.24 292.485 105.821 100.466 75.243 3857 755
HP 1327.25 270.950 91.967 87.015 46.801
GP 1328.00 267.150 88.350 87.717 45.516

memory banks with separate ports. Because the 16 pixels are
not consecutive, it is difficult to distribute them evenly into
16 banks. Therefore, we adopt a compromising strategy that
the on-chip memory for the reference image is divided into 8
banks each of which has three ports—one for write and the
other two for read. This makes convenient to write the 64-bit
word which is composed of 8 consecutive 8 bits pixels into
on-chip memory parallelly and load the 8 pixels (two lines in
the 4 x 4 window) parallelly. Thereby;, it takes only 2 cycles
to load the 16 pixels within a window. Though this cannot
match the speed of calculation modules yet (one result, one
cycle), the stage 2 calculation time is decreased by 8 times.

4.4. Parallelizing Multiple BWAGIR Processing Units. The
processing speed of proposed architecture can be further
improved by parallelizing multiple BWAGIR processing
units. There are two ways to achieve this.

(i) Processing multiple blocks belonging to the same resam-
pled image. This way multiplies the preloading scope,
and the on-chip memory volume. Another disadvan-
tage is the data is not utilized sufficiently because
each preloading only supports the calculation of one
resampled image.

(ii) Processing multiple blocks belonging to different resam-
pled images. This way enlarges the preloading scope
a little because the blocks at the same position of
different resampled images almost have the same
preloading scope. But the on-chip memory volume is
still multiplied because parallel processing demands
great data memory bandwidth, that is, each pro-
cessor requires an independent data memory. This
parallel can decrease the memory access because
each preloading supports the calculation of multiple
resampled images.

Therefore the more economical way is to process multiple
blocks which are at the same position of different resampled
images.

5. Implementation and Experimental Results

As a proof of concept, the BWAGIR architecture is modeled
with VerilogHDL, simulated with ModelSim SE 6.1d, synthe-
sized with Quartus II 6.0, and implemented in an external
prototype board with an Altera EP2S130F1020C3 FPGA.
One BWAGIR unit occupies about 67% ALUTs (70557) and
35% memory bits (2345144) and can operate at a clock rate
of 100 MHz. Two Micron MT16LSDT12864AG-1 GB PC133
SDRAMs are used as the external memories for input image
and reference image, respectively. And the on-chip memories
for input image and reference image are implemented with
internal memory blocks. The prototype board is connected
to a host computer with a USB cable. Only the registration
component of WAGIR is executed on the board, and the
other components are all performed on the host. Table 2
lists a comparison of the timings between the BWAGIR
architecture and the CL machine which is a cluster system
with 16 nodes; each node is equipped with Pentium4-1.7 G
CPU and 512 MB local storage, and all nodes are connected
by the 100 Mb/s Ethernet. Table 3 lists a comparison of the
timings between the BWAGIR and the MPM machine which
is a massively parallel computer with MIMD architecture and
has 32 processors with 1 GB local storage for each processor,
speed of MPM CPU is valued as 1.66 gigaflops/sec, topology
of network is fat tree, and point-to-point bandwidth is
1.2 Gb/s. The images are processed with three-level wavelet
decomposition and registered within the search space of 8 €
(-16°,16°), x € (—16,16), y € (—16,16).
It can be concluded what follows.

(i) The BWAGIR with 5 units may perform more than
5X faster than that with 1 unit because parallelizing
multiple processing units cannot only improve the
execution speed but also reduce the amount of
Memory access.

(ii) The BWAGIR with 1 unit outperforms 7.4X at least
over kinds of parallel schemes on the CL with 1
node and 3.4X at least faster than the MPM with 1
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node because the way of memory access cannot fully
benefit from the traditional cache-based memory
architectures present in most modern computers.

(iii) The BWAGIR with 5 units achieves a speedup of
about 3X against the CL with 16 nodes, a speedup
of greater than 1X against the MPM with 16 nodes,
and a comparative speed with the MPM with 30
nodes. This is because numerous communications
between nodes cut down the expected performance
improvement of the parallel schemes.

It should be noted that the timings of BWAGIR with 1
unit is obtained on the prototype board actually, and the
timings of the BWAGIR with 5 units are simulation times
because our board cannot support parallelizing multiple
units with limitation of available volume and number of
FPGAs.

6. Conclusion

WAGIR algorithm for remote sensing application is
extremely computation-intensive and demands execution
times on the order of minutes, even hours, on modern
desktop computers. Therefore a customized FPGA archi-
tecture is proposed in this paper to accommodate the
great computational requirements of the algorithm and the
trend of migration from ground computing to onboard
computing.

To implement the algorithm in FPGA efficiently, a
block resampling scheme is adopted to relieve the great
computation and memory requirements. And based on the
block scheme, the proposed BWAGIR architecture derives
its improvement from (1) pipelining all computational
logics, (2) parallelizing the resampling process and calcu-
lation of correlation coefficient, and (3) parallel memory
access. A practical implementation with two standard PC133
SDRAMs, operating at 100MHz, outperforms 7.4X com-
pared to the CL cluster system with 1 node and about
3.4X over the MPM machine with 1 node. This speedup is
derived using just one BWAGIR processing unit. For further
improvement, multiple units can be paralleled to implement
arrays of processing units using VLSI or FPGAs to perform
distributed image registration. Compared with the CL with
16 nodes, the BWAGIR architecture with 5 units can achieve
about 3X speedup. And also it achieves a comparative speed
with the MPM machine with 30 nodes. More importantly,
our architecture can meet the requirement of onboard
computing.
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