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Copyright © 2008 Alain Trémeau et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. BACKGROUNDANDMOTIVATION

The perception of color is of paramount importance in many
applications, such as digital imaging, multimedia systems,
visual communications, computer vision, entertainment,
and consumer electronics. In the last fifteen years, color
has been becoming a key element for many, if not all,
modern image and video processing systems. It is well known
that color plays a central role in digital cinematography,
modern consumer electronics solutions, digital photography
system such as digital cameras, video displays, video enabled
cellular phones, and printing solutions. In these applications,
compression- and transmission-based algorithms as well
as color management algorithms provide the foundation
for cost effective, seamless processing of visual information
through the processing pipeline. Moreover, color also is
crucial to many pattern recognition andmultimedia systems,
where color-based feature extraction and color segmentation
have proven pertinent in detecting and classifying objects

in various areas ranging from industrial inspection to
geomatics and to biomedical applications.

Over the years, several important contributions were
made in the field of color image processing. It is only since
the last decades that a better understanding of color vision,
colorimetry, and color appearance has been utilized in the
design of image processing methodologies [1]. The first
special issue on this aspect was written by McCann in 1998
[2]. According to McCann, the problem with display devices
and printing devices is that they work one pixel at a time,
while the human visual system (HSV) analyzes the whole
image from spatial information. The color we see at a pixel
is controlled by that pixel and all the other pixels in the
field of view [2]. In our point of view, the future of color
image processing will pass by the use of human visionmodels
that compute the color appearance of spatial information
rather than low level signal processing models based on
pixels, but also frequential, temporal information, and the
use of semantic models. Human color vision is an essential
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tool for those who wish to contribute to the development
of color image processing solutions and also for those who
wish to develop a new generation of color image processing
algorithms based on high-level concepts.

A number of special issues, including survey papers
that review the state-of-the-art in the area of color image
processing, have been published in the past decades. More
recently, in 2005 a special issue on color image process-
ing was written for the signal processing community to
understand the fundamental differences between color and
grayscale imaging [1]. In the same year, a special issue on
multidimensional image processing was edited by Lukac et al.
[3]. This issue overviewed recent trends in multidimensional
image processing, ranging from image acquisition to image
and video coding, to color image processing and analysis,
and to color image encryption. In 2007, a special issue on
color image processing was edited by Lukac et al. [4] to fill
the existing gap between researchers and practitioners that
work in this area. In 2007, a book on color image processing
was published to cover processing and application aspects of
digital color imaging [5].

Several books have also been published on the topic.
For example, Lukac and Plataniotis edited a book [6]
which examines the techniques, algorithms, and solutions
for digital color imaging, emphasizing emerging topics such
as secure imaging, semantic processing, and digital camera
image processing.

Since 2006, we have observed a significant increase in the
number of papers devoted to color image processing in the
image processing community. We will discuss in this survey
which are the main problems examined by these papers
and the principal solutions proposed to face these problems.
The motivation of this paper is to provide a comprehensive
overview of the most recent trends and of the future research
directions in color image and video processing. Rather than
covering all aspects of the domain, this survey covers issues
related to the most active research areas in the last two years.
It presents the most recent trends as well as the state-of-
the-art, with a broad survey of the relevant literature, in the
main active research areas in color imaging. It also focuses
on the most promising research areas in color imaging
science. Lastly, it addresses the research areas which still need
addressing and which are the next and future perspectives of
color in image and video processing.

This survey is intended for graduate students, researchers
and practitioners who have a good knowledge in color
science and digital imaging and who want to know and
understand the most recent advances and research in digital
color imaging. This survey is organized as follows: after
an introduction about the background and the motivation
of this work, Section 2 gives an overview about the issues,
controversies, and problems of color image science. This
section focuses on human color vision, perception, and
interpretation. Section 3 presents the issues, controversies,
and problems of color image applications. This section
focuses on acquisition systems, consumer imaging applica-
tions, and medical imaging applications. Section 4 gives a
brief overview about the solutions, recommendations, most
recent trends and future trends of color image science. This

section focuses on color space, appearance models, color
difference metrics, and color saliency. Section 5 presents
the most recent advances and researches in color image
analysis. Section 5 focuses on color features, color-based
object tracking, scene illuminant estimation and color
constancy, quality assessment and fidelity assessment, color
characterization and calibration of a display device. Next,
Section 6 presents the most recent advances and researches
in color image processing. Section 6 focuses on quantization,
filtering and enhancement, segmentation, coding and com-
pression, watermarking, and lastly on multispectral color
image processing. Finally, conclusions and suggestions for
future work are drawn in Section 7.

2. COLOR IMAGE SCIENCE AT PRESENT:
ISSUES, CONTROVERSIES, PROBLEMS

2.1. Background

The science of color imaging may be defined as the study
of color images and the application of scientific methods
to their measurement, generation, analysis, and represen-
tation. It includes all types of image processing, including
optical image production, sensing, digitalization, electronic
protection, encoding, processing, and transmission over
communications channels. It draws on diverse disciplines
from applied mathematics, computing, physics, engineering,
and social as well as behavioural sciences, including human-
computer interface design, artistic design, photography,
media communications, biology, physiology, and cognition.

Although digital image processing has been studied for
some 30 years as an academic discipline, its focus in the
past has largely been in the specific fields of photographic
science, medicine, remote sensing, nondestructive testing,
and machine vision. Previous image processing and com-
puter vision research programs have primarily focused on
intensity (grayscale) images. Color was just considered as
a dimensional extension of intensity dimension, that is,
color images were treated just as three gray-value images,
not taking into consideration the multidimensional nature
of human color perception or color sensory system in
general. The importance of color image science has been
driven in recent years by the accelerating proliferation of
inexpensive color technology in desktop computers and
consumer imaging devices, ranging from monitors and
printers to scanners and digital color cameras. What now
endows the field with critical importance in mainstream
information technology is the very wide availability of the
Internet and World Wide Web, augmented by CD-ROM and
DVD storage, as a means of quickly and cheaply transferring
color image data. The introduction of digital entertainment
systems such as digital television and digital cinema required
the replacement of the analog processing stages in the
imaging chain by digital processing modules, opening the
way for the introduction to the imaging pipeline of the
speed and flexibility afforded by digital technology. The
convergence of digital media, moreover, makes it possible for
the application of techniques from one field to another, and
for public access to heterogeneous multimedia systems.
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For several years we have been facing the development
of worldwide image communication using a large variety
of color display and printing technologies. As a result,
“cross media” image transfer has become a challenge [7].
Likewise, the requirement of accuracy on color reproduction
has pushed the development of new multispectral imaging
systems. The effective design of color imaging products relies
on a range of disciplines, for it operates at the very heart of
the human-computer interface, matching human perception
with computer-based image generation.

Until recently, the design of efficient color imaging
systems was guided by the criterion that “what the user
cannot see does not matter.” This is no longer true. This has
been, so far, the only guiding principle for image filtering
and coding. In modern applications, this is not sufficient
enough. For example, it should be possible to reconstruct
on display the image of a painting from a digital archive
under different illuminations. From the human vision point,
the problem is that visual perception is one of the most
elusive and changeable of all aspects of human cognition,
and depends on a multitude of factors. Successful research
and development of color imaging products must therefore
combine a broad understanding of psychophysical methods
with a significant technical ability in engineering, computer
science, applied mathematics, and behavioral science.

2.2. Human color vision

The human color vision system is immensely complicated.
For a better understanding of its complexity, a short
introduction is given here. The reflected light from an object
enters the eye, first passes through the cornea and lens,
and creates an inverted image on the retina at the back
of the eyeball. The retinal surface contains millions of two
types of photoreceptors: rods and cones. The former are
sensitive to very low levels of light but cannot see color.
Color information is detected at normal (daylight) levels of
illumination by the three types of cones, named L, M, S,
corresponding to light sensitive pigments at long, medium,
and short wavelengths, respectively. The visible spectrum
ranges between about 380 to 780 nanometers (nm). The
situation is complicated by the retinal distribution of the
photoreceptors: the cone density is the highest in the foveal
region in a central visual field of approximately 2◦ diameter,
whereas the rods are absent from the fovea but attain
maximum density in an annulus of 18◦ eccentricity, that
is, in the peripheral visual field. The information acquired
by rods and cones is encoded and transmitted via the optic
nerve to the brain as one luminance channel (black-white)
and two opponent chrominance channels (red-green and
yellow-blue), as proposed by the opponent-process theory of
color vision of Hering. These visual signals are successively
processed in the lateral geniculate nucleus (LGN) and visual
cortex (V1), and then propagated to several nearby visual
areas in the brain for further extraction of features. Finally,
the higher cognitive functions of object recognition and
color perception are attained.

At very low illumination levels, when the stimulus has
a luminance lesser than approximately 0.01 cd/m2, only the

rods are active and give monochromatic vision, known
as scotopic vision. When the luminance of the stimulus
is greater than approximately 10 cd/m2, at normal indoor
and daylight level of illumination in a moderate surround,
the cones alone mediate color vision, known as photopic
vision. In between 0.01 and 10 cd/m2 there is a gradual
changeover from scotopic to photopic vision as the retinal
illuminance increases, and in this domain of mesopic vision
both cones and rods make significant contributions to the
visual response.

Yet the mesopic condition is commonly encountered in
dark-surround or dim-surround conditions for viewing of
television, cinema, and conference projection displays, so it is
important to have an appropriate model of color appearance.
The cinema viewing condition is particularly interesting,
because although the screen luminance is definitely pho-
topic, with a standard white luminance of 40–50 cd/m2, the
observers in the audience are adapted to a dark surround in
the peripheral field which is definitely in the mesopic region.
Also, the screen fills a larger field of view than is normal
for television, so the retinal stimulus extends further into
the peripheral field where rods may make a contribution.
Additionally, the image on the screen changes continuously
and the average luminance level of dark scenes may be well
down into the mesopic region. Under such conditions, the
rod contribution cannot be ignored. There is no official CIE
standard yet available for mesopic photometry, although in
Division 1 of the CIE there is a technical committee dedicated
to this aspect of human vision: TC1-58 “Visual Performance
in the Mesopic Range.”

When dealing with the perception of static and moving
images, visual contrast sensitivity plays an important role in
the filtering of visual information processed simultaneously
in the various visual “channels.” The high frequency active
channels (also known as parvocellular or P channels) enable
detail perception; the medium frequency active channels
allow shape recognition, whereas the low-frequency active
channels (also known as magnocellular or M channels) are
more sensitive to motion. Spatial contrast sensitivity func-
tions (CSFs) are generally used to quantify these responses
and are divided into two types: achromatic and chromatic.
Achromatic contrast sensitivity is generally higher than chro-
matic. For achromatic sensitivity, the maximum sensitivity
to luminance for spatial frequencies is approximately 5
cycles/degree. The maximum chrominance sensitivity is only
about one tenth of the maximum luminance sensitivity.
The chrominance sensitivities fall off above 1 cycle/degree,
particularly for the blue-yellow opponent channel, thus
requiring a much lower spatial bandwidth than luminance.
For a nonstatic stimulus, as in all refreshed display devices,
the temporal contrast sensitivity function must also be
considered. To further complicate matters, the spatial and
temporal CSFs are not separable and so must be investigated
and reported as a function on the time-space frequency
plane.

Few research groups have been working on the mesopic
domain; however there is a need for investigation. For
example, there is a need to develop metrics for perceived
contrasts in the mesopic domain [8]. In 2005, Walkey
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et al. proposed a model which provided insight into the
activity and interactions of the achromatic and chromatic
mechanisms involved in the perception of contrasts [9].
However, the proposed model does not offer significant
improvement over other models in high mesopic range or in
mid-to-low mesopic range because the mathematical model
used is not relevant to adjust correctly these extreme values.

Likewise, there is a need to determine the limits of
visibility, for example, the minimum of brightness contrast
between foreground and background, in different viewing
conditions. For example, Ojanpaa et al. investigated the effect
of luminance and color contrasts on the speed of reading
and visual search in function of character sizes. It would
be interesting to extend this study to small displays such
as mobile devices and to various viewing conditions such
as under strong ambient light. According to Kuang et al.,
contrast judgement as well as colorfulness has to be analysed
in function of highlight contrasts and shadow contrasts [10].

2.3. Low-level description and
high-level interpretation

In recent years, research efforts have also focused on
semantically meaningful automatic image extraction [11].
According to Dasiapoulou et al. [11], these efforts have not
bridged the gap between low-level visual features that can
be automatically extracted from visual content (e.g., with
saliency descriptors), and the high-level concepts capturing
the conveyed meaning. Even if conceptual models such as
MPEG7 have been introduced to model high-level concepts,
we are always confronted to the problem of extracting
the objects of a scene (i.e., the regions of an image) at
intermediate level between the low level and the high level.
Perhaps the most promising way to bridge the former gap
is to focus the research activity on new and improved
human visual models. Traditional models are based either
on a data-driven description or on a knowledge-based
description. Likewise, there is in a general way a gap between
traditional computer vision science and human vision
science, the former considering that there is a hierarchy of
intermediate levels between signal-domain information and
semantic understanding meanwhile the latter consider that
the relationships between visual features in the human visual
system are too complex to be modeled by a hierarchical
model. Alternative models attempted to bridge the gap
between low-level descriptions and high-level interpretations
by encompassing a structured representation of objects,
events, relations that are directly related to semantic entities.
However, there is still plenty of space for new alternative
models, additional descriptors and methodologies for an
efficient fusion of descriptors [11].

Image-based models as well as learning-based
approaches are techniques that have been widely used
in the area of object recognition and scene classification.
They consider that humans can recognize objects either
from their shapes or from their color and their texture.
This information is considered as low-level data because
it is extracted by the human vision system during the
preattentive stage. Inversely, high-level data (i.e., semantic

data) is extracted during the interpretation stage. There is no
consensus in human vision science to model intermediate
stages between preattentive and interpretation stages because
we do not have a complete knowledge of visual areas and
of neural mechanisms. Moreover, the neural pathways are
interconnected and the cognitive mechanisms are very
complex. Consequently, there is no consensus for one
human vision model.

We believe that the future of image understanding
will advance through the development of human vision
models which better take into account the hierarchy of
visual image processing stages from the preattentive stage
to the interpretation stage. With such a model, we could
bridge the gap between low-level descriptors and high-level
interpretation. With a better knowledge of the interpretation
stage of the human vision system we could analyze images at
the semantic level in a way that matches human perception.

3. COLOR IMAGE APPLICATIONS:
ISSUES, CONTROVERSIES, PROBLEMS

When we speak about color image science, it is fundamental
to evoke firstly problems of acquisition and reproduction of
color images but also problems of expertise for particular dis-
ciplinary fields (meteorologists, climaticians, geographers,
historians, etc.). To illustrate the problems of acquisition, we
evoke the demosaicking technologies. Next, to illustrate the
problems with the display of color images we speak about
digital cinema. Lastly, to illustrate the problems of particular
expertise we quote the medical applications.

3.1. Color acquisition systems

For several years, we have seen the development of single-
chip technologies based on the use of color filter arrays
(CFAs) [12]. The main problems these technologies have
to face are the demosaicking and the denoising of resulting
images [13–15]. Numerous solutions have been published
on facing these problems. Among the most recent ones, Li
proposed in [16] a demosaicking algorithm in the color
difference domain based on successive approximations in
order to suppress color misregistration and zipper artefacts
in the demosaicked images. Chaix de Lavarène et al. pro-
posed in [17] a demosaicking algorithm based on a linear
minimization of the mean square error (MSE). Tsai and
Song proposed in [18] a demosaicking algorithm based
on edge-adaptive filtering and postprocessing schemes in
order to reduce aliasing error in red and blue channels by
exploiting high-frequency information of the green channel.
On the other hand, L. Zhang and D. Zhang proposed in
[19] a joint demosaicking-zoomingalgorithm based on the
computation of the color difference signals using the high
spectral-spatial correlations in the CFA image to suppress
artefacts arising from demosaicking as well as zippers and
rings arising from zooming. Likewise, Chung and Chan
proposed in [20] a joint demosaicking-zoomingalgorithm
based on the interpolation of edge information extracted
from raw sensor data in order to preserve edge features in
output image. Lastly, Wu and Zhang proposed in [21, 22] a
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temporal color video demosaicking algorithm based on the
motion estimation and data fusion in order to reduce color
artefacts over the intraframes. In this paper, the authors have
considered that the temporal dimension of a color mosaic
image sequence could reveal new information on the missing
color components due to the mosaic subsampling which is
otherwise unavailable in the spatial domain of individual
frames. Then, each pixel of the current frame is matched to
another in a reference frame via motion analysis, such that
the CCD sensor samples different color components of the
same object position in the two frames. Next, the resulting
interframe estimates of missing color components are fused
with suitable intraframe estimates to achieve a more robust
color restoration. In [23], Lukac and Plataniotis surveyed in
a comprehensive manner demosaicking demosaicked image
postprocessing and camera image zooming solutions that
utilize data-adaptive and spectral modeling principles to
produce camera images with an enhanced visual quality.
Demosaickingtechniques have been also studied in regards to
other image processing tasks, such as compression task (e.g.,
see [24]).

3.2. Color in consumer imaging applications

Digital color image processing is increasingly becoming a
core technology for future products in consumer imaging.
Unlike past solutions where consumer imaging was entirely
reliant on traditional photography, increasingly diverse color
image sources, including (digitized) photographic media,
images from digital still or video cameras, synthetically
generated images, and hybrids, are fuelling the consumer
imaging pipeline. The diversity on the image capturing and
generation side is mirrored by an increasing diversity of the
media on which color images are reproduced. Besides being
printed on photographic paper, consumer pictures are also
reproduced on toner- or inkjet-based systems or viewed on
digital displays. The variety of image sources and repro-
duction media, in combination with diverse illumination
and viewing conditions, creates challenges in managing the
reproduction of color in a consistent and systematic way.
The solution of this problem involves not only the mastering
of the photomechanical color reproduction principles, but
also the understanding of the intrinsic relations between
visual image appearance and quantitative image quality mea-
surements. Much is expected from improved standards that
describe the interfaces of various capturing and reproduction
devices so they can be combined into better andmore reliably
working systems.

To achieve “what you see is what you get” (WYSIWYG)
color reproduction when capturing, processing, storing,
and displaying visual data, the color in visual data should be
managed so that whenever and however images are display-
ed their appearance remains perceptually constant. In the
photographic, display, and printing industries, color ap-
pearance models, color management methods and stan-
dards are already available, notably from the International
Color Consortium (ICC, see http://www.color.org/), the
International Commission on Illumination (CIE) Divisions
1 “Vision and Color” (see http://www.bio.im.hiroshima-cu

.ac.jp/∼cie1) and 8 “Image Technology” (see http://www

.colour.org/), the International Electrotechnical Commission
(IEC) TC100 “Multimedia for today and tomorrow” (see
http://tc100.iec.ch/about/structure/tc100 ta2.htm/), and the
International Organisation for Standardisation (ISO) such as
ISO TC42“Photography” (see http://www.i3a.org/iso.html/),
ISO TC 159 “Visual Display” and ISO TC171 “Document
Management” (see http://www.iso.org/iso/). A computer
system that enables WYSIWYG color to be achieved is called
a color management system. Typical components include the
following:

(i) a color appearance model (CAM) capable of pre-
dicting color appearance under a wide variety of
viewing conditions, for example, the CIECAM02
model recommended by CIE;

(ii) device characterization models for mapping between
the color primaries of each imaging device and the
color stimulus seen by a human observer, as defined
by CIE specifications;

(iii) a device profile format for embodying the translation
from a device characterization to a color appearance
space proposed by ICC.

Although in graphic arts, web application, HDTV, and so
forth rapid progress has beenmade towards the development
of a comprehensive suite of standards for color management
in other application domains such as cinematography,
similar efforts are still in its infancy. It should be noted,
for example, that cinematographic color reproduction is
performed in a rather ad hoc primitive manner due to the
nature of its processing and its unique viewing conditions
[25]. Likewise, there are problems in achieving effective
color management for cinematographic applications [26].
In particular, in cinematographic applications the concept
of “film look” is very important; this latter depends of the
content of the film (e.g., the hue of the skin of actors or the
hue of the sky) [27]. Most of color management processes
minimize the errors of color rendering without taking into
account the image content. Likewise the spreading of digital
film applications (DFAs) in the postproduction industry
introduces colormanagement problem. This spreading arises
in the processing of data when the encoding is done with
different device primary colors (CMY or RGB). The current
workflow in postproduction is to transform film material
into the digital domain to perform the color grading (artistic
color correction) and then to record the finalised images
back to film. Displays used for color grading such as CRTs
and digital projectors have completely different primary
colors compared to negative and positive film stocks. An
uncalibrated display of the digital data during the color
grading sessions may produce a totally different color
impression compared to the colors and the “film look” of
the images printed on film. In order to achieve perceptually
satisfactory cinematographic color management, it is highly
desirable to model the color appearance under the cinema
viewing conditions, based on a large set of color appearance
data accumulated from experiments with observers under
controlled conditions [28]. In postproduction, there is a
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need for automatic color transfer toolboxes (e.g., color
balance, RGB channel alignment, color grade transfer, color
correction). Unfortunately, little attention has been paid
to color transfer in a video or in a film. Most of color
transfer algorithms have been defined for still images from
a reference image, or for image sequences from key frames
in a video clip [29]. Moreover, the key frames computed
for video sequences are arbitrarily selected regardless of the
color content of these frames. A common feature of color
transfer algorithms is that they operate on the whole image
independent of the image’s semantic content (however, an
observer who sees a football match in a stadium is more
sensitive to the color of the ground than to the color
of the steps). Moreover, they do not take into account
metadata such as the script of the scenario or the lighting
conditions under which the scene was filmed. Nevertheless,
such metadata is used by the Digital Cinema System Speci-
fication for testing digital projectors and theatre equipment
[30].

The problems of color reproduction in graphic arts are in
many regards similar to those in consumer imaging, except
that much of the image capturing and reproduction is in
a controlled and mature industrial environment, making
it generally easier to manage the variability. A particularly
important color problem in graphic arts is the consistency
and predictability of the “digital color proof” with regard to
the final print. According to Bochko et al., the design of a
system for accurate digital archiving of fine art paintings has
awakened increasing interest [31]. Excellent results have been
achieved under controlled illumination conditions, but it is
expected that approaching this problem using multispectral
techniques will result in a color reproduction that is more
stable under different illumination conditions. Archiving the
current condition of a painting with high accuracy in digital
form is important to preserve it for the future, likewise to
restore it. For example, Berns worked on digital restoration
of faded paintings and drawings using a paint-mixing model
and a digital imaging of the artwork with a color-managed
camera [32]. Until 2005, Berns also managed a research
program entitled “Art Spectral Imaging” which focused on
spectral-based color capture, archiving, and reproduction
[30].

Another interesting problem in graphic arts is col-
orization. Colorization is a computerized process that adds
color to a monochrome image or movie. Few methods for
motion pictures have been published (e.g., [33]). Various
applications such as comics (Manga), a cartoon film, and a
satellite image have been reported (e.g., [34]). In addition,
the technology is not only used to color images but also
for image encoding [35]. In recent years, techniques have
developed in the field of other image processing, such as
image matting [36], image inpainting [37], and physical
reflection model [38] and have been applied to colorization.
The target of colorization is not only limited to coloring
algorithm but extends to the problem of color-to-gray
(e.g., [39]). This problem is interesting and must be a
new direction in colorization. The colorization accuracy for
monochrome video needs to be improved and considered as
an essential challenge in the future.

3.3. Color inmedical imaging

In general, medical imaging focuses mostly on analysing the
content of the images rather than the artefacts linked to the
technologies used.

Most of the images, such as X-ray and tomographic
images, echo-, or thermographs are monochrome in nature.
In a first application of color image processing, pseudocol-
orization was used to aid the interpretation of transmitted
microscopy (including stereo microscopy, 3D reconstructed
image, and fluorescence microscopy) [40]. In the context
of biomedical imaging, an important area of increasing
significance in society, color information, has been used
significantly in order, amongst other things, to detect skin
lesions, glaucomatous in eyes [41], microaneurysms in color
fundus images [42], and to measure blood-flow velocities in
the orbital vessels, and to analyze tissue microarrays (TMAs)
or cDNAmicroarrays [43, 44]. Current approaches are based
on colorimetric interpretation, but multispectral approaches
can lead to more reliable diagnoses. Multispectral image
processing may also become an important core technology
for the business unit “nondestructive testing” and “aerial
photography,” assuming that these groups expand their
applications into the domain of digital image processing.
The main problem in medical imaging is to model the
image formation process (e.g., digital microscopes [45],
endoscopes [46], color-doppler echocardiography [47]) and
to correlate image interpretation with physics-based models.
In medical applications, usually lighting conditions are
controlled. However, several medical applications are faced
with the problem of noncontrolled illumination, such as in
dentistry [48] or in surgery.

Another important problem addressed in medical imag-
ing is the quality of images and displays (e.g., sensitivity,
contrast, spatial uniformity, color shifts across the grayscale,
angular-related changes of contrast and angular color shifts)
[49–51]. To face with the problem of image quality, some
systems classify images by assigning them to one of a number
of quality classes, such as in retinal screening [50]. To classify
image structuresfound within the image Niemeijer et al. have
used a clustering approach based on multiscale filterbanks.
The proposed method was compared, using different feature
sets (e.g., image structure or color histograms) and classifiers,
with the ratings of a human observer. The best system, based
on a Support Vector Machine, had performance close to
optimal with an area under the ROC curve of 0.9968.

Another problem medical imaging has to face is how
to quantify the evolution of a phenomenon and more
generally how to assist the diagnostic. Unfortunately, few
studies have been published in this domain. Conventional
image processing based on low-level features, such as
clustering or segmentation, may be used to analyze color
contrast between neighbor pixels or color homogeneity
of regions in medical imaging application to analyze the
evolution of a phenomenon but are not adapted to high-level
interpretation. Perhaps a combination of low-level features
such as color features, geometrical features, and structure
features could improve the relevance of the analysis (e.g., see
[52]). Another strategy will consist of extracting high-level
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metadata from specimens to characterize them, to abstract
their interpretation, to correlate them to clinical data, next
to use these metadata for automated and accurate analysis of
digitized images.

Lastly, dentistry is faced with complex lighting phenom-
ena (e.g., translucency, opacity, light scattering, gloss effect,
etc.) which are difficult to control. Likewise, cosmetic science
is faced with the same problems. The main tasks of dentistry
and cosmetic science are color correction, gloss correction,
and face shape correction.

3.4. Color in other applications

We have evoked in this section several problems of medical
applications, but we could also evoke the problems with
assisting the diagnosis in each area of particular expertise
(meteorologists, climaticians, geographers, historians, etc.).
Likewise, we could evoke the problems of image and display
quality in web applications, HDTV, graphic arts and so on or
applications of nondestructive quality control for numerous
areas including painting, varnishes, and materials in the
car industries, aeronautical packaging, or in the control of
products in the food industry. Numerous papers have shown
that even if most of the problems in color image science are
similar for various applications, color imaging solutions are
widely linked to the kinds of image and to the applications.

4. COLOR IMAGE SCIENCE—THE ROAD
AHEAD: SOLUTIONS, RECOMMENDATIONS,
AND FUTURE TRENDS

4.1. Color spaces

Rather than using a conventional color space, another
solution consists of using an ad hoc color space based on
the most characteristic color components of a given set of
images. Thus, Benedetto et al. [53] proposed to use the YST
color space to watermark images of human faces where Y, S,
and T represent, respectively, the brightness component, the
color average value of a set of different colors of human faces,
and the color component orthogonal to the two others. The
YST color space is next used to watermark images that have
the same color characteristics as the set of images used. Such
a watermarking process is robust to illumination changes
as the S component is relatively invariant to illumination
changes.

Other solutions have been also proposed for other kinds
of processes such as the following.

(i) For segmentation. The Fischer distance strategy has
been proposed in [54] in order to perform figure-
ground segmentation. The idea is to maximize the
foreground/background class separability from a
linear discriminant analysis (LDA) method.

(ii) For feature detection. The diversification principle
strategy had been proposed in [55] in order to
perform selection and fusion of color components.
The idea is to exploit nonperfect correlation between
color components or feature detection algorithms

from a weighting scheme which yields maximal
feature discrimination. Considering that a trade-
off exists between color invariant components and
their discriminating power, the authors proposed to
automatically weight color components to arrive at
a proper balance between color invariance under
varying viewing conditions (repeatability) and dis-
criminative power (distinctiveness).

(iii) For tracking. The adaptive color space switching
strategy had been proposed in [56] in order to
perform tracking under varying illumination. The
idea is to dynamically select the better color space, for
a given task (e.g., tracking), as a function of the state
of the environment, among all conventional color
spaces.

These solutions could be extended to more image processing
tasks than those initially considered provided these solutions
are adapted to these tasks. The proper use and understanding
of these solutions is necessary for the development of new
color image processing algorithms. In our opinion, there is
room for the development of other solutions for choosing
the best color space for a given image processing task.

Lastly, to decompose color data in different components
such as a lightness component and a color component,
new techniques recently appeared such as the quaternion
theory [57, 58] or other mathematical models based on
polar representation [59]. For example, Denis et al. [57]
used the quaternion representation for edge detection in
color images. They constrained the discrete quaternionic
Fourier transform to avoid information loss during pro-
cessing and defined new spatial and frequency operators to
filter color images. Shi and Funt [58] used the quaternion
representation for segmenting color images. They showed
that the quaternion color texture representation can be used
to successfully divide an image into regions on basis of
texture.

4.2. Color image appearance (CAM)

The aim of the color appearance model is to model how the
human visual system perceives the color of an object or of
an image under different points of view, different lighting
conditions, and with different backgrounds.

The principal role of a CAM is to achieve successful
color reproduction across different media, for example, to
transform input images from film scanners, cameras, onto
displays, film printers, and data projectors considering the
human visual system (HVS). In this way, a CAM must
be adaptive to viewing conditions, that is ambient light,
surround color, screen type, viewing angle, and distance.
The standard CIECAM02 [60] has been successfully tested
at various industrial sites for graphic arts applications, but
needs to be tested before being used in other viewing
conditions (e.g., cinematographic viewing conditions).

Research efforts have been applied in developing a color
appearance model for predicting a color appearance under
different viewing conditions. A complete model should
predict various well-known visual phenomena such as
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Stevens effect, Hunt effect, Bezold-Brücke effect, simulta-
neous contrast, crispening, color constancy, memory color,
discounting-the-illuminant, light, dark, and chromatic adap-
tation, surround effect, spatial and temporal visions. All
these phenomena are caused by the change of viewing
parameters, primarily illuminance level, field size, back-
ground, surround, viewing distance, spatial, and temporal
variations, viewing mode (illuminant, surface, reflecting,
self-luminous, or transparent), structure effect, shadow,
transparency, neon-effect, saccades effect, stereo depth, and
so forth.

Many color appearance models have been developed
since 1980. The last one is the CIECAM02 [60]. Although
CIECAM02 does provide satisfactory prediction to a wide
range of viewing conditions, there still remain many limita-
tions. Let us consider four of these limitations: (1) objective
determination of viewing parameters; (2) prediction of
color appearance under mesopic vision; (3) incorporation of
spatial effects for evaluating static images; (4) consideration
of the temporal effects of human vision system for moving
images.

The first limitation is due to the fact that in CIECAM02
the viewing conditions need to be defined in terms of
illumination (light source and luminance level), luminance
factor of background and surround (average, dim, or dark).
Many of these parameters are very difficult to define, which
leads to confusion in industrial application and deviations in
experimentation. The surround condition is highly critical
for predicting accurate color appearance, especially when
associated with viewing conditions for different media.
Typically, we assume that viewing a photograph or a print in
a normal office environment is called “bright” or “average”
surround, whereas watching TV in a darkly lit living
room can be categorized as “dim” surround, and observing
projected slides and cinema images in a darkened room is
“dark” surround. Users currently have to determine what
viewing condition parameter values should be used. Recent
work has been carried out by Kwak et al. [61] to make better
prediction of changes in color appearance with different
viewing parameters.

The second shortcoming addresses the state of visual
adaptation at the low-light levels (mesopic vision). Most
models of color appearance assume photopic vision, and
completely disregard the contribution from rods at low levels
of luminance. There are few color appearance datasets for
mesopic vision and the experimental data from conventional
vision research are difficult to apply to color appearance
modeling because of the different experimental techniques
employed (haploscopic matching, flicker photometry, etc.).
The only color appearance model yet to include a rod
contribution is the Hunt 1994 model but, when this was
adapted to produce CIECAM97s and later CIECAM02, the
contributions of rod signal to the achromatic luminance
channel were omitted [62]. In a recent study, color appear-
ance under mesopic vision conditions was investigated using
a magnitude estimation technique [8, 63]. Larger stimuli
covering both foveal and perifoveal regions were used to
probe the effect of the rods. It was confirmed that colors
looked “brighter” and more colorful for a 10-degree patch

than a 2-degree patch, an effect that grew at lower luminance
levels. It seemed that perceived brightness was increased
by the larger relative contribution of the rods at lower
luminance levels and that the increased brightness induced
higher colourfulness. It was also found that the colors with
green-blue hues were more affected by the rods than other
colors, an effect that corresponds to the spectral sensitivity
of the rod cell, known as the “Purkinje shift” phenomenon.
Analysis of the experimental results led to the development of
an improved lightness predictor, which gave superior results
to eight other color appearancemodels in themesopic region
[61].

The third shortcoming is linked to the problem that
the luminance of the white point and the luminance range
(white-to-dark, e.g., from highlight to shadow) of the scene
may have a profound impact on the color appearance.
Likewise, the background surrounding the objects in a
scene influences the judgement of human evaluators when
assessing video quality using segmented content.

For the last shortcoming, an interesting direction to be
pursued is the incorporation of spatial and temporal effects
of human vision system into color appearance models. For
example, although foveal acuity is far better than peripheral
acuity, many studies have shown that the near periphery
resembles foveal vision for moving and flickering gratings.
It is especially true for sensitivity to small vertical displace-
ments, and detection of coherent movement in peripherally
viewed random-dot patterns. Central fovea and peripheral
visions are qualitatively similar in spatial-temporal visual
performance and this phenomenon has to be taken into
account for color appearance modeling. Some researches
have been conducted on spatial and temporal effects by
numerous papers [64–67].

Several studies have shown that the human visual system
is more sensitive to low frequencies than to high frequencies.
Likewise, several studies have shown that the human visual
system is less sensitive to noise in dark and bright regions
than in other regions. Lastly, the human visual system is
highly insensitive to distortions in regions of high activity
(e.g., salient regions) and is more sensitive to distortions near
edges (objects contours) than in highly textured areas. All
these spatial effects are unfortunately not taken into account
enough by CIECAM97s or CIECAM02 color appearance
models. A new technical committee, the TC1-68 “Effect
of stimulus size on colour appearance,” has been created
in 2005 to compare the appearance of small and large
uniform stimuli on a neutral background. Even if numerous
papers have been published on this topic, in particular in
the proceedings of the CIE Expert Symposium on Visual
Appearance organized in 2006 [68–71], there is a need for
further research on spatial effects.

The main limitation of color imaging in the color
appearance models previously described is that they can only
predict the appearance of a single stimulus under “reference
conditions” such as a uniform background. These models
can been used successfully in color imaging as they are
able to compute the influence of viewing conditions such
as the surround lighting or the overall viewing luminance
on the appearance of a single color patch. The problem
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with these models is that the interactions between individual
pixels are mostly ignored. To deal with this problem,
spatial appearance models have been developed such as the
iCAM [64] which take into account both spatial and color
properties of the stimuli and viewing conditions. The goal in
developing the iCAM was to create a single model applicable
to image appearance, image rendering, and image quality
specifications and evaluations. This model was built upon
previous research in uniform color spaces, the importance
of image surround, algorithms for image difference and
image quality measurement [72], insights into observers eye
movements while performing various visual imaging tasks,
adaptation to natural scenes and an earlier model of spatial
and color vision applied to color appearance problems and
high dynamic range (HDR) imaging.

The iCAM model has a sound theoretical background,
however, it is based on empirical equations rather than a
standardized color appearance model such as CIECAM02
and some parts are still not fully implemented. It is quite effi-
cient in dealing with still images but it needs to be improved
and extended for video appearance [64]. Moreover, filters
implemented are only spatial and cannot contribute to color
rendering improvement for mesopic conditions with high
contrast ratios and a large viewing field. Consequently, the
concept and the need for image appearance modeling are still
under discussion in the Division 1 of the CIE, in particular
in the TC 1-60 “Contrast Sensitivity Function (CSF) for
Detection and Discrimination.” Likewise, how to define and
predict the appearance of a complex image is still an open
question.

Appreciating the principles of color image appearance
and more generally the principles of visual appearance
opens the door for improving color image processing algo-
rithms. For example, the development of emotional models
related to the color perception should contribute to the
understanding of color and light effects in images (see CIE
Color Reportership R1-32 “Emotional Aspects of Color”).
Another example is that the development of measurement
scales that relate to the perceived texture should help to
analyze textured color images. Likewise, the development of
measurement scales that relate to the perceived gloss should
help to describe perceived colorimetric effects. Numerous
studies have been done on the “science” of appearance in
the CIE Technical Committee TC 1-65 “Visual Appearance
Measurement.”

4.3. Color differencemetrics

Beyond the problem of the color appearance description
arises also the problem of the color difference measurement
in a color space. The CIEDE2000 color difference formula
was standardized by the CIE in 2000 in order to compensate
some errors in the CIELAB and CIE94 formulas [73].
Unfortunately, the CIEDE2000 color difference formula
suffers from mathematical discontinuities [74].

In order to develop/text new color spaces with Euclidean
color difference formulas, new reliable experimental datasets
need to be used (e.g., using visual displays, under illuminat-
ing/viewing conditions close to the “reference conditions”

suggested for the CAM). This need has recently been
expressed by the Technical Committee CIE TC 1-55 “Uni-
form color space for industrial color difference evaluation”
[75]. The aim of this TC is to propose “a Euclidean color
space where color differences can be evaluated for reliable
experimental data with better accuracy than the one achieved
by the CIEDE2000 formula.” (See recent studies of the TC1-
63 “Validity of the range of the CIEDE2000” and R1-39
“Alternative Forms of the CIEDE2000 Colour-Difference
Equations.”)

The usual color difference formulas, such as the
CIEDE2000 formula, have been developed to predict
color difference under specific illuminating/viewing con-
ditions closed to the “reference conditions.” Inversely, the
CIECAM97s and CIECAM02 color appearance models have
been developed to predict the change of color appearance
under various viewing conditions. These CIECAM97s and
CIECAM02 models involve seven attributes: brightness (Q),
lightness (J), colorfulness (M), chroma (C), saturation (s),
hue composition (H), and hue angle (h).

Lastly, let us note that meanwhile the CIE L∗a∗b∗ΔE
metric can be seen as a Euclidean color metric, the S-CIELAB
space has the advantage of taking into account the differences
of sensitivity of the HVS in the spatial domain, such as
homogeneous or textured areas.

5. COLOR IMAGE PROCESSING

The following subsections focus on the most recent trends
in quantization, filtering and enhancement, segmentation,
coding and compression, watermarking, and lastly on mul-
tispectral color image processing. Several states of the art
on various aspects of image processing had been published
in the past. Rather than globally describing the problematic
of these topics, we focus on color specificities in advanced
topics.

5.1. Color image quantization

The optimal goal of the quantization method is to build a
set of representative colors such that the perceived difference
between the original image and the quantized one is as small
as possible. The definition of relevant criteria to characterize
the perceived image quality is still an open problem. One
criterion commonly used by quantization algorithms is the
minimization of the distance between each input color and
its representative. Such criterion may be measured thanks to
the total squared error which minimizes the distance within
each cluster. A dual approach tries to maximize the distance
between clusters. Note that the distance of each color to
its representative is relative to the color space in which the
mean squared error is computed. Several strategies have
been developed to quantize a color image, among them the
vectorial quantization (VQ) is the most popular. VQ can be
also used as an image coding technique that shows high data
compression ratio [76].

In the previous years, image quantization algorithms
were very useful due to the fact that most computers
used 8-bit color palettes, but now all displays have high
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bit depth, even cell phones. Image quantization algorithms
are considered of much less usefulness today due to the
increasing power of most digital imaging devices, and the
decreasing cost of memory. The future of color quantization
is not in the displays community due to the fact that the
bit depth of all triprimaries displays is currently at least
equal to 24 bit (or higher, e.g., equal to 48 bits!). Inversely,
the future of color quantization will be guided by the
image processing community due to the fact that typical
color imaging processes such as compression, watermarking,
filtering, segmentation, or retrieval use the quantization.

It has been demonstrated that the quality of a quantized
image depends on the image content and on gray-levels of
the color palette (LUT); likewise the quality of a compression
or a watermarking process based on a quantization process
depends on these features [77]. In order to illustrate this
aspect, let us consider the problem of color image water-
marking. Several papers have proposed a color watermarking
scheme based on a quantization process. Among them,
Pei and Chen [78] proposed an approach which embed
two watermarks in the same host image, one on the a∗b∗

chromatic plane with a fragile message by modulating the
indexes of a color palette obtained by color quantization,
another on the L∗ lightness component with a robust
message of gray levels palette obtained also by quantization.
Chareyron et al. [79] proposed a vector watermarking
scheme which embeds one watermark on the xyY color
space by modulating the color values of pixels previously
selected by color quantization. This scheme is based on the
minimization of color changes between the watermarked
image and the host image in the L∗a∗b∗ color space.

5.2. Color image filtering and enhancement

The function of a filtering and signal enhancement module
is to transform a signal into another more suitable for a
given processing task. As such, filters and signal enhancement
modules find applications in image processing, computer
vision, telecommunications, geophysical signal processing,
and biomedicine. However, the most popular filtering appli-
cation is the process of detecting and removing unwanted
noise from a signal of interest, such as color images and
video sequences. Noise affects the perceptual quality of the
image decreasing not only the appreciation of the image
but also the performance of the task for which the image
was intended. Therefore, filtering is an essential part of any
image processing systemwhether the final product is used for
human inspection, such as visual inspection, or an automatic
analysis.

In the past decade, several color image processing algo-
rithms have been proposed for filtering, noise reduction tar-
geting, in particular, additive impulsive and Gaussian noise,
speckle noise, additive mixture noise, and stripping noise. A
comprehensive class of vector filtering operators have been
proposed, researched, and developed to effectively smooth
noise, enhance signals, detect edges, and segment color
images [80]. The proposed framework, which has supplanted
previously proposed solutions, appeared to report the best
performance to date and has inspired the introduction of a

number of variants inspired by the framework of [81] such
as those reported in [82–90].

Most of these solutions are able to outperform classical
rank-order techniques. However, they do not produce con-
vincing results for additive noise [89] and fall short of deliv-
ering the performance reported in [80]. It should be added at
this point that classical color filters are designed to perform a
fixed amount of smoothing so that they are not able to adapt
to local image statistics [89]. Inversely, adaptive filters are
designed to filter only those pixels that are likely to be noisy
while leaving the rest of the pixels unchanged. For example,
Jin and Li [88] proposed a “switching” filterwhich better
preserves the thin lines, fine details, and image edges. Other
filtering techniques, able to suppress impulsive noise and
keep image structures based on modifying the importance
of the central pixel in the filtering process, have also been
developed [90]. They provide better detailed preservation
whereas the impulses are reduced [90]. A disadvantage of
these techniques is that some parameters have to be tuned
in order to achieve an appropriate performance. To solve
this problem, a new technique based on a fuzzy metric has
been recently developed where an adaptive parameter is
automatically determined in each image location by using
local statistics [90]. This new technique is a variant of the
filtering technique proposed in [91]. Numerous filtering
techniques used also morphological operators, wavelets or
partial differential equations [92, 93].

Several research groups worldwide have been working
on these problems, although none of the proposed solu-
tions seems to outperform the adaptive designs reported
in [80]. Nevertheless, there is a room for improvement
in existing vector image processing to achieve a tradeoff
between detailed preservation (e.g., edge sharpness) and
noise suppression. The challenge of the color image denois-
ing results mainly from two aspects: the diversity of the
noise characteristics and the nonstationary statistics of the
underlying image structures [87].

The main problem these groups have to face is how
to evaluate the effectiveness of a given algorithm. As for
other image processing algorithms, the effectiveness of an
algorithm is image-dependent and application-dependent.
Although there is no universal method for color image
filtering and enhancement solutions, the design criteria
accompanied the framework reported in [80, 81, 86] appear
to offer the best guidance to researchers and practitioners.

5.3. Color image segmentation

Color image segmentation refers to partitioning an image
into different regions that are homogeneous with respect to
some image feature. Color image segmentation is usually
the first task of any image analysis process. All subsequent
tasks, such as feature extraction and object recognition, rely
heavily on the quality of the segmentation. Without a good
segmentation algorithm, an object may never be recogniz-
able. Oversegmenting an image will split an object into dif-
ferent regions while undersegmenting it will group various
objects into one region. In this way, the segmentation step
determines the eventual success or failure of the analysis. For
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this reason, considerable care is taken to improve the state-
of-the-art in color image segmentation. The latest survey
on color image segmentation techniques were published in
2007 by Paulus [94]. These surveys discussed the advantages
and disadvantages of classical segmentation techniques, such
as histogram thresholding, clustering, edge detection, region-
based methods, vector based, fuzzy techniques, as well as
physics-based methods. Since then, physics-based methods
as well as those based on fuzzy logic concepts appear to
offer the most promising results. Methodologies utilizing
active contour concepts [95] or hybrid methods combining
global information, such as image histograms and local
information, regions and edge information [96, 97], appear
to deliver efficient results.

Color image segmentation is a rather demanding task
and developed solutions have to be effectively deal with
image shadows, illumination variations and highlights.
Amongst the most promising line of work in the area
is the computation of image invariants that are robust
to photometric effects [54, 98, 99]. Unfortunately, there
are too many color invariant models introduced in the
open literature, making the selection of the best model
and its combination with local image structures (e.g., color
derivatives) in order to produce the best result quite difficult.
In [100], Gevers et al. survey the possible solutions available
to the practitioner. In specific applications, shadow, shading,
illumination, and highlight edges have to be identified and
processed separately from geometrical edges such as corners
and T-junctions. To address the issue, local differential
structures and color invariants in a multidimensional feature
space were used to detect salient image structures (i.e., edges)
on the basis of their physical nature in [100]. In [101], the
authors proposed a classification of edges into five classes,
namely, object edges, reflectance edges, illumination/shadow
edges, specular edges, and occlusion edges to enhance the
performance of the segmentation solution utilized.

Shadow segmentation is of particular importance in
applications such as video object extraction and tracking.
Several research proposals have been developed in an attempt
to detect a particular class of shadows in video images,
namely, moving cast shadows, based on the shadow’s spectral
and geometric properties [102]. The problem is that cast
shadow models cannot be effectively used to detect other
classes of shadows, such as self-shadows or shadows in
diffuse penumbra [102] suggesting that existing shadow
segmentations solutions could be further improved using
invariant color features.

Presently, the main focus of the color image processing
community appears to be the fusion of several low-level
image features so that image content would be better
described and processed. Several researches provided some
solutions to combine color derivatives features and color
invariant features, color features and other low-level features
(e.g., color and texture [103], color and shape [100]),
low-level features and high-level features (e.g., from graph
representation [104]). However, none of the proposed solu-
tions appear to provide the expected performance leading
to solutions that borrow ideas and concepts from sister
signal processing communities. For example, in [105] the

authors propose the utilization of color masks and MPEG-
7 descriptors in order to segment prespecified target objects
in video sequences. According to this solution, available
priori information on specified target objects, such as skin
color features in head-and-shoulder sequence, are used to
automatically segment these objects focusing on a small
part of the image. In the opinion of the authors, the future
of color image segmentation solutions will heavily rely
on the development and use of intermediate-level features
derived using saliency descriptors and by the use of a priori
information.

Color segmentation can be used in numerous applica-
tions, such as skin detection. Skin detection plays an impor-
tant role in a wide range of image processing applications
ranging from face detection, face tracking, content-based
image retrieval systems, and to various human computer
interaction domains [106–109]. A survey of skin modeling
and classification strategies based on color information was
published by Kakumanu et al. in 2007 [108].

5.4. Color coding and compression

A number of video coding standards have been developed,
ITU-T H.261, H.263, ISO/IEC MPEG-1, MPEG-2, MPEG-
4, and H.264/AVC, and deployed in multimedia applications
such as video conferencing, storage video, video-on-demand,
digital television broadcasting, and Internet video streaming
[110]. In most of the developed solutions, color has played
only a peripheral role. However, in the opinion of the
authors, video coding solutions could be further improved
by utilizing color and its properties. Most of the traditional
video coding techniques are based on the hypothesis that
the so-called luminance component, that is the Y channel in
the YCbCr color space representation, provides meaningful
textural details which can deliver acceptable performance
without resorting to the use of chrominance planes. This
fundamental design assumption explains the use of models
with separate luminance and chrominance components in
most transform-based video coding solutions. In [110], the
authors suggested the utilization of the same distribution
function for both the luminance and chrominance com-
ponents demonstrating the effectiveness of a nonseparable
color model both in terms of compression ratio and
compressed sequence picture quality.

Unfortunately, most of codecs use different chroma
subsampling ratio as appropriate to their compression needs.
For example, video compression schemes for Web and DVD
use make use of a 4 : 2 : 0 color sampling pattern and the DV
standard uses 4 : 1 : 1 sampling ratio. A common problem
when an end user wants to watch a video stream encoded
with a specific codec is that if the exact codec is not present
and properly installed on the user’s machine, the video will
not play (or will not play optimally). Spatial and temporal
downsampling may also be used to reduce the raw data rate
before the basic encoding process. The most popular of such
transforms is the 8× 8 discrete cosine transform (DCT).

In the area of still image compression, there has been a
growing interest in wavelet-based embedded image coders
because they enable high quality at large compression ratio,
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very fast decoding/encoding, progressive transmission, low
computational complexity, low dynamic memory require-
ment, and so forth [111]. The recent survey of [112] summa-
rized color image compression techniques based on subband
transform coding principles. The discrete cosine transform
(DCT), the discrete Fourier transform (DFT), the Karhunen-
Loeve transform (KLT), and the wavelet tree decomposition
had been reviewed. The authors proposed a rate-distortion
model to determine the optimal color components and the
optimal bit allocation for the compression. It is interesting
to note that these authors had demonstrated that the YUV,
YIQ, and KLT color spaces are not optimal to reduce bit
allocation. There has been also a great interest in vector
quantization (VQ) because VQ provides a high compression
ratio and better performance may be obtained than using
any other block coding technique by increasing vector length
and codebook size. Lin and Chen extended this technique in
developing a spread neural network with penalized fuzzy c-
means (PFCM) clustering technology based on interpolative
VQ for color image compression [113].

In [114], Dhara and Chanda surveyed color image
compression techniques that are based on block truncation
coding (BTC). The authors’ recommendations to increase
the performance of BTC include a proposal to reduce the
interplane redundancy between color components prior to
applying a pattern fitting (PF) on each of the color plane sep-
arately. The work includes recommendations on determining
the size of the pattern book, the number of levels in patterns,
and the block size based on the entropy of each color plane.
The resulting solution offers competitive coding gains at a
fraction of the coding/decoding time required by existing
solution such as JPEG. In [115], the authors proposed
a color image coding strategy which combines localized
spatial correlation and intercolor correlation between color
components in order to build a progressive transmission,
cost-effective solution. Their idea is to exploit the correlation
between color components instead of decorrelating color
components before applying the compression. Inspired by
the huge success of set-partitioning sorting algorithms such
as the SPIHT or the SPECK, there has been also extensive
research on color image coding using the zerotree structure.
For example, Nagaraj et al. proposed a color set partitioned
embedded block coder (CSPECK) to handle color still images
in the YUV 4 : 2 : 0 format [111]. By treating all color planes
as one unit at the coding stage, the CSPECK generates a single
mixed bit-stream so that the decoder can reconstruct the
color image with the best quality at that bit-rate.

Although it is a known fact that interframe-based coding
schemes (such as MPEG) which exploit the redundancy
in the temporal domain outperform intrabased coding
schemes (like Motion JPEG or Motion JPEG2000) in terms
of compression ratio, intrabased coding schemes have their
own set of advantages such as embeddedness, frame-by-
frame editing, arbitrary frame extraction, and robustness
to bit errors in error-prone channel environments which
the former schemes fail to provide [111]. Nagaraj et al.
exploited this statement to extend CSPECK for coding video
frames by using an intrabased setting of the video sequences.
They called this scheme as Motion-SPECK and compared its

performance on QCIF and CIF sequences against Motion-
JPEG2000. The intended applications of such video coder
would be high-end and emerging video applications such as
high-quality digital video recording system and professional
broadcasting systems.

In a general way, to automatically measure the quality
of a compressed video sequence the PSNR is computed
on multimedia videos, consisting of CIF and QCIF video
sequences compressed at various bit rates and frame rates
[111, 116]. However, the PSNR has been found to correlate
poorly with subjective quality ratings, particularly at low
bit rates and low frame rates. To face with this problem,
Ong et al. proposed an objective video quality measurement
method better correlated to the human perception than the
PSNR and the video structural similarity method [116].
On the other hand, Süsstrunk and Winkler reviewed the
typical visual artifacts that occur due to high compression
ratios and/or transmission errors [117]. They discussed no-
reference artifact metrics for blockiness, blurriness, and
colorfulness. In our opinion, objective video quality metrics
will be useful for weighting the frame rate of coding
algorithms in regard to the content richness fidelity, to the
distortion-invisibility, and so forth. In this area, numerous
researches have been made but few of them focused on color
information (see Section 6.5).

Lastly, it is interesting to note that even if the goals
of compression and data hiding methods are by definition
contradictory, these methods can be used jointly. While
the former methods add perceptually irrelevant information
in order to embed data, the latter methods remove this
irrelevancy and redundancy to reduce storage requirements.
In the opinion of the authors, the future of color image
compression will heavily rely on the development of joint
methods combining compression and data hiding. For
example, Lin and Chen proposed a color image hiding
scheme which first compresses color data by an interpolative
VQ scheme (IVQ), then encrypts color IVQ indices, sorts the
codebooks of secret color image information, and embeds
them into the frequency domain of the cover color image
by the Hadamard transform (HT) [113]. On the other hand,
Chang et al. [118] proposed a reversible hiding scheme which
first compresses color data by a block-truncation coding
scheme (BTC), then applies a genetic algorithm to reduce the
binary bitmap from three to one, and embeds the secret bits
from the common bitmap and the three quantization levels
of each block. According to Chang et al., unlike the codebook
used in VQ, BTC never requires any auxiliary information
during the encoding and decoding procedures. In addition,
BTC-compressed images usually maintain acceptable visual
quality, and the output can be compressed further by using
other lossless compression methods.

5.5. Color imagewatermarking

For a few years, color has become a major component in
watermarking applications but also in security, steganogra-
phy, and cryptography applications of multimedia contents.
In this section, we only discuss watermarking, for other
topics refer to the survey written by Lukac and Plataniotis
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in 2007 [5]. In watermarking, we tend to watermark the per-
ceptually significant part of the image to ensure robustness
rather than providing fidelity (except for fragile watermarks
and authentication). Therefore, the whole challenge is how
to introduce more and more significant information without
perceptibility, and how to keep the distortion minimal. On
one hand, this relies upon crypting techniques, and on the
other, the integration of HSV models. Most watermarking
schemes use either one or two perceptual components,
such as color and frequency components. Obviously, the
issue is the combination of the individual components so
that a watermark with increased robustness and adequate
imperceptibility is obtained [119, 120].

Most of the recently proposed watermarking techniques
operate on the spatial color image domain. The main
advantage of spatial domain watermarking schemes is that
their computational cost is smaller compared to the cost
associated with watermarking solutions operating on the
transform image domain. One of the first spatial-domain
watermarking schemes, the so-called the least significant
bit (LSB) scheme, was on the principle of inserting the
watermark in the low order bits of the image pixel. Unfor-
tunately, LSB techniques are highly sensitive to noise with
watermarks that can be easily removed. Moreover, as LSB
solutions applied to color images use color transforms which
are not reversible when using fixed-point processor, the
watermark can be destroyed and the original image cannot
be recovered, even if only the least significant bits are altered
[121]. This problem is not specific to LSB techniques, it
concerns any color image watermarking algorithm based on
nonreversible forward and inverse color transforms using
fixed-point processor. Another problem with LSB-based
methods is that most of them are built for raw image data
rather than for compressed image formats that are usually
used across the Internet today [118]. To face this problem,
Chang et al. proposed a reversible hiding method based on
a block truncation coding of compressed color images. The
reversibility of this scheme is based on the order of the
quantization levels of each block and the property of the
natural image, that is, the adjacent pixels are usually similar.

In the authors’ opinion, watermarking quality can be
improved through the utilization of the appearance models
and color saliency maps. As a line for future research, it
will be interesting to examine how to combine the various
saliency maps that influence the visual attention, namely, the
intensity map, contrast map, edginess map, texture map, and
the location map [119, 122, 123].

Generally, when a new watermarking method is pro-
posed, some empirical results are provided so that per-
formance claims can be validated. However, at present
there is no systematic framework or body of standard
metrics and testing techniques that allow for a systematic
comparative evaluation of watermarking methods. Even
for benchmarked systems such as Stirmark or Checkmark,
comparative evaluation of performance is still an open
question [122]. From a color image processing perspective,
the main weaknesses of these benchmarking techniques is
that they are limited to gray-level images. Thus, in order to
compute the fidelity between an original and a watermarked

image, color images have to be converted to grayscale images.
Moreover, such benchmarks use a black-box approach to
compute the performance of a given scheme. Thus, they
first compute various performance metrics which they then
combine to produce an overall performance score. According
to Wilkinson [122], a number of separate performance
metrics must be computed to better fully describe the
performance of a watermarking scheme. Likewise, Xenos
et al. [119] proposed a model based on four quality factors
and approximately twenty criteria hierarchized in three levels
of analysis (i.e., high level, middle level, and low level).
According to this recommendation, four major factors are
considered as part of the evaluation procedure, namely,
high-level properties, such as the image type, color-related
information, such as the depth and basic colors, color
features, such as the brightness, saturation, and hue, and
regional information, such as the contrast, the location, the
size, the color of image patches. In the opinion of the authors,
it will be interesting to undertake new investigations towards
the development of a new generation of a comprehensive
benchmarking system capable of measuring the quality of the
watermarking process in terms of color perception.

Similar to solutions developed for still color images, the
development of quality metrics that can accurately and con-
sistently measure the perceptual differences between original
and watermarked video sequences is a key technical chal-
lenge. Winkler [124] showed that the video quality metrics
(VQM) could automatically predict the perceptual quality of
video streams for a broad variety of video applications. In
the author’s opinion, these metrics could be refined through
the utilization of high-level color descriptors. Unfortunately,
very few works had been reported in the literature on the
objective evaluation of the quality of watermarked videos.

5.6. Multispectral color image processing

A multispectral color imagingsystem is a system which
captures and describes color information by a greater
number of sensors than an RGB device resulting in a color
representation that uses more than three parameters. The
problem with conventional color imaging systems is that
they have some limitations, namely, dependence on the
illuminant and characteristics of the imaging system. On the
other hand, multispectral color imaging systems, based on
spectral reflectance, are device and illuminant independent
[7, 30, 31].

During the last few years, the importance ofmultispectral
imagery has sharply increased following the development of
new optical devices and the introduction of new applications.
The trichromatic, RGB color imaging becomes unsatisfac-
tory for many advanced applications but also for the inter-
facing of input/output device and color rendering in imaging
systems. Color imaging must become spectrophotometric,
therefore, multispectral color imaging is the technique of the
immediate future.

The advantages of multispectral systems are beginning to
be appreciated by a growing group of researchers, many of
whom have devoted considerable efforts over the past few
years to developing new techniques. The importance of this
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subject is reflected by an increasing number of publications
in journals and conference proceedings. Consequently, in
2002 the CIE established a new technical committee (TC8-
07) devoted to this field (see http://www.colour.org/tc8-07/).
For a few years, this technical committee works with a survey
of the existing data formats for multispectral images to
specify the requirements of a general data format and to
define a new such data format, based on previous knowledge.

To further understand existing solutions and to facilitate
the development of new algorithms, a unified color rep-
resentation is needed. This can be achieved only by using
spectral approach to color. The basis for the theory is the
spectral color signal reaching the detection system (human
eye, eye of a solitary bee, or an artificial detector in industry).
Some approaches towards this theory have been proposed
including Karhunen-Loeve transform-based subspaces of a
Hilbert space, time-frequency analysis by usingWigner distri-
bution, group theory with Lie algebra, or quaternion as color
representation in a complex space. Learning this unified
spectral color theory requires much effort and cooperation
between theorists and practitioners. In future, metrology
in multispectral imaging measurements will be a large and
diffuse research field and will be directly aimed at generic and
precompetitive multisector-based activities [125, 126] (see
also http://www.multispectral.org/).

There are two main differences between multispectral
remote sensing systems and multispectral color imaging
systems. Firstly, in remote sensing systems, the information
is captured from narrowband spectra filters to record the
spectrum without attempting to match a human observer.
Inversely, color imaging systems used spectra filters to
recover the visible spectrum so as to match the human
observer. Secondly, most of remote sensing systems classify
the data acquired in a number of known categories to reduce
the amount of information. Inversely, in color imaging
system the goal is to acquire data without loss of visual
information, that is without dimensionality reduction of
data acquired. An alternate solution of multispectral color
imaging systems involves sampling the spectra of images
while preserving visual information. Numerous techniques
can be used for recovering illuminant and surface reflectance
data from recorded images. All these techniques were
reviewed and compared by Bochko et al. [31]. According to
Bochko et al., there is a room for improvement in existing
reconstruction methods of reflectance spectra.

6. COLOR IMAGE ANALYSIS

According to several studies, color is perhaps the most
expressive of all visual features. Furthermore, color features
are robust to several image processing transforms such
as geometric transform (e.g., translation and rotation of
the regions of interest) and to partial occlusion and pose
variations. For several years, the main challenge for color
image analysis, and particularly for image retrieval and
object recognition, has been to develop high-level features
modeling the semantics of image content. The problem that
we have to face is that there is a gap between this objective
and the set of features which have been identified and

experimented. Meanwhile, many low-level image features
have been identified, such as color, texture, shape, and
structure [127, 128], or at an intermediate level, such as
spatial arrangement and multiscale saliency. However, few
high-level image features have been identified [11], with
regard to the variety of images which can be seen and to
the number of entity features which can be identified by an
observer.

6.1. Color features

In numerous applications, such as color image indexing
and retrieval, color features are used to compare or match
objects through similarity metrics. However, Schettini et al.
have shown that the robustness, the effectiveness, and the
efficiency of color features in image indexing are still open
issues [129].

Color features are also used to classify color regions or
to recognize color objects in images [130–132]. Classical
object matching methods are based on template matching,
color histograms matching, or hybrid models [133]. Hurtu
et al. [134] revealed that taking into account the spatial
organization of colors and the independence relationships
between pixels improves the performance of classifiers. The
spatial organization of colors is a key element of the structure
of an image and ultimately one of the first to be perceived.
It is an intermediate feature between low-level content such
as color histograms and image semantics [134]. The earth
mover’s distance (EMD) is a robust method enabling the
comparison of the spatial organization of color between
images [135]. A major interest of the EMD is that it
is unnecessary and sometimes misleading to segment the
image into regions. One of the main problems of color
object recognition methods is to be able to cope with the
object color uncertainty caused by different illumination
conditions. To face this problem, van Gemert et al. proposed
to use high-order invariant features with an entropy-based
similarity measure [136]. Other invariant features have
been considered as the correlograms or the SIFT. SIFT has
been proven to be the most robust local invariant features
descriptor [137, 138]. A colored SIFT, more robust than
the conventional SIFT descriptors with respect to color
and photometrical variations, has been proposed by Abdel-
Hakim and Farag [138]. As structural information and
color information are often complementary, Schügerl et al.
proposed a combined object redetection method using SIFT
and MPEG-7 color descriptors extracted around the same
interest points [139].

In order to unify efforts aiming to define descriptors
that effectively and efficiently capture the image content, the
International Standards Organization (ISO) developed the
MPEG-7 standard, specifically designed for the description
of multimedia content [128, 140]. The main problem
with MPEG-7 is that it focuses on the representation of
descriptions and their encoding rather than on the extraction
of some descriptors. For example, description schemes
used in MPEG-7 specify complex structures and semantics
groupings descriptors and other descriptions schemes such
as segments and regions which require a segmentation
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of multimedia data (still images and videos). However,
MPEG-7 does not specify how to automatically segment
still images and videos in regions and segments. Likewise,
how to segment objects at semantic level. The creation and
application of MPEG-7 descriptions are outside the scope
of the MPEG-7 standard. Another problem with MPEG-
7 is its complexity, for example, 13 low-level descriptors
have been defined to represent color, texture, and shape
[11]. For some image analysis tasks, such as content-based
image retrieval, it may be more efficient to combine selected
MPEG-7 descriptors in a compact way rather than using
several of them independently [141].

MPEG-7 provides seven color descriptors, namely, color
space, color quantization, dominant colors, scalable color,
color layout, color-structure, and group of frames/group of
pictures color. Among them, some are histogram-derived
descriptors such as the scalable color descriptor (SCD)
constructed from a fixed HSV color space quantization
and a Haar transform encoding. Others provided spatial
information on the image color distribution, such as

(i) the color layout descriptor (CLD) constructed in
the YCbCr color space from a DCT transform with
quantization,

(ii) the color structure descriptor (CSD) constructed
from the hue-min-max-difference (HMMD) using
an 8 × 8 structuring element and a nonuniform
quantization,

(iii) the region locator descriptor (RLD) when regions are
concerned.

The main advantage of these kinds of descriptors is that
they can be used to embed into a color histogram some
information on the spatial localization of color content. Sev-
eral studies have shown the effectiveness of these descriptors
in the context of image retrieval. Berreti et al. [128] noted
that these descriptors may not be appropriate for capturing
binary spatial relationships between complex spatial entities.
Other studies have also shown the effectiveness of combining
spatial and color information in the context of content-based
image retrieval. For example, Heidemann [142] proposed to
compute color features from a local principal component
analysis in order to represent spatial color distribution. The
representation used is based on image local windows which
are selected by two complementary data driven attentive
mechanisms: a symmetry-based saliency map and an edge
and corner detector. According to Dasiapoulou et al. [11],
since the performance of the analysis depends on the avail-
ability of sufficiently descriptive and representative concepts
definitions, among the future priorities is the investigation of
additional descriptors and methodologies for their effective
fusion. We particularly think of inherent objects colors
descriptors which could only be computed for certain types
of objects such as the sky, the sand, the vegetation, and
a face. For example, to face the problem of skin region
segmentation, several papers have tried to define the inherent
colors of skin. Li et al. [99] conducted a survey on this
problem. We also think about fuzzy spatial connectivity
descriptors which could be used to measure the homogeneity

of a region. Prados-Suárez et al. [143] proposed a fuzzy
image segmentation algorithm based on Weber’s parametric
t-norm. According to the authors, Weber’s t-norm provides
suitable homogeneity measures to segment imprecise regions
due to shadows, highlights, and color gradients. One advan-
tage of this technique is to provide a way to define the
“semantics” of homogeneity.

Beyond the problem of color image analysis, there
is also a need to define which metadata (e.g., MPEG7
metadata) could be useful to increase the performance of
analysis methods. For example, viewing conditions and
display parameters are metadata which could be useful for
accurate coding, representation, and analysis of color images.
According to Ramanath et al. [144], all data which affect
the image data need to be included with the image data.
Thus, to characterize a digital camera we need to know (or
to determine) the illumination under which the image was
recorded.

6.2. Color saliency

The aim of color saliency models is to model how the human
visual system perceives the colors in the image in function of
its local spatial organization [145, 146].

The selection of regions of interest is directed both by
neurological and cognitive resources. Neurological resources
refer to bottom-up (stimuli-based) information where cog-
nitive resources refer to top-down (task-dependent) cues.
Bottom-up information is controlled by low-level image
features that stimulate achromatic and chromatic parallel
pathways of the human visual system. Top-down cues are
controlled by high-level cognitive strategies largely influ-
enced by memory and task-oriented constraints.

One drawback of most of existing models is that color
information is not integrated in the computation of the
saliency map [100] or it is taken into account only through
the raw RGB components of color images. For example,
van de Weijer et al. proposed a salient point detector
based upon the analysis of the statistics of color derivatives
[147]. Another drawback is that local spatial organization
of the visual scene generally does not play a part in the
construction of saliency maps. However, it is well known
that a large uniform patch does not attract visual attention
as a fine textured structure. Moreover, color appearance
is widely dependent on the local spatial arrangements.
Surroundings largely influence the color appearance of a
surface.

According to numerous studies, the future of visual
attention models will follow the development of perceptual
multiscale saliency map based on a competitive process
between all bottom-up cues (color, intensity, orientation,
location, motion) [68, 148–150]. In order to be consistent
with human visual perception, color information must be
exploited on the basis of chromatic channel opponencies.
Likewise, in order to be consistent with neural mechanisms,
all features must be quantified in the LMS color space.
During the competitive process color information must
be modulated by local spatial arrangements of the visual
scene.
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In our opinion, new saliency models will be developed
in the next decade which better take into account color per-
ception through neural mechanisms. The regions of interest
(ROI) detection based on visual attention mechanisms is
currently an active research area in the image processing
community [151–154]. For example, Hu et al. propose a
visual attention region (VAR) process which involves the
selection of a part of the sensory information by the primary
visual cortex in the brain features such as intensity, color,
orientation and size. The uniqueness of a combination of
these features at a location compared to its neighbourhood
indicates a high saliency for that region.

6.3. Color-based object tracking

Color-based object tracking has long been an active research
topic in the image processing and computer vision commu-
nity, and has widespread applications in many application
areas ranging from visual surveillance to image coding,
robotics, and human-computer interaction [155, 156]. One
of the most commonly used techniques, the so-called mean-
shift (MS) solution, was developed to use color, amongst
other features, in order to segment and track objects of inter-
est [157]. Dynamic MS models using stochastic estimators,
such as the celebrated Kalman filter or the so-called particle
filter, have been used to cope with large displacements,
occlusions and, to some extent, with scale changes of the
tracked objects in color video sequences. Other innovative
methods such as stream tensors, block-matching, and relax-
ation with local descriptors could be optimized with color
information. It was suggested that the performance of these
trackers is greatly improved through the use of local object
color models instead of the global ones [157]. The utility
of the color model is particularly useful when the object
under consideration undergoes partial occlusion [158]. Two
categories of color models are traditionally used in tracking
applications, namely semiparametric and nonparametric
models. In general terms, semiparametric models use a mix-
ture of Gaussians (MoG) to estimate color distributions. The
EM algorithm is one of the algorithms which better adjusts
color histograms by MoGs [54]. Nonparametric models use
similarity measures such as the Bhattacharrya distance to
match color histograms. The mean-shift algorithm is one
of the most popular techniques used for color histogram
matching. According to Peihua [156], determination of the
number of histogram bins is an important yet unresolved
problem in color-based object tracking. The main difficulty
to face is to account for illumination changes or noise while
retaining a good discriminative power [56].

In 2007, Muñoz-Salinas et al. [159] proposed a people
detection and tracking method based on stereo vision and
color. Although that is a useful tool in dealing with partial
occlusion, the use of color models is yet to be effectively
utilized in the problem of tracking multiple targets that
share the same color information (i.e., football game telecast)
[160]. The fundamental assumption of these solutions,
namely the assumption that the image background is of
a sufficiently different color structure compared to the
objects to be tracked, is rather restrictive. In order to

alleviate this problem, Czyz et al. recommend the use of
observation features such as appearance models or contours
in addition to color [160]. On the other hand, Holcombe
and Gavanagh demonstrated that the perception of object
motion depends upon its color [149]. Such features, coupled
with the use of stereo camera configurations, will allow
for the development of solutions that can effectively deal
with occlusions, illumination variations, camera motion,
and fade in/out motion. Appearance models could really
be helpful in color-based tracking applications in partic-
ular for face tracking. Numerous studies have integrated
visual appearance attributes based on color information
[161].

6.4. Scene illuminant estimation and color constancy

Scene illuminant estimation is related to an ability of the
human visual system that the color appearance of an object
is invariant under light with varying intensity levels and
illuminant spectral distribution. This ability, called color
constancy, demonstrates at least a subconscious ability to
separate the illuminant spectral distribution from the surface
spectral reflectance function.

Most previous studies supposed that the scene illumi-
nant had a continuous spectral-power distribution such
as incandescent lamp light and daylight. Illuminants with
spikes, such as fluorescent illuminant, were neglected as a
target scene illuminant. Spectral distribution of a fluorescent
lamp or a mercury arc lamp includes intense spectral lines
and a weaker continuous spectrum. Currently, fluorescent
sources are often being used as indoor lighting; therefore we
have to discuss illuminant estimation while inferring scene
illumination with a spiky spectrum. Note that wavelengths
of the line spectra are inherent to fluorescent material.
Therefore, an illuminant classification approach is proposed
for inferring the fluorescent type by knowing the wavelength
positions of spikes [162]. This approach requires a spectral
camera system with narrow band filtration.

So far, most of the illuminant estimation methods made
the hypothesis that only one source illuminates the scene. It is
obvious that this hypothesis is not realistic and severely limits
the applicability of the algorithms to real scenes. Attempts
have started to overcome the limitations in several ways. One
approach is the use of an active illumination. For instance,
a camera flush can be used as an active light source with
the known illuminant properties. In this case, illuminant
is estimated using two images of the same scene, which
are captured under the unknown ambient scene illuminant
and under a combination of the scene illumination and the
camera flash. This approach is limited in scenes to which it
can be applied because it is based on light reflection of the
camera flash from scene objects to the camera.

The second approach may be directed at solving the
illuminant estimation problem for composite illuminants
involving both spiky and continuous spectra. Note that the
ambient illumination in indoors and outdoors often is a
compound of fluorescence and daylight (or incandescent
lamp). Therefore, we pose a new illuminant estimation
problem: estimation of light source components from a
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single image of natural scene [163]. Obviously the usual RGB
camera systems are inappropriate for solving this problem.

The third approach may be directed at omnidirectional
scene illuminant estimation [164]. Again we should note
that many illumination sources are present in natural scenes,
and the case of just one source is an exception. Therefore,
illuminant estimation includes definitely the problem of
estimating spatial distribution of light sources by omni-
directional observations. The omnidirectional measuring
systems use a special tool for observing the surrounding
scene, such as a mirrored ball and a fisheye lens. A method
for estimating an omnidirectional distribution of the scene
illuminant spectral power distribution was proposed based
on a calibrated measuring system using a mirrored ball
and an RGB digital camera [165]. Thus, the illuminant
estimation problems for various scenes with more than one
illumination source must be a promising area of future
research.

As the problem of illuminant estimation is in general ill-
posed, there is a room for improvement in existing scene
illuminant estimation and correction methods [166–170].
Another problem we are faced with is how to evaluate the
performance of a given algorithm. The problem is that the
performance of an algorithm is image-dependent. According
to Hordley [167], three requirements have to be addressed
to solve this problem. First, we must choose an appropriate
set of test images. Second, we must define suitable error
measures. Third, we must consider how best to summarize
these errors over the set of test images. Note that these
three requirements can be extended to any image processing
task, such as edge detection, segmentation, and compression.
In our opinion, the evaluation of the performance of an
algorithm is one of the main problems to face in many fields
due to the fact that most of image processing algorithms are
image-dependent.

Unfortunately, in image processing, most algorithms
such as scene segmentation, object recognition, and tracking
do not take into account scene illumination changes. The
illumination dependence is one of the main problems
to face in computer vision. Several illuminant estimation
algorithms have been developed for trichromatic devices,
such as the max-RGB and the gray-world methods, and
the three statistical methods of gamut mapping, Bayesian,
and neural network. These methods have been reviewed
and compared in [167]. Moreover, a combined method
was proposed to combine a physics-based method with the
statistical methods. Most of these algorithms are described as
color constancy algorithms since the goal is to have the colors
of the image remain constant regardless of the illumination
spectrum. Color constancy is the ability to measure colors of
objects independently of the color of the light source [171].
Since 2005, numerous studies have been based on region
attributes [172, 173]. For example, van de Weijer et al. [173]
proposed a bottom-up method based on high-level visual
information to improve illuminant estimation. The authors
modeled the image by a mixture of semantic classes (e.g.,
the grass green, the sky blue, the road gray) and used class
features (e.g., texture, position, and color information) to
evaluate the likelihood of the semantic content.

6.5. Quality assessment and fidelity assessment

In a general way, the fidelity of a color image to a reference is
evaluated by some algorithmic perceptual distance measure.
On the other hand, the quality of a color image can be
assessed by some perceptual features without reference. The
problem of objective quality assessment linked to perception
is open because it depends on several parameters, such
as the kind of image viewed, the expertise of the viewer,
the field of study, and the perceived quality of services
(PqoS) [117, 174–177]. Furthermore, in general there is a
difference between subjective evaluations with and without
experts in the area. Numerous studies integrate appearance
attributes, such as spatial/spatial-frequency distribution, to
assess local perceptual distortions due to quantization noise
in block-based DCT domain, as those resulting from JPEG or
MPEG encoding [178–180]. Other researches integrate in a
feature vector several appearance attributes, such as contrast
masking effect and color correlation, to obtain more reliable
quality scores [181].

It is generally believed that measuring the fidelity
between two color images is a difficult problem due to
the subjective nature of the human visual system (HVS).
Many reported works utilize the mean-squared error (MSE)
distance between two images. MSE is often evaluated in
the L∗a∗b∗ color space, although there have been reported
works where MSE measures are firstly computed compo-
nentwise and then are added together to produce an overall
error value. The peak signal-to-noise ratio (PSNR) is often
used to compute the fidelity between two images. It should
be noted at this point that although these two methods
are simpler to use and evaluate they do not correlate well
with human perception [182]. By construction, MSE treats
all errors equally regardless of image content and error
type. However, it is well known that the human visual
system’s response is highly nonuniform with regard to spatial
frequencies or colors. Thus, the development of new fidelity
metrics, albeit more complicated, that correlates well the
human visual system’s response is still an open research
problem. A promising idea appears to be the development
of fidelity metrics which combine human sensitivity to color
differences with human sensitivity to spatial frequencies, as
it is done with the S-CIELAB space or the iCAM color space
[64].

The problem of fidelity assessment is more difficult for
video images than for still images as in this case spatiotem-
poral effects and memory effect occur. Numerous researches
have shown that these two effects are linked to color informa-
tion. Furthermore, subjective quality assessment is absolutely
necessary in critical situations such as postproduction task
in cinematographic applications and standardization pro-
cesses. Over the last several years, a number of subjective
assessment methods have been introduced for the evaluation
of video image quality [174, 183]. Most of them follow
recommendations published by The Video Quality Expert
Group [VQEG] or by The Society of Motion Picture and Tele-
vision Engineers and the International Telecommunication
Union [SMPTE 196M-2003, ITU-R BT.500-10], such as the
double-stimulus continuous quality scale method (DSCQS),
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the simultaneous double stimulus for continuous evaluation
method (SDSCE), or the double-stimulus impairment scale
method (DSIS) [ITU-R BT.500-10]. Inversely, few subjective
assessment methods have been proposed to evaluate film
image quality [27, 28]. In cinematographic postproduction
or color management, subjective assessments are more
critical because they involve highly skilled and experienced
specialists in color correction and creative production, so
called “golden eyes.” The problem with film assessment
consists of the following: (1) the number of “golden eyes”
is limited in number and time; (2) a film projector cannot be
stopped in repetition during projection (e.g., for the voting
of observers or for the projection of other media); (3) the
quality estimation is different between the preattentive phase
and the attentive phase; (4) amemory effect may significantly
impact the quality estimation when the quality of a video
does not vary in the time; (5) to enable final assessment
comparable to real application case, short segments of real
film content with high importance to color quality are used
for the tests.

In the opinion of the authors, when evaluating the
quality of a processing video with regard to fidelity, it is
necessary to consider not only the overall video but also
individual sequences in the video and individual regions
within sequences. This requires choosing a representative set
of test sequences that satisfy a wide range of constraints,
such as large gamut, presence of natural colors, high contrast,
high sharpness, and presence of quite uniform areas. For
example, the content of these test sequencesmust correspond
to specific use cases such as “hue of skin color,” “saturation
of blue sky,” and “tone of night scene.”

6.6. Color characterization and calibration of
a display device

Several standard data sets can be used to characterize or
to calibrate a device, such as the Macbeth Color Checker
(24 patches), the Macbeth DC Color Checker (237 patches),
the Munsell data set (426 patches), or the IT8.7/2 chart
(288 patches). The problem with these data sets is that the
number of color patches is limited, the color patches do
not cover regularly and entirely the gamut of the device
to calibrate or are too distant. In other words, these data
sets are defined according to some constraints which are
not optimal when using color processing algorithms based
on LUTs, such as calibration or compression, due to the
fact that interpolation function needs to be used to ensure
a continuum of values between points in the LUT. Color
interpolation consists of constructing a continuous function
of 3 independent variables that interpolates color data values
which are only known (measured) at some points in the
three-dimensional space. Different interpolation methods
can be used depending on the nature of the input data values
[184]. Another problem of using such data sets is that it is dif-
ficult to know how to update algorithms if the data set used
for a characterization process cannot be used any longer. For
example, as it is now impossible to buy the Macbeth DC
Color Checker due to the fact that it is no longer produced,
how could one update algorithms based on this data set?

Another problem with color reproduction devices is that
the number of colors that they can reproduce is limited.
Numerous gamut mapping strategies have been developed
to ensure that all the colors can be reproduced on output
devices (e.g., displays or printers) without visual artefacts. By
definition a gamut mapping operation converts input values
from a source image to output values of a reproduction in a
way that compensates for differences in the input and output
gamut volume shapes [185]. The problem with conventional
gamut mapping techniques is that they do not include
adjusting for preferred colors or adapting colors for different
lighting/viewing conditions. On the other hand, a color
rendering operation converts an encoded representation of
a scene (e.g., a raw capture) to a reproduction in a way that
includes gamut mapping and image preference adjustments,
and also compensates for differences in viewing conditions,
tonal range, and so forth. Color rerendering is similar to
color rendering, except that it starts with a source image
that is already a reproduction, and produces a new different
reproduction, typically for a different kind of display [186].

The problem of gamut mapping (and of color rendering)
is far from being optimally solved [187]. The development
of universal gamut mappings algorithms is still under
discussion in the Technical Committee CIE TC 8-03 “Gamut
Mapping.” With the development of multispectral devices
new problems appear. For example, with the advent of high-
fidelity six color display devices, the higher dimensionality
of the mapping becomes a problem [188]. Likewise, how
could one display on a six primaries system a color image
coded on triprimaries? Inversely, how could one display on
a triprimaries system a color image coded on six primaries?
Some solutions have been proposed but new research is
needed [189].

With the development of new display technologies, such
as flat-panels or large-area color displays for TV or small
color displays (e.g., cell phones, PDAs), a multitude of new
problems appear. The advantage of multiprimaries displays
in comparison with conventional displays is that the gamut
is expanded, the metamerism is minimized, the brightness is
higher, and the color break-up effect is reduced [190–192].
Other technologies, such as hybrid spatial-temporal displays
[193], provide evolutionary advances. In particular, they
have been used for large displays to further enhance spatial
and temporal image qualities [194]. Inversely, substantial
improvements of image quality and full-color reproduction
are required for mobile displays. Even if color management
and image processing enhancement for mobile displays
are currently active areas of investigation and engineering
development [195], there is a need for efficient image pro-
cessing techniques compatible with the processing resources
of mobile devices [166, 194]. Most of the new displays
technologies use new image processing functionalities, such
as contrasts stretching, saturation enhancement, and sharp-
ening. to increase the image quality and the color rendering
of displays. Among these advancements, let us point out
the video attention model based on content recomposition
proposed by Cheng et al. [120]. The idea of this modelis
to provide effective small size videos which emphasize the
important aspects of a scene while faithfully retaining the
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background context (e.g., for a football match retransmis-
sion) [196]. That is achieved by explicitly separating the
manipulation of different video objects. The model is devel-
oped to extract user-interest objects, next visual attention
features (intensity, color, and motion) are computed and
fused according to a high-level combination strategy, and
lastly these objects are well reintegrated with the direct-
resized background to optimally match the specific screen
sizes. The problem with mobile displays is their power
consumption. In order to reduce power consumption while
preserving perceived brightness, several issues have been
considered such as the use of backlights for LCD mobile
displays. However, some problems have been partly solved
such as the visibility loss under strong ambient light (e.g.,
daylight) or the changes of color contrast due to the screen
size of mobile displays.

Generally, the contrast of a display device is defined as
a ratio depending on the black level and the white level.
It is well known that gamma correction influences both
the image brightness and image contrast, since it modifies
the black level, the white point, and the brightness ratio.
Furthermore, it is well known that the ambient light, the
viewing angle, the screen depth (sharpness), and the screen
size have an influence on the display image quality [197–
199]. Lastly, it is well known that the chromacity coordinates
of primaries, the size of the gamut, and the lightness of
the white point have an influence on the rendering of color
which depends on the saturation of colors [200]. Most
of these parameters and their relationships are taken into
account in color appearance models. Incremental advances
in displaying image quality could be obtained thanks to the
development of sophisticated modeling and analysis tools
based on color appearance models.

Over the last several years, new technologies have
appeared on the market and significant progress has been
achieved in display screens. These new technologies are
due to the development of small, large, or 3D displays
and the new uses associated with these displays. These new
technologies have introduced new problems in terms of
image quality evaluation on such screens (e.g., the “presence”
on a 3D screen [198]). The problem is that several descriptors
contribute to characterize a screen in terms of image
quality and that these descriptors are device-dependent.
Furthermore, themajority of these descriptors are correlated.
Perhaps it could be possible to reduce the concept of “image
quality” to a limited number of descriptors, but this seems
very complicated. Especially, as this concept varies according
to the contents of the image. However, we can consider that
the brightness, the contrast, the color rendering, and the
sharpness are themain quality descriptors required to qualify
an image without specific artefact [201].

To improve image quality, three strategies can be used.
The first one relies on using ad hoc tools based on color
management such as gamut mapping, contrast enhancement
(from contrast ratio, black level, and high peak luminance),
contrast stretching, sharpening, saturation enhancement to
improve color rendering and to expand the color gamut (e.g.,
see [195]). The second utilizes conventional image process-
ing tools to enhance color image contrast. The last strategy

uses high-level concepts based on color appearance models
(in function of viewing distance, screen type, background,
surround, ambient light, etc.) or content-image dependency
models (e.g., see [202]).

Until now, only ad hoc tools have given efficient results
due to the fact that they take into account the limits of the
technologies used. The problem with conventional image
processing tools is that in the best case their parameters have
to be adapted to the application, and in the worst case their
fundamental concepts have to be extended to the application
or have to be completely modified [195]. In our opinion,
the tools based on high-level concepts constitute without any
doubt the most promising way to improve image quality. The
first solutions which have been developed in this direction,
such as those developed by Liu et al. [203], have consolidated
us in this opinion.

7. DISCUSSION AND CONCLUSIONS

Knowledge of recent trends in color science, color systems,
appropriate processing algorithms, and device characteristics
is necessary to fully harness the functionalities and speci-
ficities of the capture, representation, description, analysis,
interpretation, processing, exchange, and output of color
images. The field of digital color imaging is a highly
interdisciplinary area involving elements of physics, psy-
chophysics, visual science, physiology, psychology, compu-
tational algorithms, systems engineering, and mathematical
optimization. While excellent surveys and reference material
exist in each of these areas, the goal of this survey was to
present the most recent trends of these diverse elements as
they relate to digital color imaging in a single and concise
compilation and to put forward relevant information. The
aim of this survey was to aid researchers with expertise in
a specific domain who seek a better understanding of other
domains in the field. Researchers can also use it as an up-to-
date reference because it offers a broad survey of the relevant
literature.

In this survey, we presented an extensive overview of the
up-to-date techniques for color image analysis and process-
ing. We reviewed the following critical issues regarding still
images and videos.

(i) Choice of appropriate color space. Most of image
analysis and processing methods are affected by the
choice of color space and by the color metric used.
The improvement of the accuracy of color metrics is
really a hot topic in color imaging.

(ii) Dropping the intensity component so as to obtain
robust parameters against illumination conditions.
Many processes are affected by illumination condi-
tions. However, the application of color constancy
techniques as a preprocessing step proved to improve
the performance of numerous processes. All tech-
niques which do not make any explicit assumptions
about the scene content are very promising. Dynamic
adaptation techniques which transform the existing
color models so as to adapt to the changing viewing
conditions are also promising.
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(iii) Reducing the gap between low-level features and
high-level interpretation. To improve the accuracy of
the analysis, various low-level features such as shape,
spatial and motion information can be used along
with color information. Likewise, various perceptual
features such as saliency and appearance models can
be used to improve the accuracy of the analysis.

(iv) Incorporating color perception models (though,
not necessarily physiological) into color processing
algorithms. The improvement of the performance
of algorithms by simpler and readily applicable
models is really a hot topic in digital imaging.
This is particularly relevant for problems of coding,
description, object recognition, compression, quality
assessment, and so forth. Many processes are affected
by perceptual quality criteria. All techniques includ-
ing perceptual quality criteria are very promising.

The objective of this survey was not to cover all types of
applications under color imagery, but to identify all topics
that have given rise to new advances in the last two years
and for which there have been more theoretical research as
in other topics. We have clearly shown that the future of
color image processing will be guided by the use of human
vision models that compute the color appearance of spatial
information rather than low-level signal processing models
based on pixels, but also frequential, temporal information,
and the use of semantic models. In particular, we focused
on color constancy, illuminant estimation, mesopic vision,
appearance models, saliency, and so forth. Human color
vision is an essential tool for those who wish to contribute
to the development of color image processing solutions
and also for those who wish to develop a new generation
of color image processing algorithms based on high-level
concepts. We have also showed that color characterization
and calibration of digital systems is a key element for several
applications such as medical imaging and consumer imaging
applications. The quality of images and displays is really
a hot topic for particular fields of expertise. This paper
focused also on hot topics such as object tracking or skin-
detection, and advanced topics such as image/video coding,
compression, and watermarking for which several open
problems have been identified.
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[117] S. Süsstrunk and S. Winkler, “Color image quality on the
internet,” in Internet Imaging V, vol. 5304 of Proceedings of
SPIE, pp. 118–131, San Jose, Calif, USA, January 2004.

[118] C.-C. Chang, C.-Y. Lin, and Y.-H. Fan, “Lossless data hiding
for color images based on block truncation coding,” Pattern
Recognition, vol. 41, no. 7, pp. 2347–2357, 2008.

[119] M. Xenos, K. Hantzara, E. Mitsou, and I. Kostopoulos, “A
model for the assessment of watermark quality with regard
to fidelity,” Journal of Visual Communication and Image
Representation, vol. 16, no. 6, pp. 621–642, 2005.

[120] W.-H. Cheng, C.-W. Wang, and J.-L. Wu, “Video adaptation
for small display based on content recomposition,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
17, no. 1, pp. 43–58, 2007.

[121] S.-C. Pei and J.-J. Ding, “Reversible integer color transform,”
IEEE Transactions on Image Processing, vol. 16, no. 6, pp.
1686–1691, 2007.

[122] S. Wilkinson, “Hide and seek: robust digital watermarking,”
Tech. Rep., School of Computing, University of Leeds, Leeds,
UK, 2005.



24 EURASIP Journal on Image and Video Processing

[123] S. P. Mohanty, P. Guturu, E. Kougianos, and N. Pati, “A
novel invisible color image watermarking scheme using
image adaptive watermark creation and robust insertion-
extraction,” in Proceedings of the 8th IEEE International
Symposium on Multimedia (ISM ’06), pp. 153–160, San
Diego, Calif, USA, December 2006.

[124] S. Winkler, “Perceptual video quality metrics—a review,” in
Digital Video Image Quality and Perceptual Coding, H. R. Wu
and K. R. Rao, Eds., CRC Press, Boca Raton, Fla, USA, 2005.

[125] C. Bonifazzi, P. Carcagnı̀, A. Della Patria, et al., “A scanning
device for multispectral imaging of paintings,” in Spectral
Imaging: Eighth International Symposium on Multispectral
Color Science, vol. 6062 of Proceedings of SPIE, pp. 1–10, San
Jose, Calif, USA, January 2006.

[126] M. de Lasarte, M. Vilaseca, J. Pujol, and M. Arjona, “Color
measurements with colorimetric and multispectral imaging
systems,” in Spectral Imaging: Eighth International Sympo-
sium on Multispectral Color Science, vol. 6062 of Proceedings
of SPIE, San Jose, Calif, USA, January 2006.

[127] J.-F. Aujol and S. H. Kang, “Color image decomposition
and restoration,” Journal of Visual Communication and Image
Representation, vol. 17, no. 4, pp. 916–928, 2006.

[128] S. Berretti and A. Del Bimbo, “Color spatial arrangement
for image retrieval by visual similarity,” in Color Image
Processing: Methods and Applications, chapter 10, pp. 227–
258, CRC Press, Boca Raton, Fla, USA, 2007.

[129] R. Schettini, G. Ciocca, and S. Zuffi, “A survey of methods
for colour image indexing and retrieval in image databases,”
in Color Image Science: Exploiting Digital Media, John Wiley
& Sons, New York, NY, USA, 2001.

[130] A. Gepperth, B. Mersch, J. Fritsch, and C. Goerick, “Color
object recognition in real word scenes,” in Proceedings of the
17th International Conference on Artificial Neural Networks
(ICANN ’07), vol. 4669 of Lectures Notes in Computer Science,
pp. 583–592, Porto, Portugal, September 2007.

[131] S. K. Vuppala, S. M. Grigorescu, D. Ristic, and A. Graser,
“Robust color object recognition for a service robotic task in
the system FRIEND II,” in Proceedings of the 10th IEEE Inter-
national Conference on Rehabilitation Robotics (ICORR ’07),
pp. 704–713, Noordwijk, The Netherlands, June 2007.

[132] K. Boehnke, M. Otesteanu, P. Roebrock, W. Winkler, and
W. Neddermeyer, “Neural network based object recogni-
tion using color block matching,” in Proceedings of the
4th International Conference on Signal Processing, Pattern
Recognition and Applications (SPPRA ’07), vol. 554, pp. 122–
125, Innsbruck, Austria, February 2007.

[133] C. Stauffer and M. Antone, “Translation templates for object
matching across predictable pose variation,” in Proceedings of
the 17th British Machine Vision Conference (BMVC ’06), vol.
3, pp. 219–228, Edinburgh, UK, September 2006.

[134] T. Hurtut, Y. Gousseau, and F. Schmitt, “Adaptive image
retrieval based on the spatial organization of colors,” Com-
puter Vision and Image Understanding. In press.

[135] H. Ling and K. Okada, “An efficient earth mover’s distance
algorithm for robust histogram comparison,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 29, no.
5, pp. 840–853, 2007.

[136] J. C. van Gemert, G. J. Burghouts, F. J. Seinstra, and J.-
M. Geusebroek, “Color invariant object recognition using
entropic graphs,” International Journal of Imaging Systems
and Technology, vol. 16, no. 5, pp. 146–153, 2006.

[137] J. M. Geusebroek, “Compact object descriptors from local
colour invariant histograms,” in Proceedings of the British

Machine Vision Conference (BMVC ’06), pp. 1029–1038,
Edinburgh, UK, September 2006.

[138] A. E. Abdel-Hakim and A. A. Farag, “CSIFT: a SIFT descrip-
tor with color invariant characteristics,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’06), vol. 2, pp. 1978–1983, New
York, NY, USA, June 2006.
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