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coding and bit rates in order to offer the best perceived quality to the end users. The designed model has been validated through
many different measurements in realistic wireless environments using an ad hoc WiFi test bed.
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1. INTRODUCTION

It is well known that the goal of any QoS mechanism is to
maintain a good level of user-perceived QoS even when the
network conditions are changing unpredictably.

Typical QoS provisioning solutions for multimedia video
applications have been always based on the idea of trying
to reserve or assure certain network guarantees, so that
packets coming from delay or bandwidth sensitive appli-
cations receive a better treatment in the network. This
approach has been demonstrated to work very well in fixed
networks. However, in wireless networks it is not always
possible to offer any guarantee, due to continuously changing
conditions and unpredictable radio link quality.

Increasing bandwidth is a necessary first step for accom-
modating real-time streaming applications, however it is not
sufficient, due to large bandwidth fluctuations experienced
in wireless networks. Fluctuations in network resource avail-
ability, due to channel fading, variable error rate, mobility,
and handoff, make QoS provisioning more complex in
wireless networks. Moreover, determining how network con-
gestion manifests itself in degraded stream quality is still an
open issue and only some very recent studies are available [1,
2]. Understanding the relationship between stream quality

and network congestion is an important step to solving
this problem, and can lead to better design of stream-
ing protocols, computer networks, and content delivery
systems.

One of the critical issues to keep in mind when dealing
with provision of multimedia services is the quality of
sound or picture presented to the end user, assuming a
high-quality source and an error-free environment. This
quality is directly proportional to the bit-rate used in
the encoding process, thus more recently, diverse solutions
were proposed for scalable multimedia transmissions over
wireless networks [3, 4]. Many of these adaptive solutions
gradually vary the video streams’ characteristics in response
to fluctuating network conditions thereby allowing for the
perceived quality to be gracefully adapted. Nevertheless, the
quality experienced by a user of multimedia service not
only depends on network parameters but also on higher
layers’ characteristics. An alternative way for providing
the agreed quality of service is to estimate the perceived
quality of service (PQoS) index, with the aim of select-
ing the best scaling for the video content in order to
achieve the “golden selection” between quality of service,
bandwidth availability, bit rate, and frame transmission
rate.
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The objective quality perceived by the nonexpert user
can be measured with purely subjective criteria, as opposed
to the Network QoS, which relies on objective measurable
parameters (throughput, BER, etc.). A complicating factor
is the individual nature of how users evaluate the quality
that they receive. Any two users who may be sharing a
common experience (i.e., identical applications) are likely
to have significantly different views of the QoS; thus, the
important thing is to understand how such individual views
are used for estimating the connection between wireless
network parameters and user perception of QoS provided
over that network.

This linkage will typically take the form of a numerical
mapping (mathematical relation) between some measure
of the user-perceived quality (e.g., the mean opinion score
(MOS) [5]) and a particular set of network parameters (e.g.,
available bandwidth).

Typically, the five-point scale MOS is used to collect feed-
back from end users on the subjective quality of a media
stream. However, assessments of subjective quality are time
consuming and expensive; furthermore, they cannot be easily
and routinely performed for real time systems. On the other
hand, objective metrics would be of great benefit to applica-
tions involving scalable video coding and multidimensional
bit rate control used in mobile video broadcasting systems.
According to these consideration, there is a need for a quality
metric estimator, based on the VQM objective metric [6, 7]
that accurately matches the subjective quality and can be
easily implemented in real-time video systems.

1.1. Paper contributions

This work presents the following key contributions.

(i) We setup an ad hoc test bed for evaluating the per-
ceived video quality of multimedia contents trans-
mitted over a wireless network using the VQM
objective metric.

(ii) We examine how network parameters such as con-
gestion, signal power level, and transmission bit rate
affect streaming media and video data that are sent
on demand over the wireless network from a single
server center to one or more users equipped with a
handled device.

(iii) We design an accurate analytical model for real-time
estimation of the perceived quality according to the
network and video parameters. Finally, we verify the
quality of the proposed model in several network
conditions.

Thanks to this model we can estimate the PQoS of each
video and we can rapidly adapt the transmission of the
content through scalable video coding and multidimensional
bit rate techniques in order to offer the best quality to
the end users. Thus, it could be possible to implement
and use “adaptive applications” as a complement to the
traditional network-layer reservations. So, whenever the
network resources become scarce and the QoS guarantees are
violated, the applications can self-adapt the internal settings
(e.g., frame rates, video sizes, etc.) reducing the data rates to

those that the network can support in that precise moment
and always guaranteeing a good PQoS value.

2. RELATED WORK AND LITERATURE

Most of the proposed solutions [8—10] for QoS guarantee in
wireless networks follow a proxy-based approach, and rely on
the underlying network to provide services like bandwidth
reservation and priority routing and scheduling. Even if the
approach is transparent to the applications, lack of support
from any intermediate network or node can render the
architecture useless. For example, in case priority routing
is not supported by a router on the transmission path, the
whole scheme will fail. Moreover, proxy-based solutions have
scalability problems [11], especially in case of computation
intensive proxy functionality like transcoding. With the aim
of overcoming the drawbacks of computing the true quality
of service perceived by the end users, some quality metric
evaluation have been conducted in the last years. Although
Feghali et al. [12] proposed a new quality metric for filling
the gap between the classical PSNR and the subjective
quality metrics, they do not consider other network-level
parameters, such as the wireless link power and the effect
produced by other data traffic on the same link. In [13]
the authors study the user perception of multimedia quality,
when impacted by varying network-level parameters such as
delay and jitter, however they use subjective quality metrics
that are very expensive and time consuming. Paper [14]
presents a method for objective evaluation of the perceived
quality of MPEG-4 video content, based on a quantification
of subjective assessments. Showing that subjectively derived
perceived quality of service (PQoS) versus bit rate curves
can be successfully approximated by a group of exponential
functions, the authors propose a method for exploiting
a simple objective metric, which is obtained from the
mean frame rate versus bit rate curves of an encoded clip;
even in this work no network-level parameters have been
considered. Koumaras et al. [1] presented a generic model
for mapping QoS-sensitive network parameters to video
quality degradation but they considered only the packet
loss during the transmission over the wireless link without
taking into account the congestion due to the background
traffic over the same link and the video resolution in terms
of bit rate. Lotfallah et al. [2] identified a parsimonious
set of visual content descriptors that can be added to the
existing video traces to form advanced video traces, then they
developed quality predictors that, based on advanced video
traces, predict the quality of the reconstructed video after
lossy network transport. Even in this work no considerations
are made on video bit rate adaptation according to the
background traffic.

In our work, we evaluate the perceived quality value
according to the bit rate of the transmitted video, the
signal power level, and the data traffic on the wireless
link. We design a model that closely approximates VQM
objective metric behavior. Thanks to the proposed model;
the estimation of the PQoS is extremely easy and fast
making the tool suitable for scalable video coding and multi-
dimensional bit rate in mobile wireless video application.
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TaBLE 1: Video ITU recommendations.

Video

P.910 video quality assessment

P.930 reference impairment system
BT.500-6, BT.601-4, BT.802 TV pictures

Subjective ) ) )
BS.562-3, BS.1116 high quality audio
G.114 delay
P.920 interactive test for AV
Objective P.OAV objective audiovisual quality assessment

G.191 software tool for evaluation test

3. PERCEIVED QUALITY METER METHODS
AND RECOMMENDATIONS

Over the last years, emphasis has been put on developing
methods and techniques for evaluating the perceived quality
of digital video content. These methods are mainly catego-
rized into two classes: the subjective and objective ones.

The subjective test methods involve an audience of
people, who watch a video sequence and score its quality as
perceived by them, under specific and controlled watching
conditions.

The following opinion scale used in an absolute category
rating (ACR) test is the most frequently used in ITU-T
[5]: excellent (5), good (4), fair (3), poor (2), and bad (1).
The arithmetic mean of all the opinion scores collected is
the MOS. The best known subjective techniques for video
are the single stimulus continue quality evaluation (SSCQE)
and the double stimulus continue quality evaluation (DSCQE)
(15, 16].

The fact that the preparation and execution of subjective
tests is costly and time consuming deprives their use in com-
mercial mobile systems which aim at providing audiovisual
services at predefined quality levels.

The objective methods are characterized and categorized
into classes, according to the procedure of the quality
evaluation.

One of these classes requires the source video sequence
as a reference entity in the quality evaluation process, and
is based on filtering the encoded and source sequences,
using perceptual filters (i.e., Sobel filter). Then, a comparison
between these two filtered sequences provides results, which
are exploited for the perceived quality evaluation [17, 18].

Another class of objective evaluation methods is based on
algorithms, which are capable of evaluating the PQoS level
of the encoded test sequences, without requiring any source
video clip as reference.

A software implementation, which is representative of
this nonreference objective evaluation class, is the quality
meter software (QMS) [19]. The QMS tool measures objec-
tively the instant PQoS level (in a scale from 1 to 100) of
digital video clips. The evaluation algorithm of the QMS
is based on vectors, which contain information about the
averaged luminance differences of adjacent pixels.

Table 1 summarizes ITU recommendations related to
video quality assessment methodologies for video codec.

For all previous reasons, a lot of effort has recently been
focused on developing cheaper, faster, and easily applicable
objective evaluation methods, which emulate the results that
are derived from subjective quality assessments, based on
criteria and metrics, which can be measured objectively.

Due to the subjective methods limitations, engineers
have turned to simple error measures such as mean-squared
error (MSE) or peak signal-to-noise ratio (PSNR), suggesting
that they would be equally valid. However, these simple
measures operate solely on the basis of pixel-wise differences
and neglect the impact of video content and viewing
conditions on the actual visibility of videos.

PSNR does not take into account human vision and thus
cannot be a reliable predictor of perceived visual quality.
Human observers will perceive different kinds of distortions
in digital video, for example, jerkiness (motion that was
originally smooth and continuous is perceived as a series
of distinct snapshots), blockiness (a form of block distortion
where one or more blocks in the image bear no resemblance
to the current or previous scene and often contrast greatly
with adjacent blocks), blurriness (a global distortion over the
entire image, characterized by reduced sharpness of edges
and spatial detail), and noise. These distortions cannot be
measured by PSNR. ANSI T1.801.03-1996 standard [20, 21]
defines a number of features and objective parameters related
to the above-mentioned video distortions. These include the
following.

(i) Spatial information (SI) is computed from the image
gradient. It is an indicator of the amount of edges in
the image.

(ii) Edge energy is derived from spatial information.
The difference in edge energy between reference
and processed frames is an indicator of blurring
(resulting in a loss of edge energy), blockiness, or
noise (resulting in an increase of edge energy).

(iii) The difference in the ratios of horizontal/vertical
(HV) edge energy to non-HV edge energy quantifies
the amount of horizontal and vertical edges (espe-
cially blocks) in the frame.

(iv) Temporal information (TI) is computed from the
pixel-wise difference between successive frames. It is
an indicator of the amount of motion in the video.
Repeated frames become apparent as zero TI, and
their percentage can be determined for the sequence.

(v) Motion energy is derived from temporal information.

The difference in motion energy between reference and
processed video is an indicator of jerkiness (resulting in a
loss of motion energy), blockiness, or noise (resulting in an
increase of motion energy).

Motion energy difference, percent repeated frames, and
other video parameters can then be combined to a measure
of perceived jerkiness.

Starting from all the previous considerations, a con-
siderable amount of recent research has focused on the
development of quality metrics that have a strong correlation
with subjective data. Three metrics based on models of the
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TABLE 2: Pearson correlation index of the most reliable and famous
objective video quality metrics.

peak signal-to-noise ratio (PSNR) [25] 0.793
structural similarity (SSIM) [26, 27] 0.8301
Blurring measure [28] 0.8963
Blocking measure [29] 0.83

motion sum of absolute differences 0.819

(MSADs) [30]

video quality metric (VQM) [7] 0.98 (Always over 0.91)

human visual system (HVS) are summarized in [22]: the
Sarnoff just noticeable difference (JND) model, the percep-
tual distortion metric (PDM) model developed by Winkler
[23], and Watson’s digital video quality (DVQ) metric [24].
Finally, a general purpose video quality model (VQM) was
standardized by ANSI in July 2003 (ANSI T1.801.03-2003),
and has been included in draft reccommendations from ITU-
T study group 9 and ITU-R working party 6Q.

The general model was designed to be a general purpose
video quality model (VQM) for video systems that span
a very wide range of quality and bit rates, thus it should
work well for many other types of coding and transmission
systems (e.g., bit rates from 10 kbits/s to 45 Mbits/s, MPEG-
1/2/4, digital transmission systems with errors). Extensive
subjective and objective tests were conducted to verify its
performances. The VQM metric computes the magnitude
of the visible difference between two video sequences,
whereby larger visible degradations result in larger VQM
values. The metric is based on the discrete cosine transform,
and incorporates aspects of early visual processing, spatial
and temporal filtering, contrast masking, and probability
summation.

This model has been shown by the video quality experts
group (VQEG) [6] in their phase II full reference television
(FR-TV) test to produce excellent estimates of video quality
for video systems obtaining an average pearson correlation
coefficient over tests of 0.91 [7]. To the best of our
knowledge, VQM is the only model to break the 0.9 threshold
according to previous studies summarized in Table 2; for this
reason, we chose to use it in our work as reference model for
the PQoS evaluation during the training phase.

4. SYSTEM ARCHITECTURE AND TEST
BED DEPLOYMENT

In this section, we describe the network architecture used for
evaluating the perceived quality of the transmitted multime-
dia contents. We recorded several video clips with different
bit rates; we used the digital video encoding formats MPEG-
4 [31] because it is mostly preferred in the distribution
of interactive multimedia services over IP; furthermore,
MPEG-4 is also suitable for 3G networks providing better
encoding efficiency at low bit rates, compared to the previous
formats (MPEG-1, MPEG-2).

The network architecture is shown in Figure 1; it is com-
posed by both wired and wireless segment. The service center

()

IEEE 802.11b/g
—_— :;“"
Access point HMD

Wired

Service center

FIGURE 1: A Simple system architecture.

belongs to the wired segment and has the task of sending
multimedia contents to the wireless clients (e.g., Laptop,
PDA, smartphone, see-through glasses for augmented reality,
generic head mounted displays HMD, etc.). On the wireless
segment the transmission of multimedia contents can take
place in both directions, from the clients to the access point
(AP) and vice versa. This architecture can be used to provide
real-time video with augmented reality: a classical example
is offered by a client device equipped with a wireless camera
that can be used by a visitor inside a museum; the camera can
record and send the video of the ambient in which the visitor
is walking to the service center that is in charge of locating
the client and send him multimedia contents regarding the
paintings or the art work recorded in the video previously
sent. A similar service can be offered in an archaeological site
to supply augmented reality area wireless network.

In order to emulate the previous scenario, we create
different multimedia video and we transmit them from the
wireless mobile device on the right side of Figure 1, to the
service center and vice versa using VLC [32], (VideoLAN is
a software project, which produces free software for video,
released under the GNU general public license. VLC media
player is a free cross-platform media player, it supports
a large number of multimedia formats, without the need
for additional codecs; it can also be used as a streaming
server, with extended features (video on demand, on the fly
transcoding, etc.).) a powerful software well suited for video
streaming transmission.

With the aim of implementing a more realistic scenario,
we considered also the data traffic generated from other
mobile devices within the AP coverage area; this aggregated
data traffic represents a set of different applications such as
download of audiovideo contents, text files, or web surfing;
it can be considered as “background traffic” handled by the
access point without stringent delay constraints, nevertheless
the amount of this background data traffic has, for sure, a
heavy impact on the multimedia video transmission in terms
of perceived quality, thus the evaluation of the PQoS metric
and the resulting analytical models cannot be designed
without considering this kind of traffic.

The background traffic was physically implemented as a
download of huge data files, using the classical TCP transport
stream. The bursty transmission behavior of TCP [33-35]
makes PQoS estimation more challenging due to the variable
wireless link occupancy. According to this consideration, the
background traffic values used during the simulations have
to be considered as mean values computed during the whole
test. We did not use any analytical model nor synthetic traffic
generator in order to emulate the real world scenario of data
traffic coming from other applications.
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Service center

Mobile devices

F1GURE 2: The whole test bed system.

The whole system architecture is shown in Figure 2, we
used another laptop for generating the aggregated back-
ground traffic; moreover, we gradually increased the amount
of generated data traffic in order to study the effect on the
perceived quality during the transmission on the wireless
channel.

Concerning the background traffic values for the whole
simulation campaign, the following remark is appropriate.
We implemented a wireless IEEE 802.11g [36] network that
can support nominal data rate up to 54 Mbps; yet in practice
only half of the advertised bit rate can be achieved because
wireless networks are particularly error-prone due to radio
channel impairments; thus the data signals are subject to
attenuation with distance and signal interference.

We observed, through few simple tests, that the perceived
video quality is not degraded if the traffic background is
smaller than 11 Mbps; this performance is due to the high
link capacity supported by the specific AP. (The AP used for
the test bed is a USRobotics Wireless MAXg Router 5461A.)

We experimented that 28 Mbps is the maximum back-
ground traffic sustainable by our wireless network.

Table 3 summarizes all the system parameters used for
the test bed; the transmitted multimedia video contents were
extracted from few minutes of an action movie with a high
interactivity level in order to evaluate a worse case scenario
in terms of variable bit rate; moreover, the contents were
chosen in order to cover a wide range of possible applications
such as video streaming conference with a variable bit rate
satisfying different applications requirements. Each video
clip was transcoded to MPEG-4 format, at various variable
bit rates (VBR) according to the mean data rates shown in
Table 3. Resolution (320 x 240) and constant frame rate of
25 frames per second (fps) were common parameters for the
transcoding process in all test videos. These video parameters
are typically supported by hand-held mobile devices.

Finally, we evaluated the system performances varying
the wireless link quality in terms of signal power level. Using
network stumbler [37] we obtained the signal power level
values over the wireless link depending on the distance from
the access point. For each parameter combination we took
several samples repeating the perceived quality measurement

8 times with the aim of considering the natural wireless link
and background traffic fluctuations.

In order to measure the video quality over the wireless
network we used MSU [38]. This free program has many
interesting features to evaluate the video quality according
to several metrics (i.e., PSNR, DELTA, MSAD, MSE, SSIM,
and VQM). Moreover, the obtained results are collected in
a .CVS file, thus they can be easily managed through any
spread sheet.

During the transmission over the wireless link, few
frames can be lost due to low signal level or to high
interference conditions; nevertheless, the software used for
the PQoS evaluation needs to compare two videos with
exactly the same number of frames, thus we implemented a
realignment procedure for replacing the lost frames with the
last frame correctly received in order to obtain a consistent
analysis.

5. TEST BED RESULTS AND ANALYTICAL MODEL

In this section, we show the results in terms of perceived
video quality, obtained from the test bed varying the network
parameters and we propose a simple analytical model for
estimating the perceived quality.

Our model for PQoS estimation is based on simple
parameters that can be easily computed in the first “training
phase” The implementation of an integrated software for the
perceived quality measurement of few video contents and
the resulting calibration of the polynomial model coefficients
are quite simple. In this way, the analytical model plays a
primary role in the PQoS estimation and the consequent
real-time video scaling or format adaptation. Finally, the
proposed method for PQoS estimation can be integrated
in any wireless telecommunication system satisfying the
following requirements:

(1) every client has to periodically provide its received
power level to the service center through specific
backward signalling;

(2) the service center needs to periodically monitor
the data traffic, managed by the access point, and
measure the background traffic in order to perform
PQoS estimation and adapt the video format.

We remark that in our work, we evaluated PQoS in the
training phase through the generic VQM objective metric
for a specific source and channel coding techniques. In other
words, once fixed the source coding, the channel coding,
and the streaming protocol used during the training phase,
these techniques should not be changed without repeating
the training phase. That is a realistic situation since all the
multimedia contents are provided by one service center.

5.1. Fixing the wireless link quality

First of all we fixed the power level of the wireless signal
to the best value (i.e., —15dBm) in order to study the
system performance in a very good condition in which the
interference has a negligible effect; in this way the perceived
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TABLE 3: System traffic parameters.
Video bit rate
450 Kbps 810 Kbps 1470 Kbps 1870 Kbps 2350 Kbps
0 Mbps 0.6452 0.5405 0.3552 0.3625 0.3246
5Mbps 0.6452 0.5475 0.3552 0.3741 0.3439
Background traffic 11 Mbps 0.6452 0.5546 0.3552 0.3857 0.3632
22 Mbps 0.6927 0.5990 0.8080 0.9838 1.2077
26 Mbps 0.8197 0.6737 1.1294 1.6501 2.4743
28 Mbps 0.9212 0.7346 1.5547 2.1475 3.2797
2 =
o
> g

0 500 1000 1500 2000 2500
Bit rate (Kbps)

—+— Background traffic 0 Mbps
—x— Background traffic 5 Mbps
—x— Background traffic 11 Mbps
—— Background traffic 22 Mbps
—— Background traffic 26 Mbps
—=— Background traffic 28 Mbps

FIGURE 3: Perceived quality versus background traffic with different
video bit rates.

TaBLE 4: Network parameters for the training phase.

Video bitrate ~ Background traffic Signal power level
r1 = 2350 Kbps b, = 0 Mbps c; = —15dBm (excellent)
r, = 1870 Kbps b, =5Mbps ¢, = —40dBm (good)
r3 = 1470 Kbps b; = 11 Mbps ¢; = —66 dBm (fair)
r4 = 810 Kbps by =22 Mbps ¢4 = —76 dBm (poor)
rs = 450 Kbps bs =26 Mbps
be = 28 Mbps

video quality is strictly linked only to the background traffic
and the bit rates; the following analysis is oriented to discover
the relationship between those two system parameters.
Figures 3 and 4 show how the perceived quality decreases
when both the background traffic and the bit rate of the
transmitted video increase. Furthermore, background traffic
values smaller than 11 Mbps do not influence the perceived
quality index. Choosing an objective VQM value for each
video, an accurate scaling can be done according to the trend
of those curves. Table 4 summarizes all the measured quality
values that will be used for the analytical model fitting.

0
0 5000 10000 15000 20000 25000 30000
Background traffic (Kbps)

—e— 450 Kbps —%— 1870 Kbps
—a— 810 Kbps —x— 2350 Kbps
—— 1470 Kbps

FIGURE 4: Perceived quality versus video bit rates with different
background traffic.

5.2. Varying the wireless link quality

The link quality is for sure one of the most important
parameters in the evaluation of standard QoS index in
wireless networks. Its contribution in terms of PQoS is
still an open and challenging issue that we consider in this
section. Figure5 shows the perceived quality index with
different values of signal strength over the wireless link. This
measurement has been carried out by fixing the background
traffic value to 11 Mbps in order to study the signal power
level effect in a mean working condition in which the
background traffic presence cannot drastically affect the
contribution of the signal power level. When the measured
power level from the receiver is very low (i.e., —76 dBm),
the VQM index does not depend on the video bit rate, in
fact that curve fluctuates around 1.5 VQM value; thus in
this condition, a video with low bit rate has almost the same
quality of a video with high bit rate.

In the other two cases (i.e., —66 dBm and —46 dBm) the
slight decrease of the VQM value is more evident on videos
with higher bit rate.

Following the previous considerations we can argue that
the signal power level over the wireless link is weakly related
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FIGURE 5: PQoS varying the quality link and the bit rate.
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FIGURE 6: PQoS varying the link power level.

to the video bit rate and the background traffic; for this
reason we can treat the weight of the power level over the
link as an additive value according to the trend in Figure 6.
Thanks to the measurements carried out through the test bed
we can approximate the trend of the curve with polynomial
equation that will be used for designing the analytical model.

5.3. Analytical model for estimating the PQoS value

The main goal of this section is the design of an analytical
model in which all the previous PQoS measurements for our
wireless network can be used in order to predict the VQM
value in a fast, responsive, and reliable way. According to
the curves presented in Figures 3 and 4 we pointed out the
relations between the video bit rates and the background
traffic; now we need to find a mathematical relation that can
represent the trend of those curves.

As we already explained, the perceived quality is consid-
ered in our work as a function g(-) of three parameters: the
video bit rate R, the background traffic B, and signal power
level over the wireless link C. Thus the PQoS can be expressed
through the following relation:

PQoS = g(R, B, C). (1)

For sake of simplicity we used the normalized version of
those quantities according to the following formula:

_ X —pX)
T o(X)

where p(X) and o(X) are the mean and the standard
deviation of the measured quantities, thus

PQoS = h(r, b, ¢). (3)

, 2)

As already explained in this section, the signal power over the
wireless link is not strictly related with the video bit rate and
the background traffic; for this reason, treating the wireless
link strength as an additive value, we can rewrite the relation
(3) as sum of two different functions

h(r,b,c) = fi(r,b) + f2(c). (4)

Thanks to the measurements carried out through the
test bed, we can fit both f; and f, functions using two
polynomials, that is,

Pi(x,y) = fi(r,b),

Pa(2) = fo(c), ©)
where

n—1m-—1 o

Pi(x,y) = > > aix'yl
i=0 j=0
m—1 n—1 (6)

= > a(x)y* = > Pely)xk,
k=0 k=0
v—1
Py(2) = chzk. (7)

k=0

During the training phase we estimate the a;; and ¢
coefficients in (6) and (7).

In our study, we used (n = 5) different values for
video bit rate and (m = 6) different values for background
traffic, thus we implemented a linear system of 30 equations
in the unknowns a;; for the polynomial P; while we used
(v = 4) values for the power level over the wireless
link corresponding to a 4 equations linear system in the
unknowns ¢ for the polynomial P;.

Table 4 shows the values (1,72 - 1,), (b1,by -+ - b)),
and (cy,¢; - - - ¢) used for the video bit rate, the background
traffic, and power link level, respectively.

Equation (8) provides the exact values of a;; and ¢
coefficients obtained through the proposed model:

0.5550
0.5579

—0.0464 —0.1227 —-0.0472 0.0555
0.2703 —-0.9139 -0.1132 0.4152

| -0.2049 0.4568 1.3469  0.0296 —0.4997
(aij) = —0.6381 0.2907 2.2181 0.1468 —0.8619 |’
0.4646  0.0246 —1.0567 —0.0464 0.4932
0.4925 —0.0240 —1.2682 —0.0771 0.5484
0.3541
| -0.2235
() =| 07584
0.6865
(8)



EURASIP Journal on Advances in Signal Processing

TaBLE 5: Network parameters for model validation.

Video bit rate Background traffic Signal power level
630 Kbps 14300 Kbps —15dBm
1000 Kbps 18560 Kbps —32dBm
1560 Kbps 24160 Kbps —60 dBm

TaBLE 6: VQM Values measured through MSU software, signal
power level —15dBm.

Background traffic [Kbps]

Bit rate [Kbps] 14300 18560 24160

630 0.569878 0.61557 0.653899
1000 0.539471 0.592827 0.694409
1560 0.4555 0.561323 1.031743

TaBLE 7: PQoS Values estimated with the analytical model, signal
power level —15dBm.

Background traffic [Kbps]

Bit rate [Kbps] 14300 18560 24160
630 0.609 0.608 0.647
1000 0.497 0.535 0.676
1560 0.415 0.552 1.023

Thanks to the model, we can easily evaluate the per-
formances of different scenarios through a colored scale
representing the good mix (green and light green-areas) and
the bad mix (red and dark-red) of system parameters in
terms of perceived quality values. Many interesting consid-
erations can be made observing Figures 7 and 8 because
the relations between all the system parameters involved
in the evaluation of the PQoS are mixed together. These
figures are two different ways for representing the output
of the PQoS estimation model according to the available
system parameters; the colored maps can be examined fixing
the signal power level (Figure7) or fixing the video bit
rate (Figure 8) and varying the other two parameters; in
particular the PQoS index increases at higher video bit rate
and background traffic. This causes a degradation in terms
of perceived quality (see red and dark-red zone on Figure 7).
On the other hand, fixing the video bit rate, the PQoS index
increases (i.e., quality degrades) with the background traffic
and the signal power level (see red and dark-red zones on
Figure 8). Thanks to these maps the reader can appreciate in
a visual manner the graceful scaling color of the estimated
PQoS.

5.4. Testing the effectiveness of the analytical model

In this section we demonstrate the reliability of the proposed
model showing the correlation between the measurements
executed with the MSU software and the results obtained
through the analytical framework.
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FIGURE 7: PQoS map obtained from the analytical model, back-
ground traffic versus video bit rate.

In support of this analysis we recorded new videos
with different parameters according to Table 5. The results
summarized in Tables 6 and 7 have been obtained fixing the
signal power level at —15 dBm; as we can see, the difference
between the two approaches is a negligible quantity. The
overall pearson linear correlation coefficient [39] between
VQM quality and analytical model for the video sequences
is equal to 0.986 making the proposed model very usefull.
Finally, the accuracy of the proposed method can be valued
looking at Figure 9 where the correlation between the values
has been plotted.

In order to discover the possible limitations of our model
we repeated the previous analysis taking few measurements
with different values for the signal power level (i.e., =32 dBm
and —60 dBm).

Figure 10 shows that the model fails only if the effect
due to a suboptimal signal power level over the wireless
link is coupled with a high background traffic value (i.e.,
24160 Kbps). In these conditions the effects of the two
phenomena are not predicted by our model (4). In such a
case the data traffic over the wireless link is high and makes
the network work very close to a congestion zone.

In conclusion, the proposed model is effective and robust
up to 18560 Kbps of background data traffic in every tested
wireless link conditions; these results make the model very
useful and attractive for a wide range of realistic wireless
network scenarios and video applications.
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FIGURE 8: PQoS map obtained from the analytical model for a fixed
bit rate of 2350 Kbps, background traffic versus signal power level.
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FIGURE 9: VQM quality versus analytical model quality, signal
power level —15dBm.

6. CONCLUSION

In this paper, we have measured the perceived quality of
multimedia video contents transmitted over wireless LAN
test bed based on the IEEE 802.11g standard. We studied the
effects of network parameters on the PQoS index highlight-
ing the connections between them. Finally, we designed an
analytical model based on a simple curve fitting technique,
well suited for wireless environment, for estimating the PQoS
index in a fast and easy way. The proposed analytical model
has an average pearson correlation coefficient of 0.986, as
proof of its robustness and reliability in many network
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Figure 10: VQM quality versus analytical model quality, signal
power levels —32 dBm and —60 dBm.

conditions. Nevertheless, when the background traffic is
very high and the signal power level is not excellent, the
model does not work well because the combination of those
two effects generates an unpredictable behavior in terms of
PQoS. This analysis highlights few natural limitations of the
proposed technique due to the congestion of the wireless
network. Future work includes the testing of additional video
sequences with different codec formats and resolutions in a
multiuser scenario.
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