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1. Introduction

In 1940, Ulam [1] raised a question concerning the stability of group homomorphisms:
“Let f be a mapping from a group G1 to a metric group G2 with metric d(·,·) such that

d
(
f (xy), f (x) f (y)

)≤ ε. (1.1)

Then does there exist a group homomorphism L :G1→G2 and δε > 0 such that

d
(
f (x),L(x)

)≤ δε (1.2)

for all x ∈G1?”
The case of approximately additive mappings was solved by Hyers [2] under the as-

sumption thatG1 andG2 are Banach spaces. In 1978, Rassias [3] firstly generalized Hyers’
result to the unbounded Cauchy difference. During the last decades, the stability prob-
lems of several functional equations have been extensively investigated by a number of
authors (see [4–12]). The terminologyHyers-Ulam-Rassias stability originates from these
historical backgrounds and this terminology is also applied to the case of other functional
equations.
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Let both E1 and E2 be real vector spaces. Jun and Kim [13] proved that a function
f : E1→ E2 satisfies the functional equation

f (2x+ y) + f (2x− y)= 2 f (x+ y) + 2 f (x− y) + 12 f (x) (1.3)

if and only if there exists a mapping B : E1×E1×E1 → E2 such that f (x)= B(x,x,x) for
all x ∈ E1, where B is symmetric for each fixed one variable and additive for each fixed
two variables. The mapping B is given by

B(x, y,z)= 1
24

[
f (x+ y + z) + f (x− y− z)− f (x+ y− z)− f (x− y + z)

]
(1.4)

for all x, y,z ∈ E1. It is natural that (1.3) is called a cubic functional equation because the
mapping f (x)= ax3 satisfies (1.3). Also Jun et al. generalized cubic functional equation,
which is equivalent to (1.3),

f (ax+ y) + f (ax− y)= a f (x+ y) + a f (x− y) + 2a
(
a2− 1

)
f (x) (1.5)

for fixed integer a with a �= 0,±1 (see [14]).
In this paper, we consider the general solution of (1.5) and prove the stability theorem

of this equation in the space �′(Rn) of Schwartz tempered distributions and the space
�′(Rn) of Fourier hyperfunctions. Following the notations as in [15, 16] we reformulate
(1.5) and related inequality as

u◦A1 +u◦A2 = au◦B1 + au◦B2 + 2a
(
a2− 1

)
u◦P, (1.6)

∥
∥u◦A1 +u◦A2− au◦B1− au◦B2− 2a

(
a2− 1

)
u◦P∥∥≤ ε(|x|p + |y|q), (1.7)

respectively, where A1, A2, B1, B2, and P are the functions defined by

A1(x, y)= ax+ y, A2(x, y)= ax− y,

B1(x, y)= x+ y, B2(x, y)= x− y, P(x, y)= x,
(1.8)

and p, q are nonnegative real numbers with p,q �= 3. We note that p need not be equal
to q. Here u ◦A1, u ◦A2, u ◦ B1, u ◦ B2, and u ◦ P are the pullbacks of u in �′(Rn) or
�′(Rn) by A1, A2, B1, B2, and P, respectively. Also | · | denotes the Euclidean norm, and
the inequality ‖v‖ ≤ ψ(x, y) in (1.7) means that |〈v,ϕ〉| ≤ ‖ψϕ‖L1 for all test functions
ϕ(x, y) defined on R2n.

If p < 0 or q < 0, the right-hand side of (1.7) does not define a distribution and so
inequality (1.7) makes no sense. If p,q = 3, it is not guaranteed whether Hyers-Ulam-
Rassias stability of (1.5) is hold even in classical case (see [13, 14]). Thus we consider only
the case 0≤ p, q < 3, or p,q > 3.

We prove as results that every solution u in �′(Rn) or �′(Rn) of inequality (1.7) can
be written uniquely in the form

u=
∑

1≤i≤ j≤k≤n
ai jkxixjxk +h(x), ai jk ∈ C, (1.9)
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where h(x) is a measurable function such that

∣
∣h(x)

∣
∣≤ ε

2
∣
∣|a|3−|a|p∣∣ |x|

p. (1.10)

2. Preliminaries

Wefirst introduce briefly spaces of some generalized functions such as Schwartz tempered
distributions and Fourier hyperfunctions. Here we use the multi-index notations, |α| =
α1 + ···+ αn, α! = α1!···αn!, xα = xα11 ···xαnn , and ∂α = ∂α11 ···∂αnn for x = (x1, . . . ,xn) ∈
Rn, α= (α1, . . . ,αn)∈Nn

0, where N0 is the set of nonnegative integers and ∂j = ∂/∂xj .

Definition 2.1 [17, 18]. Denote by �(Rn) the Schwartz space of all infinitely differentiable
functions ϕ in Rn satisfying

‖ϕ‖α,β = sup
x∈Rn

∣
∣xα∂βϕ(x)

∣
∣ <∞ (2.1)

for all α,β ∈Nn
0, equipped with the topology defined by the seminorms ‖ · ‖α,β. A linear

form u on �(Rn) is said to be Schwartz tempered distribution if there is a constant C ≥ 0
and a nonnegative integer N such that

∣
∣〈u,ϕ〉∣∣≤ C

∑

|α|,|β|≤N
sup
x∈Rn

∣
∣xα∂βϕ

∣
∣ (2.2)

for all ϕ∈�(Rn). The set of all Schwartz tempered distributions is denoted by �′(Rn).

Imposing growth conditions on ‖ · ‖α,β in (2.1), Sato and Kawai introduced the space
� of test functions for the Fourier hyperfunctions.

Definition 2.2 [19]. Denote by �(Rn) the Sato space of all infinitely differentiable func-
tions ϕ in Rn such that

‖ϕ‖A,B = sup
x,α,β

∣
∣xα∂βϕ(x)

∣
∣

A|α|B|β|α!β!
<∞ (2.3)

for some positive constants A, B depending only on ϕ. We say that ϕj → 0 as j →∞ if
‖ϕj‖A,B → 0 as j →∞ for some A,B > 0, and denote by �′(Rn) the strong dual of �(Rn)
and call its elements Fourier hyperfunctions.

It can be verified that the seminorms (2.3) are equivalent to

‖ϕ‖h,k = sup
x∈Rn,α∈Nn

0

∣
∣∂αϕ(x)

∣
∣expk|x|

h|α|α!
<∞ (2.4)

for some constants h,k > 0. It is easy to see the following topological inclusion:

�
(
Rn
)

�
(
Rn
)
, �′(Rn

)
�′ (Rn

)
. (2.5)
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In order to solve (1.6), we employ the n-dimensional heat kernel, that is, the fundamental
solution Et(x) of the heat operator ∂t −x in Rn

x ×R+
t given by

Et(x)=
⎧
⎪⎨

⎪⎩

(4πt)−n/2 exp
(
− |x|

2

4t

)
, t > 0,

0, t ≤ 0.
(2.6)

Since for each t > 0, Et(·) belongs to �(Rn), the convolution

ũ(x, t)= (u∗Et
)
(x)= 〈uy ,Et(x− y)

〉
, x ∈Rn, t > 0, (2.7)

is well defined for each u∈�′(Rn) and u∈�′(Rn), which is called the Gauss transform
of u. Also we use the following result which is called the heat kernel method (see [20]).

Let u∈�′(Rn). Then its Gauss transform ũ(x, t) is a C∞-solution of the heat equation

(
∂

∂t
−Δ

)
ũ(x, t)= 0 (2.8)

satisfying the following.
(i) There exist positive constants C, M, and N such that

∣
∣ũ(x, t)

∣
∣≤ Ct−M

(
1+ |x|)N in Rn× (0,δ). (2.9)

(ii) ũ(x, t)→ u as t→ 0+ in the sense that for every ϕ∈�(Rn),

〈u,ϕ〉 = lim
t→0+

∫

ũ(x, t)ϕ(x)dx. (2.10)

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condi-
tion (2.9) can be uniquely expressed as U(x, t)= ũ(x, t) for some u∈�′(Rn).

Similarly, we can represent Fourier hyperfunctions as initial values of solutions of the
heat equation as a special case of the results (see [21]). In this case, the estimate (2.9) is
replaced by the following.

For every ε > 0 there exists a positive constant Cε such that

∣
∣ũ(x, t)

∣
∣≤ Cε exp

(
ε
(
|x|+ 1

t

))
in Rn× (0,δ). (2.11)

We refer to [17, Chapter VI] for pullbacks and to [16, 18, 20] for more details of �′(Rn)
and �′(Rn).

3. General solution in �′(Rn) and �′(Rn)

Jun and Kim (see [22]) showed that every continuous solution of (1.5) in R is a cubic
function f (x) = f (1)x3 for all x ∈ R. Using induction argument on the dimension n, it
is easy to see that every continuous solution of (1.5) in Rn is a cubic form

f (x)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk, ai jk ∈ C. (3.1)
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In this section, we consider the general solution of the cubic functional equation in the
spaces of �′(Rn) and �′(Rn). It is well known that the semigroup property of the heat
kernel

(
Et ∗Es

)
(x)= Et+s(x) (3.2)

holds for convolution. Semigroup property will be useful to convert (1.6) into the classical
functional equation defined on upper-half plane.

Convolving the tensor product Et(ξ)Es(η) of n-dimensional heat kernels in both sides
of (1.6), we have

[(
u◦A1

)∗ (Et(ξ)Es(η)
)]
(x, y)

= 〈u◦A1,Et(x− ξ)Es(y−η)
〉=

〈
uξ ,a−n

∫

Et

(
x− ξ −η

a

)
Es(y−η)dη

�

=
〈
uξ ,a−n

∫

Et

(
ax+ y− ξ −η

a

)
Es(η)dη

�
=
〈
uξ ,
∫

Ea2t(ax+ y− ξ −η)Es(η)dη
�

= 〈uξ ,
(
Ea2t ∗Es

)
(ax+ y− ξ)

〉= 〈uξ ,Ea2t+s(ax+ y− ξ)
〉= ũ

(
ax+ y,a2t+ s

)
,
(3.3)

and similarly we get

[(
u◦A2

)∗ (Et(ξ)Es(η)
)]
(x, y)= ũ

(
ax− y,a2t+ s

)
,

[(
u◦B1

)∗ (Et(ξ)Es(η)
)]
(x, y)= ũ(x+ y, t+ s),

[(
u◦B2

)∗ (Et(ξ)Es(η)
)]
(x, y)= ũ(x− y, t+ s),

[(
u◦P)∗ (Et(ξ)Es(η)

)]
(x, y)= ũ(x, t).

(3.4)

Thus (1.6) is converted into the classical functional equation

ũ
(
ax+ y,a2t+ s

)
+ ũ
(
ax− y,a2t+ s

)

= aũ(x+ y, t+ s) + aũ(x− y, t+ s) + 2a
(
a2− 1

)
ũ(x, t)

(3.5)

for all x, y ∈Rn, t,s > 0.

Lemma 3.1. Let f :Rn× (0,∞)→ C be a continuous function satisfying

f
(
ax+ y,a2t+ s

)
+ f
(
ax− y,a2t+ s

)

= a f (x+ y, t+ s) + a f (x− y, t+ s) + 2a
(
a2− 1

)
f (x, t)

(3.6)

for fixed integer a with a �= 0,±1. Then the solution is of the form

f (x, t)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk + t

∑

1≤i≤n
bixi, ai jk,bi ∈ C. (3.7)
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Proof. In view of (3.6) and given the continuity, f (x,0+) := limt→0+ f (x, t) exists. Define
h(x, t) := f (x, t)− f (x,0+), then h(x,0+)= 0 and

h
(
ax+ y,a2t+ s

)
+h
(
ax− y,a2t+ s

)

= ah(x+ y, t+ s) + ah(x− y, t+ s) + 2a
(
a2− 1

)
h(x, t)

(3.8)

for all x, y ∈Rn, t,s > 0. Setting y = 0, s→ 0+ in (3.8), we have

h
(
ax,a2t

)= a3h(x, t). (3.9)

Putting y = 0, s= a2s in (3.8), and using (3.9), we get

a2h(x, t+ s)= h
(
x, t+ a2s

)
+
(
a2− 1

)
h(x, t). (3.10)

Letting t→ 0+ in (3.10), we obtain

a2h(x,s)= h
(
x,a2s

)
. (3.11)

Replacing t by a2t in (3.10) and using (3.11), we have

h
(
x,a2t+ s

)= h(x, t+ s) +
(
a2− 1

)
h(x, t). (3.12)

Switching t with s in (3.12), we get

h
(
x, t+ a2s

)= h(x, t+ s) +
(
a2− 1

)
h(x,s). (3.13)

Adding (3.10) to (3.13), we obtain

h(x, t+ s)= h(x, t) +h(x,s), (3.14)

which shows that

h(x, t)= h(x,1)t. (3.15)

Letting t→ 0+, s= 1 in (3.8), we have

h(ax+ y,1) +h(ax− y,1)= ah(x+ y,1) + ah(x− y,1). (3.16)

Also letting t = 1, s→ 0+ in (3.8), and using (3.11), we get

a2h(ax+ y,1) + a2h(ax− y,1)= ah(x+ y,1) + ah(x− y,1) + 2a
(
a2− 1

)
h(x,1). (3.17)

Now taking (3.16) into (3.17), we obtain

h(x+ y,1) +h(x− y,1)= 2h(x,1). (3.18)
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Replacing x, y by (x+ y)/2, y = (x− y)/2 in (3.18), respectively, we see that h(x,1) satis-
fies Jensen functional equation

2h
(
x+ y

2
,1
)
= h(x,1) +h(y,1). (3.19)

Putting x = y = 0 in (3.16), we get h(0,1)= 0. This shows that h(x,1) is additive.
On the other hand, letting t = s→ 0+ in (3.6), we can see that f (x,0+) satisfies (1.5).

Given the continuity, the solution f (x, t) is of the form

f (x, t)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk + t

∑

1≤i≤n
bixi, ai jk,bi ∈ C, (3.20)

which completes the proof. �

As a direct consequence of the above lemma, we present the general solution of the
cubic functional equation in the spaces of �′(Rn) and �′(Rn).

Theorem 3.2. Suppose that u in �′(Rn) or �′(Rn) satisfies the equation

u◦A1 +u◦A2 = au◦B1 + au◦B2 + 2a
(
a2− 1

)
u◦P (3.21)

for fixed integer a with a �= 0,±1. Then the solution is the cubic form

u=
∑

1≤i≤ j≤k≤n
ai jkxixjxk, ai jk ∈ C. (3.22)

Proof. Convolving the tensor product Et(ξ)Es(η) of n-dimensional heat kernels in both
sides of (3.21), we have the classical functional equation

ũ
(
ax+ y,a2t+ s

)
+ ũ
(
ax− y,a2t+ s

)

= aũ(x+ y, t+ s) + aũ(x− y, t+ s) + 2a
(
a2− 1

)
ũ(x, t)

(3.23)

for all x, y ∈Rn, t,s > 0, where ũ is the Gauss transform of u. By Lemma 3.1, the solution
ũ is of the form

ũ(x, t)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk + t

∑

1≤i≤n
bixi, ai jk,bi ∈ C. (3.24)

Thus we get

〈ũ,ϕ〉 =
〈

∑

1≤i≤ j≤k≤n
ai jkxixjxk + t

∑

1≤i≤n
bixi,ϕ

〉

(3.25)

for all test functions ϕ. Now letting t→ 0+, it follows from the heat kernel method that

〈u,ϕ〉 =
〈

∑

1≤i≤ j≤k≤n
ai jkxixjxk,ϕ

〉

(3.26)

for all test functions ϕ. This completes the proof. �
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4. Stability in �′(Rn) and �′(Rn)

We are going to prove the stability theorem of the cubic functional equation in the spaces
of �′(Rn) and �′(Rn).

We note that the Gauss transform

ψp(x, t) :=
∫

|ξ|pEt(x− ξ)dξ (4.1)

is well defined and ψp(x, t)→ |x|p locally uniformly as t→ 0+. Also ψp(x, t) satisfies semi-
homogeneous property

ψp
(
rx,r2t

)= r pψp(x, t) (4.2)

for all r ≥ 0.
We are now in a position to state and prove the main result of this paper.

Theorem 4.1. Let a be fixed integer with a �= 0,±1 and let ε, p, q be real numbers such
that ε ≥ 0 and 0 ≤ p, q < 3, or p,q > 3. Suppose that u in �′(Rn) or �′(Rn) satisfy the
inequality

∥
∥u◦A1−u◦A2− au◦B1− au◦B2− 2a

(
a2− 1

)
u◦P∥∥≤ ε(|x|p + |y|q). (4.3)

Then there exists a unique cubic form

c(x)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk (4.4)

such that

∥
∥u− c(x)

∥
∥≤ ε

2
∣
∣|a|3−|a|p∣∣ |x|

p. (4.5)

Proof. Let v := u ◦A1−u ◦A2− au ◦B1− au ◦B2− 2a(a2− 1)u ◦P. Convolving the ten-
sor product Et(ξ)Es(η) of n-dimensional heat kernels in v, we have

∣
∣[v∗ (Et(ξ)Es(η)

)]
(x, y)

∣
∣= ∣∣〈v,Et(x− ξ)Es(y−η)

〉∣∣

≤ ε∥∥(|ξ|p + |η|q)Et(x− ξ)Es(y−η)
∥
∥
L1

= ε(ψp(x, t) +ψq(y,s)
)
.

(4.6)

Also we see that, as in Theorem 3.2,

[
v∗ (Et(ξ)Es(η)

)]
(x, y)= ũ

(
ax+ y,a2t+ s

)
+ ũ
(
ax− y,a2t+ s

)

− aũ(x+ y, t+ s)− aũ(x− y, t+ s)− 2a
(
a2− 1

)
ũ(x, t),

(4.7)
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where ũ is the Gauss transform of u. Thus inequality (4.3) is converted into the classical
functional inequality
∣
∣ũ
(
ax+y,a2t+s

)
+ũ
(
ax−y,a2t+ s

)−aũ(x+ y, t+ s)−aũ(x− y, t+ s)−2a(a2− 1
)
ũ(x, t)

∣
∣

≤ ε(ψp(x, t) +ψq(y,s)
)

(4.8)

for all x, y ∈Rn, t,s > 0.
We first prove for 0≤ p, q < 3. Letting y = 0, s→ 0+ in (4.8) and dividing the result by

2|a|3, we get
∣
∣
∣
∣
ũ
(
ax,a2t

)

a3
− ũ(x, t)

∣
∣
∣
∣≤

ε
2|a|3ψp(x, t). (4.9)

By virtue of the semihomogeneous property of ψp, substituting x, t by ax, a2t, respec-
tively, in (4.9) and dividing the result by |a|3, we obtain

∣
∣
∣
∣
ũ
(
a2x,a4t

)

a6
− ũ

(
ax,a2t

)

a3

∣
∣
∣
∣≤

ε
2|a|3 |a|

p−3ψp(x, t). (4.10)

Using induction argument and triangle inequality, we have

∣
∣
∣
∣
ũ
(
anx,a2nt

)

a3n
− ũ(x, t)

∣
∣
∣
∣≤

ε
2|a|3ψp(x, t)

n−1∑

j=0
|a|(p−3) j (4.11)

for all n ∈ N, x ∈ Rn, t > 0. Let us prove the sequence {a−3nũ(anx,a2nt)} is convergent
for all x ∈Rn, t > 0. Replacing x, t by amx, a2mt, respectively, in (4.11) and dividing the
result by |a|3m, we see that

∣
∣
∣
∣
ũ
(
am+nx,a2(m+n)t

)

a3(m+n)
− ũ

(
amx,a2mt

)

a3m

∣
∣
∣
∣≤

ε
2|a|3ψp(x, t)

n−1∑

j=m
|a|(p−3) j . (4.12)

Letting m→∞, we have {a−3nũ(anx,a2nt)} is a Cauchy sequence. Therefore, we may de-
fine

G(x, t)= lim
n→∞a

−3nũ
(
anx,a2nt

)
(4.13)

for all x ∈Rn, t > 0.
Now we verify that the given mappingG satisfies (3.6). Replacing x, y, t, s by anx, any,

a2nt, a2ns in (4.8), respectively, and then dividing the result by |a|3n, we get
|a|−3n∣∣ũ(an(ax+ y),a2n

(
a2t+ s

))
+ ũ
(
an(ax− y),a2n

(
a2t+ s

))

− aũ
(
an(x+ y),a2n(t+ s)

)− aũ
(
an(x+ y),a2n(t+ s)

)− 2a
(
a2− 1

)
ũ
(
anx,a2nt

)∣∣

≤ |a|−3n(ψp
(
anx,a2nt

)
+ψq

(
any,a2ns

))

= (|a|(p−3)nψp(x, t) + |a|(q−3)nψq(y,s)
)
.

(4.14)
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Now letting n→∞, we see by definition of G that G satisfies

G
(
ax+ y,a2t+ s

)
+G

(
ax− y,a2t+ s

)

= aG(x+ y, t+ s) + aG(x− y, t+ s) + 2a
(
a2− 1

)
G(x, t)

(4.15)

for all x, y ∈Rn, t,s > 0. By Lemma 3.1, G(x, t) is of the form

G(x, t)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk + t

∑

1≤i≤n
bixi, ai jk,bi ∈ C. (4.16)

Letting n→∞ in (4.11) yields

∣
∣G(x, t)− ũ(x, t)

∣
∣≤ ε

2
(|a|3−|a|p)ψp(x, t). (4.17)

To prove the uniqueness of G(x, t), we assume that H(x, t) is another function satisfying
(4.15) and (4.17). Setting y = 0 and s→ 0+ in (4.15), we have

G
(
ax,a2t

)= a3G(x, t). (4.18)

Then it follows from (4.15), (4.17), and (4.18) that
∣
∣G(x, t)−H(x, t)

∣
∣

= |a|−3n∣∣G(anx,a2nt)−H
(
anx,a2nt

)∣∣≤ |a|−3n∣∣G(anx,a2nt)− ũ
(
anx,a2nt

)∣∣

+ |a|−3n∣∣ũ(anx,a2nt)−H
(
anx,a2nt

)∣∣≤ ε
|a|3n(|a|3−|a|p)ψp(x, t)

(4.19)

for all n∈N, x ∈Rn, t > 0. Letting n→∞, we have G(x, t)=H(x, t) for all x ∈Rn, t > 0.
This proves the uniqueness.

It follows from the inequality (4.17) that

∣
∣〈G(x, t)− ũ(x, t),ϕ

〉∣∣≤ ε
2
(|a|3−|a|p)

〈
ψp(x, t),ϕ

〉
(4.20)

for all test functions ϕ. Letting t→ 0+, we have the inequality
∥
∥
∥
∥
∥u−

∑

1≤i≤ j≤k≤n
ai jkxixjxk

∥
∥
∥
∥
∥≤

ε
2
∣
∣|a|3−|a|p∣∣ . (4.21)

Now we consider the case p,q > 3. For this case, replacing x, y, t by x/a, 0, t/a2 in
(4.8), respectively, and letting s→ 0+ and then multiplying the result by |a|3, we have

∣
∣
∣
∣ũ(x, t)− a3ũ

(
x

a
,
t

a2

)∣∣
∣
∣≤

ε
2|a|3 |a|

3−pψp(x, t). (4.22)

Substituting x, t by x/a, t/a2, respectively, in (4.22) and multiplying the result by |a|3 we
get

∣
∣
∣
∣a

3ũ
(
x

a
,
t

a2

)
− a6ũ

(
x

a2
,
t

a4

)∣∣
∣
∣≤

ε
2|a|3 |a|

2(3−p)ψp(x, t). (4.23)
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Using induction argument and triangle inequality, we obtain

∣
∣
∣
∣ũ(x, t)− a3nũ

(
x

an
,
t

a2n

)∣∣
∣
∣≤

ε
2|a|3ψp(x, t)

n∑

j=1
|a|(3−p) j (4.24)

for all n∈N, x ∈Rn, t > 0. Following the same method as in the case 0≤ p, q < 3, we see
that

G(x, t) := lim
n→∞a

3nũ
(
x

an
,
t

a2n

)
(4.25)

is the unique function satisfying (4.15). Letting n→∞ in (4.24), we get

∣
∣ũ(x, t)−C(x, t)

∣
∣≤ ε

2
(|a|p−|a|3)ψp(x, t). (4.26)

Now letting t→ 0+ in (4.26), we have the inequality

∥
∥
∥
∥
∥u−

∑

1≤i≤ j≤k≤n
ai jkxixjxk

∥
∥
∥
∥
∥≤

ε
2
∣
∣|a|p−|a|3∣∣ . (4.27)

This completes the proof. �

Remark 4.2. The above norm inequality

∥
∥u− c(x)

∥
∥≤ ε

2
∣
∣|a|p−|a|3∣∣ |x|

p (4.28)

implies that u− c(x) is ameasurable function. Thus all the solution u in�′(Rn) or�′(Rn)
can be written uniquely in the form

u= c(x) +h(x), (4.29)

where |h(x)| ≤ (ε/(2||a|p−|a|3|))|x|p.
Corollary 4.3. Let a be fixed integer with a �= 0,±1 and ε ≥ 0. Suppose that u in �′(Rn)
or �′(Rn) satisfy the inequality

∥
∥u◦A1−u◦A2− au◦B1− au◦B2− 2a

(
a2− 1

)
u◦P∥∥≤ ε. (4.30)

Then there exists a unique cubic form

c(x)=
∑

1≤i≤ j≤k≤n
ai jkxixjxk (4.31)

such that

∥
∥u− c(x)

∥
∥≤ ε

2
(
a3− 1

) . (4.32)
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