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1. Introduction

We investigate the global stability character of the equilibrium points and the period-two
solutions of the second order rational difference equation

yn+1 = pyn + yn−1
r + qyn + yn−1

, n= 0,1, . . . , (1.1)

where the parameters p, q, r are positive and the initial conditions y−1, y0 are nonneg-
ative real numbers. We also present one conjecture, which together with the established
results, gives a complete picture of the nature of solutions of this equation. Our results
improve and extend the asymptotic results in [1, Section 9.4]. Equation (1.1) is an im-
portant stepping stone in understanding the global dynamics of second-order rational
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difference equation of the form

yn+1 = α+βyn + γyn−1
A+Byn +Cyn−1

, n= 0,1, . . . , (1.2)

with nonnegative parameters and initial conditions; see [1].
Related nonlinear, second-order, rational difference equations were investigated in [1–

6]. Four important special cases of (1.1) were discussed in details in [1, 4, 5] (case q = 0),
[7] (case p = 0), and [6] (case r = 0). Major conjectures for the special cases when one
or two of the parameters p, q, and r are zero have been resolved in [8, 7, 9] complet-
ing the study of the global dynamics of these equations in the hyperbolic case. Finally,
the result in [10] provides the answer for the global dynamics of these equations in the
nonhyperbolic case.

The study of rational difference equations of order greater than one is quite challeng-
ing and rewarding and the results about these equations serve as prototypes in the de-
velopment of the basic theory of the global behavior of solutions of nonlinear difference
equations of order greater than one; see Theorems B–F below. The techniques and re-
sults about these equations are also useful in analyzing the equations in the mathematical
models of various biological systems and other applications; see, for instance, [11–13].

In this paper, we show that every solution of (1.1) converges to either the zero equi-
librium, the positive equilibrium, or the period-two solution, for all values of parameters
outside of a specific set that will be defined. In the case when the equilibrium points and
period-two solution coexist, we give the precise description of the basins of attraction of
all three invariant points.

Our results give an affirmative answer to Conjecture 9.5.6 and the complete answer to
Open Problem 9.5.7 from [1].

2. Preliminaries

Let I be some interval of real numbers and let f ∈ C1[I × I ,I]. Let x ∈ I be an equilibrium
point of the difference equation

xn+1 = f
(
xn,xn−1

)
, n= 0,1, . . . , (2.1)

that is,

x = f (x,x). (2.2)

Definition 2.1. (i) The equilibrium x of (2.1) is called locally stable if for every ε > 0, there
exists δ > 0 such that x0,x−1 ∈ I with |x0− x|+ |x−1− x| < δ, then

∣
∣xn− x

∣
∣ < ε ∀n≥ − 1. (2.3)

(ii) The equilibrium x of (2.1) is called locally asymptotically stable if it is locally stable,
and if there exists γ > 0 such that x0,x−1 ∈ I with |x0− x|+ |x−1− x| < γ, then

lim
n→∞xn = x. (2.4)



A. Brett and M. R. S. Kulenović 3

(iii) The equilibrium x of (2.1) is called a global attractor if for every x0,x−1 ∈ I , we
have

lim
n→∞xn = x. (2.5)

(iv) The equilibrium x of (2.1) is called globally asymptotically stable if it is locally
asymptotically stable and a global attractor.

(v) The equilibrium x of (2.1) is called unstable if it is not stable.

Let

s= ∂ f

∂u
(x,x), t = ∂ f

∂v
(x,x) (2.6)

denote the partial derivatives of f (u,v) evaluated at an equilibrium x of (2.1). Then the
equation

yn+1 = syn + tyn−1, n= 0,1, . . . , (2.7)

is called the linearized equation associated with (2.1) about the equilibrium point x.

Theorem A (linearized stability). (a) If both roots of the quadratic equation

λ2− sλ− t = 0 (2.8)

lie in the open unit disk {λ : |λ| < 1}, then the equilibrium x of (2.1) is locally asymptotically
stable.

(b) If at least one of the roots of (2.8) has absolute value greater than one, then the equi-
librium x of (2.1) is unstable.

(c) A necessary and sufficient condition for both roots of (2.8) to lie in the open unit disk
{λ : |λ| < 1} is

|s| < 1− t < 2. (2.9)

In this case, the locally asymptotically stable equilibrium x is also called a sink.

We believe that a semicycle analysis of the solutions of a scalar difference equation is a
powerful tool for a detailed understanding of the entire character of solutions and often
leads to straightforward proofs of their long-term behavior.

We now give the definitions of positive and negative semicycles of a solution of (2.1)
relative to an equilibrium point x.

A positive semicycle of a solution {xn} of (2.1) consists of a “string” of terms {xl,
xl+1, . . . ,xm}, all greater than or equal to the equilibrium x, with l ≥ − 1 and m≤∞ such
that

either l =−1, or l >−1, xl−1 < x,

either m=∞, or m<∞, xm+1 < x.
(2.10)
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A negative semicycle of a solution {xn} of (2.1) consists of a “string” of terms {xl,
xl+1, . . . ,xm}, all less than the equilibrium x, with l ≥ − 1 andm≤∞ and such that

either l =−1, or l >−1, xl−1 ≥ x,

either m=∞, or m<∞, xm+1 ≥ x.
(2.11)

The next five results are general convergence theorems for (2.1).
Our first result is an important characterization of the global behavior of solutions of

(2.1) when f satisfies specific monotonicity conditions, which was established recently in
[10].

Theorem B [10]. Consider (2.1) and assume that f : I × I→I , I ⊂ R is a function which
is decreasing in first variable and increasing in second variable. Then for every solution
{xn}∞n=−1 of (2.1), the subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 of even and odd indexed terms
of the solution do exactly one of the following:

(i) they are both monotonically increasing;
(ii) they are both monotonically decreasing;
(iii) eventually (i.e., for n≥N), one of them is monotonically increasing and the other is

monotonically decreasing.

In particular if f is as in Theorem B and (2.1) does not possess a period-two solution
then every bounded solution of this equation converges to an equilibrium.

Theorem C [1, 14]. Let [a,b] be an interval of real numbers and assume that

f : [a,b]× [a,b]−→ [a,b] (2.12)

is a continuous function satisfying the following properties:
(a) f (x, y) is nondecreasing in each of its arguments;
(b) f has a unique fixed point x ∈ [a,b].

Then every solution of (2.1) converges to x.

Closely related is the following global attractivity result.

Theorem D [12]. Let

f : [0,∞)× [0,∞)−→ [0,∞) (2.13)

be a continuous function satisfying the following properties:
(a) there exist two numbers L and U , 0 < L < U such that

f (L,L)≥ L, f (U ,U)≤U (2.14)

and f (x, y) is nondecreasing in each of its arguments in [L,U];
(b) f has a unique fixed point x ∈ [L,U].

Then every solution of (2.1) converges to x.

Theorem E [1, 6, 14]. Let [a,b] be an interval of real numbers and assume that

f : [a,b]× [a,b]−→ [a,b] (2.15)



A. Brett and M. R. S. Kulenović 5

is a continuous function satisfying the following properties:
(a) f (x, y) is nondecreasing in x ∈ [a,b] for each y ∈ [a,b], and f (x, y) is nonincreas-

ing in y ∈ [a,b] for each x ∈ [a,b];
(b) if (m,M)∈ [a,b]× [a,b] is a solution of the system

f (m,M)=m, f (M,m)=M, (2.16)

thenm=M.
Then (2.1) has a unique equilibrium x ∈ [a,b] and every solution of (2.1) converges to x.

Theorem F [15]. Consider the difference equation

xn+1 = f0
(
xn,xn−1

)
xn + f1

(
xn,xn−1

)
xn−1, n= 0,1, . . . , (2.17)

where f0 and f1 are continuous real functions defined on some interval I ⊂ R. If there exist
constants a < 1 and N such that

∣
∣ f0
(
xn,xn−1

)∣∣+
∣
∣ f1
(
xn,xn−1

)∣∣≤ a, n≥N , (2.18)

then the zero equilibrium of (2.17) is global attractor.

We will use a recent general result for competitive systems of difference equations of
the form

xn+1 = f
(
xn, yn

)
,

yn+1 = g
(
xn, yn

)
,

(2.19)

where f , g are continuous functions and f (x, y) is nondecreasing in x and nonincreasing
in y and g(x, y) is nonincreasing in x and nondecreasing in y in some domain A.

We now present some basic notions about competitive maps in plane. Define a partial
order 	 on R2 so that the positive cone is the fourth quadrant, that is, (x1, y1)	 (x2, y2)
if and only if x1 ≤ x2 and y1 ≥ y2. A map T on a set B ⊂R2 is a continuous function T :
B→B. The map is smooth if it is continuously differentiable on B. A set A⊂ B is invariant
for the map T if T(A) ⊂ A. A point x ∈ B is a fixed point of T if T(x) = x. The orbit of
x ∈ B is a sequence {T	(x)}∞	=0. A prime period-two orbit is an orbit {x	}∞	=0 for which
x0 
=x1 and x0 = x2. The map T is competitive if T(x1, y1)	 T(x2, y2) whenever (x1, y1)	
(x2, y2), and strongly competitive if T(x1, y1)− T(x2, y2) is in the interior of the fourth
quadrant whenever (x1, y1)	 (x2, y2). The basin of attraction of a fixed point e is the set of
all x ∈ B such that Tn(x)→e as n→∞. The interior of a set � is denoted as �◦. Consider a
competitive system (2.19), where f ,g : B→R are continuous functions such that the range
of ( f ,g) is a subset of B. Then one may associate a competitive map T to (2.19) by setting
T = ( f ,g). If T is differentiable, a sufficient condition for T to be strongly competitive is
that the Jacobian matrix of T at any (x, y)∈ B has the sign configuration

(
+ −
− +

)

. (2.20)
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If (x, y)∈ B, we denote with Q	(x, y), 	 ∈ {1,2,3,4}, the usual four quadrants relative to
(x, y), for example,Q1(x, y)= { (u,v)∈ B : u≥ x, v ≥ y }. For additional definitions and
results, see [16, 17].

A result from [16] we need is the following.

Theorem G . Let �1, �2 be intervals in R with endpoints a1, a2 and b1, b2, respectively,
with a1 < a2 and b1 < b2. Let T be a competitive map on �=�1×�2. Let x ∈�◦. Suppose
that the following hypotheses are satisfied.

(1) �◦ is an invariant set, and T is strongly competitive on �◦.
(2) The point x is the only fixed point of T in (Q1(x)∪Q3(x))∩�◦.
(3) The map T is continuously differentiable in a neighborhood of x, and x is a saddle

point.
(4) At least one of the following statements is true.

(a) T has no prime period-two orbits in (Q1(x)∪Q3(x))∩�◦.
(b) det JT(x) > 0 and T(x)= x only for x = x.

Then the following statements are true.
(i) The stable manifold �s(x) is connected and it is the graph of a continuous increas-

ing curve with endpoints in ∂�. �◦ is divided by the closure of �s(x) into two
invariant connected regions �+ (“below the stable manifold”) and �− (“above the
stable manifold”), where

�+ :=
{
x ∈ � \�s(x) : there exists x′ ∈�s(x) such that x′ 	 x

}
,

�− :=
{
x ∈� \�s(x) : there exists x′ ∈�s(x) such that x 	 x′

}
.

(2.21)

(ii) The unstable manifold �u(x) is connected and it is the graph of a continuous de-
creasing curve.

(iii) For every x ∈�+, Tn(x) eventually enters the interior of the invariant set �4(x)∩
�, and for ever x ∈�−, Tn(x) eventually enters the interior of the invariant set
�2(x)∩�.

(iv) Let m ∈ �2(x) and M ∈ �4(x) be the endpoints of �u(x), where m 	 x 	M.
For ever x ∈�− and every z ∈� such that m 	 z, there exists m ∈ N such that
Tm(x) 	 z, and for every x ∈�+ and every z ∈� such that z 	M, there exists
m∈N such that z 	 Tm(x).

Now we present the local stability analysis of (1.1).
The equilibrium points of (1.1) are zero equilibrium and when

p+1 > r, (2.22)

equation (1.1) also possesses the unique positive equilibrium

y = p+1− r

q+1
. (2.23)

The linearized equation associated with (1.1) about the zero equilibrium is

zn+1− p

r
zn− 1

r
zn−1 = 0, n= 0,1, . . . . (2.24)
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The following theorem is a consequence of Theorems A and F.

Theorem 2.2. (a) Assume that

p+1≤ r. (2.25)

Then the zero equilibrium of (1.1) is globally asymptotically stable.
(b) Assume that

p+1 > r. (2.26)

Then the zero equilibrium of (1.1) is unstable. Furthermore the zero equilibrium is a saddle
point when

1− p < r < 1+ p (2.27)

and a repeller when

r < 1− p. (2.28)

The linearized equation associated with (1.1) about its positive equilibrium y is

zn+1− p− q+ qr

(p+1)(q+1)
zn− q− p+ r

(p+1)(q+1)
zn−1 = 0, n= 0,1, . . . . (2.29)

The following result is a consequence of Theorem A.

Theorem 2.3. Assume that (2.22) holds. Then the positive equilibrium of (1.1) is locally
asymptotically stable when

q+ r < 3p+1+ qr + pq, (2.30)

and unstable (a saddle point) when

q+ r > 3p+1+ qr + pq, (2.31)

and nonhyperbolic, with one root of characteristic equation equal to −1, when

q+ r = 3p+1+ qr + pq. (2.32)

3. Existence and local stability of period-two cycles

Concerning prime period-two solutions for (1.1), the following result is true.

Theorem 3.1. Equation (1.1) has a prime period-two solution

. . . ,Φ,Ψ,Φ,Ψ, . . . (3.1)

if and only if (2.31) and

p+ r < 1 < q (3.2)
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holds. In this case the values of Φ and Ψ are the positive roots of the quadratic equation

t2− (1− p− r)t+
p(1− p− r)

q− 1
= 0. (3.3)

Furthermore when (2.31) holds, this period-two solution is locally asymptotically stable.

Proof. Let

. . . ,Φ,Ψ,Φ,Ψ, . . . (3.4)

be a period-two cycle of (1.1). Then

Φ= pΨ+Φ

r + qΨ+Φ
, Ψ= pΦ+Ψ

r + qΦ+Ψ
. (3.5)

To investigate local stability of the period-two solution

. . . ,Φ,Ψ,Φ,Ψ, . . . (3.6)

we set

un = yn−1, vn = yn, for n= 0,1, . . . (3.7)

and write (1.1) in the equivalent form

un+1 = vn,

vn+1 = pvn +un
r + qvn +un

, n= 0,1, . . . .
(3.8)

Let T be the function on (0,∞)× (0,∞) defined by

T

(
u
v

)

=
⎛

⎜
⎝

v
pv+u

r + qv+u

⎞

⎟
⎠ . (3.9)

Then
(
Φ
Ψ

)

(3.10)

is a fixed point of T2, the second iteration of T . By a simple calculation, we find that

T2

(
u
v

)

=
(
g(u,v)
h(u,v)

)

, (3.11)

where

g(u,v)= pv+u

r + qv+u
, h(u,v)= pg(u,v) + v

r + qg(u,v) + v
. (3.12)
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Clearly the period-two solution is locally asymptotically stable when the eigenvalues
of the Jacobian matrix JT2 , evaluated at

(
Φ
Ψ

)
lie inside the unit disk.

We have

JT2

(
Φ
Ψ

)

=

⎛

⎜
⎜
⎜
⎝

∂g

∂u
(Φ,Ψ)

∂g

∂v
(Φ,Ψ)

∂h

∂u
(Φ,Ψ)

∂h

∂v
(Φ,Ψ)

⎞

⎟
⎟
⎟
⎠
, (3.13)

where

∂g

∂u
= r + (q− p)v

(r + qv+u)2
,

∂g

∂v
= pr + (p− q)u

(r + qv+u)2
,

∂h

∂u
= r + (q− p)v

(r + qv+u)2
pr + (p− q)v

(
r + qg(u,v) + v

)2 ,

∂h

∂v
= r + (q− p)g(u,v) +

(
pr + (p− q)v

)
(∂g/∂v)

(
r + qg(u,v) + v

)2 .

(3.14)

By evaluating these derivatives at (Φ,Ψ), we obtain

∂g

∂u
(Φ,Ψ)= r + (q− p)Ψ

(r + qΨ+Φ)2
,

∂g

∂v
(Φ,Ψ)= pr + (p− q)Φ

(r + qΨ+Φ)2
,

∂h

∂u
(Φ,Ψ)= r + (q− p)Ψ

(r + qΨ+Φ)2
pr + (p− q)Ψ

(r + qΦ+Ψ)2
,

∂h

∂v
(Φ,Ψ)= r + (q− p)Φ+

(
pr + (p− q)Ψ

)
(∂g/∂v)(Φ,Ψ)

(r + qΦ+Ψ)2
.

(3.15)

Set

�= ∂g

∂u
(Φ,Ψ) +

∂h

∂v
(Φ,Ψ),

�= ∂g

∂u
(Φ,Ψ)

∂h

∂v
(Φ,Ψ)− ∂g

∂v
(Φ,Ψ)

∂h

∂u
(Φ,Ψ).

(3.16)

Then it follows from Theorem A that both eigenvalues of JT2

(
Φ
Ψ

)
lie inside the unit disk

{λ : |λ| < 1} if and only if

|�| < 1+� < 2. (3.17)
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Inequality (3.17) is equivalent to the following three inequalities:

� < 1, (3.18)

� < 1+�, (3.19)

−1−� < �. (3.20)

First we will establish inequality (3.18). Clearly,

�= r + (q− p)Ψ

(r + qΨ+Φ)2
r + (q− p)Φ

(r + qΦ+Ψ)2
(3.21)

which in view of (3.5) gives

0 <
r + (q− p)Ψ

(r + qΨ+Φ)2
= r + (q− p)Ψ

r + qΨ+Φ

1
r + qΨ+Φ

<
1

r + qΨ+Φ
= Φ

pΨ+Φ
< 1,

0 <
r + (q− p)Φ

(r + qΦ+Ψ)2
= r + (q− p)Φ

r + qΦ+Ψ

1
r + qΦ+Ψ

<
1

r + qΦ+Ψ
= Ψ

pΦ+Ψ
< 1.

(3.22)

This proves (3.18).
Next we prove (3.20). In view of

S= r + (q− p)Ψ

(r + qΦ+Ψ)2
+

r + (q− p)Φ

(r + qΨ+Φ)2
+

(
r p+ (p− q)Ψ

)(
r p+ (p− q)Φ

)

(r + qΦ+Ψ)2(r + qΨ+Φ)2
,

D =
(
r + (q− p)Ψ

)(
r + (q− p)Φ

)

(r + qΦ+Ψ)2(r + qΨ+Φ)2
,

(3.23)

inequality (3.20) is equivalent to

(
r + (q− p)Ψ

)

(r + qΦ+Ψ)2
+

(
r + (q− p)Φ

)

(r + qΨ+Φ)2
+

(
r p+ (p− q)Ψ

)(
r p+ (p− q)Φ

)

(r + qΦ+Ψ)2(r + qΨ+Φ)2

>−1−
(
r + (q− p)Ψ

)(
r + (q− p)Φ

)

(r + qΦ+Ψ)2(r + qΨ+Φ)2
,

(3.24)

which, in turn, is equivalent to

(
r + (q− p)Ψ

)
(r + qΦ+Ψ)2 +

(
r + (q− p)Φ

)
(r + qΨ+Φ)2

+
(
r p+ (p− q)Ψ

)(
r p+ (p− q)Φ

)
+ (r + qΦ+Ψ)2(r + qΨ+Φ)2

+
(
r + (q− p)Ψ

)(
r + (q− p)Φ

)
> 0.

(3.25)

In view of q > p, we have

(
r + (q− p)Ψ

)
(r + qΦ+Ψ)2 +

(
r + (q− p)Φ

)
(r + qΨ+Φ)2

+ (r + qΦ+Ψ)2(r + qΨ+Φ)2 +
(
r + (q− p)Ψ

)(
r + (q− p)Φ

)
> 0.

(3.26)
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Thus, we have to show that
(
r p+ (p− q)Ψ

)(
r p+ (p− q)Φ

)
+
(
r + (q− p)Ψ

)(
r + (q− p)Φ

)
> 0. (3.27)

Expanding the left-hand side of this inequality, we obtain
(
r p+ (p− q)Ψ

)(
r p+ (p− q)Φ

)
+
(
r + (q− p)Ψ

)(
r + (q− p)Φ

)

= (r2p2 + r2
)
+ (Ψ+Φ)r(q− p)(1− p) + 2ΨΦ(q− p)2 > 0.

(3.28)

Finally, we prove (3.19). Inequality (3.19) is equivalent to
(
r + (q− p)Ψ

)

(r + qΦ+Ψ)2
+

(
r + (q− p)Φ

)

(r + qΨ+Φ)2
+

(
r p+ (p− q)Ψ

)(
r p+ (p− q)Φ

)

(r + qΦ+Ψ)2(r + qΨ+Φ)2

< 1+

(
r + (q− p)Ψ

)(
r + (q− p)Φ

)

(r + qΦ+Ψ)2(r + qΨ+Φ)2
,

(3.29)

which after the expansion and use of

Φ+Ψ= 1− p− r, ΦΨ= p(1− p− r)
q− 1

(3.30)

and (3.5) becomes

2r3 + r2(3q+2− p)(1− p− r) + r
(
q2 + 1+2q− 2p

)
[
(1− p− r)2− 2p(1− p− r)

q− 1

]

+4qr(1+ q− p)
p(1− p− r)

q− 1
+ q(q− p)(q+2)

p(1− p− r)2

q− 1

+ (q− p)(1− p− r)2
[
(1− p− r)− 3p

q− 1

]

<
{
r2+r(q+1)(1−p−r)+

(
q2 + 1

)
p(1− p− r)
q− 1

+q
[
(1−p−r)2− 2p(1− p− r)

q− 1

]}2

+ r2
(
1− p2

)
+ r(1+ p)(q− p)(1− p− r).

(3.31)

The left-hand side LHS of this inequality can be transformed to

LHS= (p− q− r + pq+ qr− p2
)(
pr− pq− p− qr +2pqr +2p2− r2 + p2q+ qr2− 1

)

(3.32)

and the right-hand side RHS of this inequality can be factored out as follows:

RHS= (q− p+ r− pq− qr + p2
)2
+ r2

(
1− p2

)
+ r(1+ p)(q− p)(1− p− r). (3.33)

Now we have

RHS−LHS= (1− r− p)(q+ r− 3p− pq− qr− 1)
(
q+ r + p2− p− pq− qr

)
. (3.34)
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In view of p+ r < 1 and (2.31), we have (1− r− p)(q+ r− 3p− pq− qr− 1) > 0 and

q+ r > 3p+1+ qr + qp > p+ qr + qp (3.35)

which implies q+ r− p− pq− qr > 0 and finally

q+ r + p2− p− pq− qr > 0. (3.36)

Thus RHS−LHS > 0 which proves (3.19). �

Theorem 3.1 gives an affirmative answer to [1, Conjecture 9.5.6].

4. Semicycle analysis and invariant intervals

In this section we list some basic identities for solutions of (1.1).
Let {yn}∞n=−1 be a solution of (1.1) and let (Φ,Ψ), (Ψ,Φ) be two prime period-two

solutions of (1.1). Then the following identities are true for n≥ 0:

yn+1− y = (p− q+ qr)
(
yn− y

)
+ (q− p+ r)

(
yn−1− y

)

(q+1)
(
r + qyn + yn−1

) , (4.1)

yn+1− yn−1 = yn−1
(
1− r− yn−1

)
+ qyn

(
p/q− yn−1

)

r + qyn + yn−1
, (4.2)

yn+1− pr

q− p

= (q− p− qr)
p
(
yn− pr/(q− p)

)
+
(
yn−1− pr/(q− p)

)
+
(
pr/(q− p)

)
(p+1)

(q− p)
(
r + qyn + yn−1

) ,

(4.3)

yn+1− pr

q− p
= (q− p− qr)

pyn +
(
yn−1− pr/(q− p)

)
+ pr/(q− p)

(q− p)
(
r + qyn + yn−1

) , (4.4)

yn+1− r

p− q
=
(
p(p− q)− qr

)(
yn− r/(q− p)

)
+ (p− q− r)

(
yn−1 + pr/(p− q)

)

(p− q)
(
r + qyn + yn−1

) ,

(4.5)

yn+1−Φ=
(
yn−Ψ

)(
(p− q)Φ+ pr

)
+
(
yn−1−Φ

)(
r + (q− p)Ψ

)

(r + qΨ+Φ)
(
r + qyn + yn−1

) , (4.6)

yn+1−Ψ=
(
yn−Φ

)(
(p− q)Ψ+ pr

)
+
(
yn−1−Ψ

)(
r + (q− p)Φ

)

(r + qΦ+Ψ)
(
r + qyn + yn−1

) . (4.7)

Next we establish the following result on the global boundedness of (1.1).

Lemma 4.1. Let {yn}∞n=−1 be a solution of (1.1). Then
(1)

0≤ yn ≤ max{p,1}
min{q,r,1} =U , n≥ 1. (4.8)
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The function

f (x, y)= px+ y

r + qx+ y
(4.9)

is bounded, that is, 0≤ f (x, y)≤U for x, y ≥ 0.
(2) If (2.22) and

p− q+ qr ≥ 0, q− p+ r ≥ 0 (4.10)

hold, then

yn ≥ L=min
{
y−1, y0, y

}
, (4.11)

where y is the positive equilibrium.
(3) If (2.22) and

p− q > r (4.12)

hold, then the interval [r/(p− q),U] is an invariant and attractive interval for all
solutions except for the zero equilibrium.

(4) If (2.22),

q− p > qr, (4.13)

and (2.30) or (2.31) are satisfied, then the interval [pr/(q− p),U] is an invariant
and attractive interval except for the zero equilibrium.

Proof. (1) The proof follows from the following inequality

0≤ yn+1 = pyn + yn−1
r + qyn + yn−1

≤ max{p,1}(yn + yn−1
)

min{q,r,1}(1+ yn + yn−1
) ≤ max{p,1}

min{q,r,1} =U , (4.14)

and the proof for f (x, y)≤U is obtained in a similar way.
(2) If L≥ y, then y−1, y0 ≥ y, which in view of (4.1) implies that yn ≥ y for n= 0,1, . . . .

Suppose that L < y. Then (4.1) implies the following identity:

yn+1− y− r

r + qyn + yn−1
K

= p− q+ qr

(q+1)
(
r + qyn + yn−1

)
(
yn− y−K

)
+

q− p+ r

(q+1)
(
r + qyn + yn−1

)
(
yn−1− y−K

)
,

(4.15)

where K is an arbitrary constant. Let K = L− y < 0. Then

yn+1− y− r

r + qyn + yn−1
(L− y)

= p− q+ qr

(q+1)
(
r + qyn + yn−1

)
(
yn−L

)
+

q− p+ r

(q+1)
(
r + qyn + yn−1

)
(
yn−1−L

)
.

(4.16)
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Since y−1 ≥ L and y0 ≥ L, we have

y1− y− r

r + qy0 + y−1
(L− y)≥ 0 (4.17)

which implies

y1− y ≥ r

r + qy0 + y−1
(L− y)≥ L− y (4.18)

and so y1 > L. Since y0, y1 ≥ L, then

y2− y− r

r + qy1 + y0
(L− y)≥ 0 (4.19)

which implies

y2− y ≥ r

r + qy1 + y0
(L− y) > L− y (4.20)

and so y2 > L. By using induction, the proof is completed.
(3) If yn ≥ r/(p− q) for some n≥ 0, then by (4.5) yn+1 ≥ r/(p− q), and so yk ≥ r/(p−

q), k ≥ n.
Suppose that yn−1, yn ≤ r/(p− q) for every n. Then

r + qyn + yn−1 ≤ r +
qr

p− q
+

r

p− q
= r(p+1)

p− q
. (4.21)

Hence

1 <
p− q

r
≤ p+1

r + qyn + yn−1
. (4.22)

Define mN =min{y2N , y2N−1}, N = 0,1, . . . . Let K ∈ R. Then (1.1) has the generalized
identity

yn+1− p+1
r + qyn + yn−1

K = p

r + qyn + yn−1

(
yn−K

)
+

1
r + qyn + yn−1

(
yn−1−K

)
(4.23)

for n= 0,1, . . . . Clearly, y1, y2 > 0 and so yn > 0 for every n≥ 1, which implies thatmN > 0
for N = 1,2, . . . . By (4.23) with K =mN and n= 2N , we get that

y2N+1− p+1
r + qy2N + y2N−1

mN = p
(
y2N −mN

)

r + qy2N + y2N−1
+

y2N−1−mN

r + qy2N + y2N−1
≥ 0 (4.24)

and so by (4.22),

y2N+1 ≥ p+1
r + qy2N + y2N−1

mN ≥ p− q

r
mN. (4.25)



A. Brett and M. R. S. Kulenović 15

Also

y2N+2− p+1
r + qy2N+1 + y2N

mN = p
(
y2N+1−mN

)

r + qy2N+1 + y2N
+

y2N −mN

r + qy2N+1 + y2N−1
≥ 0 (4.26)

and so by (4.22),

y2N+2 ≥ p+1
r + qy2N+1 + y2N

mN ≥ p− q

r
mN. (4.27)

Thus mN+1 ≥ ((p − q)/r)mN > mN which implies mn+1 ≥ ((p − q)/r)mn ≥ ((p − q)/
r)n+1−NmN for n≥N and so by (4.22),mn→∞ as n→∞, which is a contradiction.

(4) The following cases are possible.

Case 1. There exists N such that yN−1, yN ∈ [pr/(q− p),U]. By (4.3), yn ∈ [pr/(q− p),
U] for every n≥N − 1, which proves our claim.

Case 2. yn ∈ [0, pr/(q− p)] for every n≥ − 1. Observe that the condition (4.13) implies
that

p

q
>

pr

q− p
, 1− r >

pr

q− p
. (4.28)

By using (4.2) and (4.28), we obtain

yn+1− yn−1 = yn−1
(
1− r− yn−1

)
+ qyn

(
p/q− yn−1

)

r + qyn + yn−1

>
yn−1

(
pr/(q− p)− yn−1

)
+ qyn

(
pr/(q− p)− yn−1

)

r + qyn + yn−1
> 0,

(4.29)

which implies that yn+1 > yn−1 provided that yn−1 ≤ pr/(q− p). In this case, every so-
lution {yn} of (1.1) has two increasing, bounded subsequences. Consequently, every so-
lution converges to either a positive limit or period-two solution which belongs to the
interval (0, pr/(q− p)]. If a solution converges to a limit, this limit would be necessarily
an equilibrium of (1.1), which is impossible. If (2.30) is satisfied, then a solution cannot
converge to a period-two solution and the proof is complete. If (2.31) is satisfied, then
the solution converges either to an equilibrium or to the period-two solution. The con-
vergence of the equilibrium has been ruled out. If the solution converges to a period-two
solution (Φ,Ψ) or (Ψ,Φ), then

Φ+Ψ= 1− p− r <
2pr
q− p

, (4.30)

which implies

qr < q− p <
2pr
q− p

(4.31)
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and q+ r < 2p+ r + (p+ r)q. Using (2.31), we obtain

3p+1+ (p+ r)q < q+ r < 2p+ r + (p+ r)q, (4.32)

which leads to p+1 < r which contradicts with (2.22).

Case 3. There exists N such that yN ∈ [pr/(q− p),U] and no two subsequent terms are
in [pr/(q− p),U]. By (4.4), we have that yN+2k ∈ [pr/(q− p),U], k = 1,2, . . . . Assume
for the sake of simplicity that {y2n}n≥K ⊂ [pr/(q− p),U]. Then y2K−1 ≤ pr/(q− p) and
by Case 2 the sequence {y2n−1}n≥K is an increasing sequence in [0, pr/(q− p)]. Conse-
quently, {y2n−1}n≥K is convergent and so

lim
n→∞y2n−1 = L≤ pr

q− p
. (4.33)

Equation (1.1) implies

y2n+1 = py2n + y2n−1
r + qy2n + y2n−1

, (4.34)

y2n = y2n−1− r y2n+1− y2n−1y2n+1
qy2n+1− p

. (4.35)

In view of (4.28)

lim
n→∞y2n−1 = L≤ pr

q− p
<
p

q
, (4.36)

which shows that qL− p < 0 and 1− r−L > 0. Taking limit in (4.34), we obtain

lim
n→∞y2n =

L(1− r−L)
qL− p

< 0, (4.37)

which is a contradiction. Thus the only possible case is Case 1. �

5. Global attractivity and global stability of the positive equilibrium

By using the monotonic character of the function (4.9) in each of the invariant intervals
together with the appropriate convergence theorem (from among Theorems B, C, D, E,
and F), we can obtain some convergence results for the solutions with initial conditions
in the invariant intervals.

Case 5.1 (p = q). In this case the function f (x, y) is increasing in both of its arguments x
and y.

Theorem 5.2. Assume that

p = q. (5.1)

Then every solution of (1.1) converges to the equilibrium y. The equilibrium y is globally
asymptotically stable.
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Proof. In view of Lemma 4.1, we see that the function f (x, y) is increasing in both of
its arguments in an invariant interval [L,U] and that the positive equilibrium of (1.1) is
unique in that interval. Let us check Theorem D(a). Indeed

f (L,L)−L= (p+1)L
r + (q+1)L

−L= L(q+1)
x−L

r + (q+1)L
> 0 (5.2)

because L < x. Similarly, in view of U > x,

f (U ,U)−U = (p+1)U
r + (q+1)U

−U =U(q+1)
x−U

r + (q+1)U
< 0. (5.3)

The result now follows by employing Theorem D. Clearly, when p = q, condition (2.22)
implies (2.30) and so y is globally asymptotically stable. �

Case 5.3 (p > q). In this case the function f (x, y) is always increasing in x and it is in-
creasing in y for x < r/(p− q) and decreasing in y for x > r/(p− q).

Theorem 5.4. Assume that r ≥ p − q > 0. Then (1.1) possesses an invariant interval
[L,r/(p− q)]. The equilibrium y is globally asymptotically stable.

Proof. Observe that the conditions on parameters imply (4.10) and so by Lemma 4.1
every solution has a lower bound L. We want to show that [L,r/(p− q)] is an invariant
interval for f . Take x, y ∈ [L,r/(p− q)], then by using the increasing character of f , we
have

f (x, y)≤ f
(

r

p− q
,

r

p− q

)
= 1≤ r

p− q
. (5.4)

Clearly, the positive equilibrium of (1.1) is unique in that interval.
First, we show that the equilibrium is locally stable. Indeed, conditions p + 1 > r and

r ≥ p− q > 0 imply

q+ r < q+ p+1 < 2p+1 < 3p+1+ pq+ qr. (5.5)

Second, by using the identity (4.1), we obtain

yn+1− y = p− q+ qr

(q+1)
(
r + qyn + yn−1

)
(
yn− y

)
+

q− p+ r

(q+1)
(
r + qyn + yn−1

)
(
yn−1− y

)
,

(5.6)

for n= 0,1, . . . . Set en = yn− y, then we get the following “linearized equation”:

en+1 = f0en + f1en−1, n= 0,1, . . . , (5.7)

where

f0 = p− q+ qr

(q+1)
(
r + qyn + yn−1

) , f1 = q− p+ r

(q+1)
(
r + qyn + yn−1

) . (5.8)
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Now, by using the inequality (4.8), we obtain

∣
∣ f0
∣
∣+

∣
∣ f1
∣
∣= r

r + qyn + yn−1
≤ r

r + (q+1)L
= a < 1. (5.9)

Thus all conditions of Theorem F are satisfied and we conclude that the zero equilibrium
of (5.7) is a global attractor and so is the globally asymptotically stable. Consequently the
equilibrium y is globally asymptotically stable. This shows that the interval [L,r/(p− q)]
is an attracting interval for (1.1). �

Theorem 5.5. Assume that r < p− q. Assume that either

p ≤ r +1 (5.10)

or

0 < p− r− 1≤ 4q
1− q

. (5.11)

Then every solution of (1.1) converges to the equilibrium y.

Proof. It follows from Lemma 4.1 that [r/(p− q),U] is an invariant and attracting inter-
val for the solution of (1.1). We can also show that this interval is an invariant interval
for the function f . Take x, y ∈ [r/(p− q),U], then by using the monotonic character of
f and the condition r < p− q, we obtain

f (x, y)≥ f
(

r

p− q
,U
)
= 1≥ r

p− q
. (5.12)

Lemma 4.1 implies that f (x, y) ≤ U for all x, y ≥ 0. The function f (x, y) is increasing
in x and decreasing in y in this interval. In order to employ Theorem F, we have to show
that the only solution of the systemM = f (M,m),m= f (m,M), is a positive equilibrium
M =m= y. This system of equations is equivalent to

Mm= (p− r)M− qM2 +m,

Mm= (p− r)m− qm2 +M,
(5.13)

which implies

(M−m)
(
p− r− 1− q(M +m)

)= 0. (5.14)

If p− 1≤ r, then in view ofM,m∈ [r/(p− q),U], we see that (p− r− 1− q(M +m)) < 0
and so M =m. If p− 1 > r then M = ((p− r − 1)/q)−m and substituting in (5.14) we
obtain

q(1− q)m2 + (p− r− 1)(q− 1)m+ p− r− 1= 0. (5.15)

Likewise, one can show thatM satisfies the same equation. If we want to haveM =m, we
must assume that (5.15) cannot have two different real solutions, which is equivalent to
the condition that its discriminant is nonpositive. Thus we obtain condition (5.11). �



A. Brett and M. R. S. Kulenović 19

Based on extensive simulations and the fact that in the special case r = 0 the corre-
sponding result holds, we pose the following.

Conjecture 5.6. Condition (5.11) can be replaced by (2.30).

Case 5.7 (p < q). In this case the function f (x, y) is always increasing in y and it is in-
creasing in x for y < pr/(q− p) and decreasing in x for y > pr/(q− p).

Theorem 5.8. Assume that qr ≥ q − p > 0. Then (1.1) possesses an invariant interval
[L, pr/(q− p)]. The equilibrium y is globally asymptotically stable.

Proof. Observe that the conditions on the parameters imply (4.10) and so by Lemma 4.1
every solution has a lower bound L. We want to show that [L, pr/(q− p)] is an invariant
interval for f . Take x, y ∈ [L, pr/(q− p)], then by using the increasing character of f and
the condition qr ≥ q− p > 0, we have

f (x, y)≤ f
(

pr

q− p
,

pr

q− p

)
= p

q
≤ pr

q− p
. (5.16)

Lemma 4.1 implies that f (x, y) ≥ L for all x, y ≥ 0. Clearly, the positive equilibrium of
(1.1) is unique in that interval.

First, we show that the equilibrium is locally stable. Indeed, the conditions p + 1 > r
and qr ≥ q− p > 0 imply

q+ r < q+ p+1= q− p+2p+1≤ 2p+1+ qr < 3p+1+ pq+ qr. (5.17)

Second, by using the identity (4.1) we obtain the “linearized equation” (5.7) and the
inequality (5.9). Thus all conditions of Theorem F are satisfied and we conclude that the
zero equilibrium of (5.7) is global attractor and so it is globally asymptotically stable.
Consequently the equilibrium y is globally asymptotically stable. This shows that the
interval [L, pr/(q− p)] is an attracting interval for (1.1). �

The next result holds in the case when q− p > qr.

Theorem 5.9. (a) Assume that q− p > qr and (2.30). Then every solution of (1.1) with
initial conditions in the invariant interval

[
pr

q− p
,U
]

(5.18)

converges to the equilibrium y. The equilibrium y is globally asymptotically stable.
(b) Assume that q− p > qr, (2.31) and (3.2) are satisfied. Then every solution of (1.1)

converges to either the equilibrium or period-two solutions.

Proof. Lemma 4.1(3) implies that [pr/(q− p),U] is an attracting interval for all solu-
tions of (1.1). We want to show that [pr/(q− p),U] is an invariant interval for f . Clearly
f (x, y) ≤ U for all x, y ≥ 0. Take x, y ∈ [pr/(q − p),U], then by using the monotonic
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character of f and the condition q− p > qr we obtain

f (x, y)≥ f
(
U ,

pr

q− p

)
= p

q
>

pr

q− p
. (5.19)

The results now follow by employing Theorems B and 3.1. �

Remark 5.10. More precise information about the basins of attraction of the equilibrium
and period-two solutions will be given in Section 6.

6. Attractivity of period-two solutions

In this section we will consider the problem of attractivity of period-two solutions. We
show that when period-two solutions exist, they will attract all solutions except for those
that start on the stable manifold of the equilibrium. Precisely we will prove the following
result.

Theorem 6.1. Consider (1.1) where (2.31) and (3.2) are satisfied. Let (Φ,Ψ) and (Ψ,Φ)
be the prime period-two solutions of (1.1) for which Φ <Ψ. Then the global stable manifold
Ws(y, y) is the graph of a smooth increasing function with endpoints on the boundary of
B = (0,∞)× (0,∞), and is such that every solution with an initial point below Ws((y, y))
converges to (Ψ,Φ), while every solution with an initial point in B above Ws((y, y)) con-
verges to (Φ,Ψ). Consequently, except for solutions with an initial point inWs((y, y)), every
solution converges to one of the two period-two solutions.

Proof. First we show that the map T2 (second iteration of map T) leaves the box Bp,q,r =
[pr/(q − p),U]2 invariant. Assume that pr/(q − p) ≤ u, v ≤ U . Then clearly g(u,v) =
f (v,u)≤U and g is increasing in the first variable and decreasing in the second. In view
of (3.2), we have

g(u,v)≥ g
(

pr

q− p
,v
)
= p

q
>

pr

q− p
. (6.1)

The second component h(u,v) of T2 is decreasing in the first variable and increasing
in the second. The inequality h(u,v) ≤ U follows from the simple fact that h(u,v) =
f ( f (u,v),v) and the fact that f is bounded by U . In view of (6.1) and (3.2), we have

h(u,v)≥ h
(
u,

pr

q− p

)
= p

q
>

pr

q− p
. (6.2)

Next we notice that the map T2 is competitive in the box Bp,q,r . This is clear from the
expressions for ∂g/∂u, ∂g/∂v, ∂h/∂u, and ∂h/∂u.

The fixed points of T2 in B satisfy T2(u,v)= (u,v), that is,

u= pv+u

r + qv+u
, v = pu+ v

r + qu+ v
, (6.3)

which are exactly the equations satisfied by period-two solutions of (1.1). Hence the fixed
points of T2 in Bp,q,r are (Φ,Ψ), (Ψ,Φ), and (y, y), whereΦ and Ψmay be chosen so that
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Φ < y < Ψ. A consequence of this and of the fact that T2 is strongly competitive is that
B′ = [Φ,Ψ]× [Φ,Ψ] is an invariant box, with a unique fixed point in its interior, namely,
(y, y). This can be seen from the fact that points (x, y) in B′ satisfy (Φ,Ψ) ≤ (x, y) ≤
(Ψ,Φ), hence (Φ,Ψ) = T2(Φ,Ψ) < T2(x, y) < T2(Ψ,Φ) = (Ψ,Φ). Furthermore, (B′)◦ is
invariant as well since T2 is strongly competitive on B′. The same conclusion follows
from (4.6) and (4.7).

A straightforward calculation gives that the determinant of the Jacobian matrix of T2

at (y, y) satisfies

det JT2 (y, y)=

∣
∣
∣
∣
∣
∣
∣
∣
∣

r + q− p

(p+1)(q+1)
p− q+ qr

(p+1)(q+1)
(r + q− p)(p− q+ qr)

(p+1)2(q+1)2
(r + q− p)(p+1)(q+1)+ (p− q+ qr)2

(p+1)2(q+1)2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (r + p− q)2

(p+1)2(q+1)2
> 0.

(6.4)

In addition, we have that the only point in Bmapped by T2 to the fixed point (y, y) is the
fixed point itself. To see this, note that the equation T2(u,v)= (y, y) may be written as

pv+u

r + qv+u
= y,

py + v

r + qy + v
= y.

(6.5)

Straightforward algebraic manipulations show that (6.5) implies u= v = y.
The proof follows from Theorem G. In particular, orbits with initial point in Q2(y, y)

◦

(resp., in Q4(y, y)
◦) converge to (Φ,Ψ) (resp., to (Ψ,Φ)). �

Theorem 6.1 gives a complete answer to [1, Open Problem 9.5.7].
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