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1. Introduction

It is well known that the fixed point theorem of Krasnosel’skii states as follows.

Theorem 1.1 (Krasnosel’skii [8] and Zeidler [9]). Let M be a nonempty bounded closed
convex subset of a Banach space (X ,‖ · ‖). Suppose that U :M → X is a contraction and
C :M→ X is a completely continuous operator such that

U(x) +C(y)∈M, ∀x, y ∈M. (1.1)

Then U +C has a fixed point inM.

The theorem of Krasnosel’skii has been extended by many authors, for example, we
refer to [1–4, 6, 7] and references therein.

In this paper, we present a remark on a fixed point theorem of Krasnosel’skii type and
applying to the following nonlinear integral equation:

x(t)= q(t) + f
(
t,x(t)

)
+
∫ t

0
V
(
t,s,x(s)

)
ds+

∫ t

0
G
(
t,s,x(s)

)
ds, t ∈R+, (1.2)

where E is a Banach space with norm | · |, R+ = [0,∞), q : R+ → E; f : R+ × E → E;
G,V : Δ×E→ E are supposed to be continuous and Δ= {(t,s)∈R+×R+, s≤ t}.

In the case E = Rd and the function V(t,s,x) is linear in the third variable, (1.2) has
been studied by Avramescu and Vladimirescu [2]. The authors have proved the existence
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of asymptotically stable solutions to an integral equation as follows:

x(t)= q(t) + f
(
t,x(t)

)
+
∫ t

0
V(t,s)x(s)ds+

∫ t

0
G
(
t,s,x(s)

)
ds, t ∈R+, (1.3)

where q : R+ → Rd; f : R+ ×Rd → Rd; V : Δ→Md(R), G : Δ×Rd → Rd are supposed
to be continuous, Δ= {(t,s)∈R+×R+, s≤ t} and Md(R) is the set of all real quadratic
d×dmatrices. This was done by using the following fixed point theorem of Krasnosel’skii
type.

Theorem 1.2 (see [1]). Let (X ,| · |n) be a Fréchet space and let C,D : X → X be two oper-
ators.

Suppose that the following hypotheses are fulfilled:
(a) C is a compact operator;
(b) D is a contraction operator with respect to a family of seminorms ‖ · ‖n equivalent

with the family | · |n;
(c) the set

{
x ∈ X , x = λD

(
x

λ

)
+ λCx, λ∈ (0,1)

}
(1.4)

is bounded.
Then the operator C+D admits fixed points.

In [6], Hoa and Schmitt also established some fixed point theorems of Krasnosel’skii
type for operators of the form U +C on a bounded closed convex subset of a locally con-
vex space, whereC is completely continuous andUn satisfies contraction-type conditions.
Furthermore, applications to integral equations in a Banach space were presented.

On the basis of the ideas and techniques in [2, 6], we consider (1.2). The paper consists
of five sections. In Section 2, we prove a fixed point theorem of Krasnosel’skii type. Our
main results will be presented in Sections 3 and 4. Here, the existence solution and the
asymptotically stable solutions to (1.2) are established. We end Section 4 by illustrated
examples for the results obtained when the given conditions hold. Finally, in Section 5, a
general case is given. We show the existence solution of the equation in the form

x(t)= q(t) + f
(
t,x(t),x

(
π(t)

))
+
∫ t

0
V
(
t,s,x(s),x(σ(s)

))
ds

+
∫ t

0
G
(
t,s,x(s),x

(
χ(s)

))
ds, t ∈R+,

(1.5)

and in the case π(t) = t, the asymptotically stable solutions to (1.5) are also considered.
The results we obtain here are in part generalizations of those in [2], corresponding to
(1.3).

2. A fixed point theorem of Krasnosel’skii type

Based on the Theorem 1.2 (see [1]) and [6, Theorem 3], we obtain the following theorem.
The proof is similar to that of [6, Theorem 3].
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Theorem 2.1. Let (X ,| · |n) be a Fréchet space and let U ,C : X → X be two operators.
Assume that

(i) U is a k-contraction operator, k ∈ [0,1) (depending on n), with respect to a family
of seminorms ‖ · ‖n equivalent with the family | · |n;

(ii) C is completely continuous;
(iii) lim|x|n→∞(|Cx|n/|x|n)= 0, for all n∈N∗.

Then U +C has a fixed point.

Proof of Theorem 2.1. At first, we note that from the hypothesis (i), the existence and the
continuity of the operator (I −U)−1 follow. And, since a family of seminorms ‖ · ‖n is
equivalent with the family | · |n, there exist K1n,K2n > 0 such that

K1n‖x‖n ≤ |x|n ≤ K2n‖x‖n, ∀n∈N∗. (2.1)

This implies that
(a) the set {|x|n, x ∈ A} is bounded if and only if {‖x‖n, x ∈ A} is bounded, for

A⊂ X and for all n∈N∗;
(b) for each sequence (xm) in X , for all n∈N∗, since

lim
m→∞

∣
∣xm− x

∣
∣
n = 0⇐⇒ lim

m→∞
∥
∥xm− x

∥
∥
n = 0, (2.2)

(xm) converges to x with respect to | · |n if and only if (xm) converges to x with
respect to ‖ · ‖n.

Consequently the condition (ii) is satisfied with respect to ‖ · ‖n.
On the other hand, we also have

K1n

K2n

‖Cx‖n
‖x‖n ≤ K1n

‖Cx‖n
|x|n ≤ |Cx|n|x|n ≤ K2n

‖Cx‖n
|x|n ≤ K2n

K1n

‖Cx‖n
‖x‖n , ∀x ∈ X , ∀n∈N∗.

(2.3)

Hence, lim|x|n→∞(|Cx|n/|x|n)= 0 is equivalent to lim‖x‖n→∞(‖Cx‖n/‖x‖n)= 0.
Now we will prove that U +C has a fixed point.
For any a∈ X , define the operatorUa : X → X byUa(x)=U(x) + a. It is easy to see that

Ua is a k-contraction mapping and so for each a∈ X , Ua admits a unique fixed point, it
is denoted by φ(a), then

Ua
(
φ(a)

)= φ(a)⇐⇒U
(
φ(a)

)
+ a= φ(a)⇐⇒ φ(a)= (I −U)−1(a). (2.4)

Let u0 be a fixed point of U . For each x ∈ X , consider Um
C(x)(u0),m∈N∗, where

Um
C(x)(y)=UC(x)

(
Um−1

C(x) (y)
)=U

(
Um−1

C(x) (y)
)
+C(x), ∀y ∈ X. (2.5)
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We note more that for any n∈N∗ being fixed, for allm∈N∗,

∥
∥Um

C(x)

(
u0
)−u0

∥
∥
n =

∥
∥UC(x)

(
Um−1

C(x)

(
u0
))−U

(
u0
)∥∥

n

≤ ∥∥UC(x)
(
Um−1

C(x)

(
u0
))−U

(
Um−1

C(x)

(
u0
))∥∥

n +
∥
∥U
(
Um−1

C(x)

(
u0
))−U

(
u0
)∥∥

n

≤ ∥∥C(x)∥∥n + k
∥
∥Um−1

C(x)

(
u0
)−u0

∥
∥
n,

(2.6)

thus, by induction, for allm∈N∗, we can show that

∥
∥Um

C(x)

(
u0
)−u0

∥
∥
n ≤

(
1+ k+ ···+ km−1

)∥∥C(x)
∥
∥
n ≤ α

∥
∥C(x)

∥
∥
n, (2.7)

where α = 1/1− k > 1. By the condition (iii) satisfied with respect to ‖ · ‖n as above, for
1/4α > 0, there exists M̃ > 0 (we choose M̃ > ‖u0‖n) such that

‖x‖n > M̃ =⇒ ‖Cx‖n < 1
4α
‖x‖n. (2.8)

Choose a positive constant r1n > M̃ +‖u0‖n. Thus, for all x ∈ X , we consider the following
two cases.

Case 1 (‖x−u0‖n > r1n). Since ‖x‖n +‖u0‖n ≥ ‖x−u0‖n > r1n > M̃ +‖u0‖n⇒‖x‖n > M̃,
we have

‖Cx‖n < 1
4α
‖x‖n ≤ 1

4α

[∥
∥x−u0

∥
∥
n +
∥
∥u0

∥
∥
n

]

<
1
4α

[∥
∥x−u0

∥
∥
n +
∥
∥x−u0

∥
∥
n

]
= 1

2α

∥
∥x−u0

∥
∥
n.

(2.9)

Case 2 (‖x−u0‖n ≤ r1n). By (ii) satisfied with respect to ‖ · ‖n, there is a positive constant
β such that

‖Cx‖n ≤ β. (2.10)

Choose r2n > αβ. Put

Dn =
{
x ∈ X : ‖x‖n ≤ r2n

}
, D =

⋂

n∈N∗
Dn. (2.11)

Then u0 ∈D and D is bounded, closed, and convex in X .

For each x ∈D and for each n∈N∗, as above we also consider two cases.
If ‖x−u0‖n ≤ r1n, then by (2.7), (2.10),

∥
∥Um

C(x)

(
u0
)−u0

∥
∥
n ≤ α

∥
∥C(x)

∥
∥
n ≤ αβ < r2n. (2.12)
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If r1n < ‖x−u0‖n ≤ r2n, then by (2.7), (2.9),

∥
∥Um

C(x)

(
u0
)− (u0

)∥∥
n ≤ α

∥
∥C(x)

∥
∥
n ≤ α

1
2α

r2n = 1
2
r2n < r2n. (2.13)

We obtain Um
C(x)(u0)∈D for all x ∈D.

On the other hand, by UC(x) being a contraction mapping, the sequence Um
C(x)(u0)

converges to the unique fixed point φ(C(x)) ofUC(x), asm→∞, it implies that φ(C(x))∈
D, for all x ∈D. Hence, (I −U)−1C(D)⊂D.

Applying the Schauder fixed point theorem, the operator (I −U)−1C has a fixed point
in D that is also a fixed point of U +C in D. �

3. Existence of solution

Let X = C(R+,E) be the space of all continuous functions on R+ to E which is equipped
with the numerable family of seminorms

|x|n = sup
t∈[0,n]

{∣∣x(t)
∣
∣}, n≥ 1. (3.1)

Then (X ,|x|n) is complete in the metric

d(x, y)=
∞∑

n=1
2−n

|x− y|n
1+ |x− y|n (3.2)

and X is the Fréchet space. Consider in X the other family of seminorms ‖x‖n defined as
follows:

‖x‖n = |x|γn + |x|hn , n≥ 1, (3.3)

where

|x|hn = sup
t∈[γn,n]

{
e−hn(t−γn)

∣
∣x(t)

∣
∣}, (3.4)

γn ∈ (0,n) and hn > 0 are arbitrary numbers, which is equivalent to |x|n, since

e−hn(n−γn)|x|n ≤ ‖x‖n ≤ 2|x|n, ∀x ∈ X , ∀n≥ 1. (3.5)

We make the following assumptions.
(A1) There exists a constant L∈ [0,1) such that

∣
∣ f (t,x)− f (t, y)

∣
∣≤ L|x− y|, ∀x, y ∈ E, ∀t ∈R+. (3.6)

(A2) There exists a continuous function ω1 : Δ→R+ such that
∣
∣V(t,s,x)−V(t,s, y)

∣
∣≤ ω1(t,s)|x− y|, ∀x, y ∈ E, ∀(t,s)∈ Δ. (3.7)

(A3) G is completely continuous such that G(t,·,·) : I × J → E is continuous uni-
formly with respect to t in any bounded interval, for any bounded I ⊂ [0,∞)
and any bounded J ⊂ E.
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(A4) There exists a continuous function ω2 : Δ→R+ such that

lim
|x|→∞

∣
∣G(t,s,x)

∣
∣−ω2(t,s)
|x| = 0, (3.8)

uniformly in (t,s) in any bounded subsets of Δ.

Theorem 3.1. Let (A1)–(A4) hold. Then (1.2) has a solution on [0,∞).

Proof of Theorem 3.1. The proof consists of Steps 1–4.

Step 1. In X , we consider the equation

x(t)= q(t) + f
(
t,x(t)

)
, t ∈R+. (3.9)

We have the following lemma.

Lemma 3.2. Let (A1) hold. Then (3.9) has a unique solution.

Proof. By hypothesis (A1), the operator Φ : X → X , which is defined as follows:

Φx(t)= q(t) + f
(
t,x(t)

)
, x ∈ X , t ∈R+ (3.10)

is the L-contractionmapping on the Fréchet space (X ,|x|n). By applying the Banach space
(see [1, Theorem B]), Φ admits a unique fixed point ξ ∈ X . The lemma is proved. �

By the transformation x = y + ξ, we can write (1.2) in the form

y(t)= Ay(t) +By(t) +Cy(t), t ∈R+, (3.11)

where

Ay(t)= q(t) + f
(
t, y(t) + ξ(t)

)− ξ(t),

By(t)=
∫ t

0
V
(
t,s, y(s) + ξ(s)

)
ds,

Cy(t)=
∫ t

0
G
(
t,s, y(s) + ξ(s)

)
ds.

(3.12)

Step 2. Put U = A+B. It follows from the assumptions (A1), (A2) that for all t ∈R+, for
all y, ỹ ∈ X ,

∣
∣Uy(t)−U ỹ(t)

∣
∣≤ L

∣
∣y(t)− ỹ(t)

∣
∣+

∫ t

0
ω1(t,s)

∣
∣y(s)− ỹ(s)

∣
∣ds. (3.13)

Therefore, by a similar proof to the proof in [2, Lemma 3.1(2)], we haveU a kn-contraction
operator, kn ∈ [0,1) (depending on n), with respect to a family of seminorms ‖ · ‖n. In-
deed, fix an arbitrary positive integer n∈N∗.
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For all t ∈ [0,γn] with γn ∈ (0,n) chosen later, we have

∣
∣Uy(t)−U ỹ(t)

∣
∣≤ L

∣
∣y(t)− ỹ(t)

∣
∣+

∫ t

0
ω1(t,s)

∣
∣y(s)− ỹ(s)

∣
∣ds

≤ (L+ ω̃1nγn
)|y− ỹ|γn ,

(3.14)

where

ω̃1n = sup
{
ω1(t,s) : (t,s)∈ Δn

}
,

Δn =
{
(t,s)∈ [0,n]× [0,n], s≤ t

}
.

(3.15)

This implies that

|Uy−U ỹ|γn ≤
(
L+ ω̃1nγn

)|y− ỹ|γn . (3.16)

For all t ∈ [γn,n], similarly, we also have

∣
∣Uy(t)−U ỹ(t)

∣
∣≤ L

∣
∣y(t)− ỹ(t)

∣
∣+ ω̃1n

∫ γn

0

∣
∣y(s)− ỹ(s)

∣
∣ds+ ω̃1n

∫ t

γn

∣
∣y(s)− ỹ(s)

∣
∣ds.

(3.17)

It follows from (3.17) and the inequalities

0 < e−hn(t−γn) < 1, ∀t ∈ [γn,n], hn > 0, (3.18)

(hn > 0 is also chosen later) that

∣
∣Uy(t)−U ỹ(t)

∣
∣e−hn(t−γn) ≤ L

∣
∣y(t)− ỹ(t)

∣
∣e−hn(t−γn) + ω̃1nγn|y− ỹ|γn

+ ω̃1n

∫ t

γn

∣
∣y(s)− ỹ(s)

∣
∣e−hn(t−γn)ds

≤ L|y− ỹ|hn + ω̃1nγn|y− ỹ|γn

+ ω̃1n

∫ t

γn

∣
∣y(s)− ỹ(s)

∣
∣e−hn(s−γn)ehn(s−t)ds

≤ L|y− ỹ|hn + ω̃1nγn|y− ỹ|γn + ω̃1n|y− ỹ|hn
∫ t

γn
ehn(s−t)ds

≤ L|y− ỹ|hn + ω̃1nγn|y− ỹ|γn +
ω̃1n

hn
|y− ỹ|hn .

(3.19)

We get

|Uy−U ỹ|hn ≤
(
L+

ω̃1n

hn

)
|y− ỹ|hn + ω̃1nγn|y− ỹ|γn . (3.20)
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Combining (3.16)–(3.20), we deduce that

‖Uy−U ỹ‖n ≤
(
L+2γnω̃1n

)|y− ỹ|γn +
(
L+

ω̃1n

hn

)
|y− ỹ|hn ≤ kn‖y− ỹ‖n, (3.21)

where kn =max{L+2γnω̃1n, L+ ω̃1n/hn}. Choose

0 < γn <min
{
1−L

2ω̃1n
,n
}
, hn >

ω̃1n

1−L
, (3.22)

then we have kn < 1, by (3.21), U is a kn-contraction operator with respect to a family of
seminorms ‖ · ‖n.
Step 3. We show that C : X → X is completely continuous. We first show that C is contin-
uous. For any y0 ∈ X , let (ym)m be a sequence in X such that limm→∞ ym = y0.

Let n ∈N∗ be fixed. Put K = {(ym + ξ)(s) : s∈ [0,n], m ∈N}. Then K is compact in
E. Indeed, let ((ymi + ξ)(si))i be a sequence in K . We can assume that limi→∞ si = s0 and
that limi→∞ ymi + ξ = y0 + ξ. We have

∣
∣(ymi+ξ

)(
si
)−(y0+ξ

)(
s0
)∣∣≤ ∣∣(ymi+ξ

)(
si
)−(y0+ξ

)(
si
)∣∣+

∣
∣(y0+ξ

)(
si
)−(y0+ξ

)(
s0
)∣∣

≤ ∣∣ymi − y0
∣
∣
n +
∣
∣(y0 + ξ

)(
si
)− (y0 + ξ

)(
s0
)∣∣,

(3.23)

which shows that limi→∞(ymi + ξ)(si) = (y0 + ξ)(s0) in E. It means that K is compact in
E. For any ε > 0, since G is continuous on the compact set [0,n]× [0,n]×K , there exists
δ > 0 such that for every u,v ∈ K , |u− v| < δ,

∣
∣G(t,s,u)−G(t,s,v)

∣
∣ <

ε
n
, ∀s, t ∈ [0,n]. (3.24)

Since limm→∞ ym = y0, there existsm0 such that form>m0,

∣
∣(ym + ξ

)
(s)− (y0 + ξ

)
(s)
∣
∣= ∣∣ym(s)− y0(s)

∣
∣ < δ, ∀s∈ [0,n]. (3.25)

This implies that for all t ∈ [0,n], for allm>m0,

∣
∣Cym(t)−Cy0(t)

∣
∣≤

∫ t

0

∣
∣G
(
t,s,
(
ym + ξ

)
(s)
)−G

(
t,s,
(
y0 + ξ

)
(s)
)∣∣ds < ε, (3.26)

so |Cym−Cy0|n < ε, for allm>m0, and the continuity of C is proved.
It remains to show that C maps bounded sets into relatively compact sets. Let us recall

the following condition for the relative compactness of a subset in X .

Lemma 3.3 (see [7, Proposition 1]). Let X = C(R+,E) be the Fréchet space defined as above
and let A be a subset of X . For each n ∈ N∗, let Xn = C([0,n],E) be the Banach space of
all continuous functions u : [0,n]→ E, with the norm ‖u‖ = supt∈[0,n]{|u(t)|}, and An =
{x|[0,n] : x ∈A}.

The set A in X is relatively compact if and only if for each n∈N∗, An is equicontinuous
in Xn and for every s∈ [0,n], the set An(s)= {x(s) : x ∈An} is relatively compact in E.
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This proposition was stated in [7] and without proving in detail. Let us prove it in the
appendix. The proof follows from the Ascoli-Arzela theorem (see [5]):

Let E be a Banach space with the norm | · | and let S̃ be a compact metric space. Let
CE(S̃) be the Banach space of all continuous maps from S̃ to E with the norm

‖x‖ = sup
{∣∣x(s)

∣
∣, s∈ S̃

}
. (3.27)

The set A in CE(S̃) is relatively compact if and only if A is equicontinuous and for every
s∈ S̃, the set A(s)= {x(s) : x ∈ A} is relatively compact in E.

Now, let Ω be a bounded subset of X . We have to prove that for n∈N∗, we have the
following.

(a) The set (CΩ)n is equicontinuous in Xn.
Put S = {(y + ξ)(s) : y ∈ Ω, s ∈ [0,n]}. Then S is bounded in E. Since G is com-

pletely continuous, the set G([0,n]2× S) is relatively compact in E, and so G([0,n]2× S)
is bounded. Consequently, there existsMn > 0 such that

∣
∣G
(
t,s, (y + ξ)(s)

)∣∣≤Mn, ∀t, s∈ [0,n], ∀y ∈Ω. (3.28)

For any y ∈Ω, for all t1, t2 ∈ [0,n],

∣
∣Cy

(
t1
)−Cy

(
t2
)∣∣=

∣
∣
∣
∣

∫ t1

0
G
(
t1,s, (y + ξ)(s)

)
ds−

∫ t2

0
G
(
t2,s, (y + ξ)(s)

)
ds
∣
∣
∣
∣

≤
∫ t1

0

∣
∣G
(
t1,s, (y + ξ)(s)

)−G
(
t2,s, (y + ξ)(s)

)∣∣ds

+
∫ t2

t1

∣
∣G
(
t2,s, (y + ξ)(s)

)∣∣ds.

(3.29)

By the hypothesis (A3) and (3.28), the inequality (3.29) shows that (CΩ)n is equicontin-
uous on Xn.

(b) For every t ∈ [0,n], the set (CΩ)n(t) = {Cy|[0,n](t) : y ∈Ω} is relatively compact
in E.

As above, the set G([0,n]2× S) is relatively compact in E, it implies that G([0,n]2× S)
is compact in E, and so is convG([0,n]2 × S), where convG([0,n]2 × S) is the convex
closure of G([0,n]2× S).

For every t ∈ [0,n], for all y ∈Ω, it follows from

G
(
t,s, (y + ξ)(s)

)∈G
(
[0,n]2× S

)
, ∀s∈ [0,n],

Cy(t)=
∫ t

0
G
(
t,s, (y + ξ)(s)

)
ds

(3.30)

that

(CΩ)n(t)⊂ t convG
(
[0,n]2× S

)
. (3.31)

Hence the set (CΩ)n(t) is relatively compact in E.
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By Lemma 3.3,C(Ω) is relatively compact inX . Therefore,C is completely continuous.
Step 3 is proved.

Step 4. Finally, we show that for all n∈N∗,

lim
|y|n→∞

|Cy|n
|y|n = 0. (3.32)

For any given ε > 0, the assumption (A4) implies that there exists η > 0 such that for all u
with |u| > η,

∣
∣G(t,s,u)

∣
∣ < ω̃2n +

ε
4n
|u|, ∀t, s∈ [0,n], (3.33)

where ω̃2n = sup{ω2(t,s) : t,s∈ [0,n]}.
On the other hand, G is completely continuous, there exists ρ > 0 such that for all u

with |u| ≤ η,
∣
∣G(t,s,u)

∣
∣≤ ρ, ∀t,s∈ [0,n]. (3.34)

Combining (3.33), (3.34), for all t,s∈ [0,n], for all u∈ E, we get

∣
∣G(t,s,u)

∣
∣≤ ρ+ ω̃2n +

ε
4n
|u|. (3.35)

This implies that for all t ∈ [0,n],

∣
∣Cy(t)

∣
∣≤

∫ t

0

∣
∣G
(
t,s, (y + ξ)(s)

)|ds

≤ n
[
ρ+ ω̃2n +

ε
4n

(|y|n + |ξ|n
)
]
.

= nρ+nω̃2n +
ε
4
|ξ|n + ε4 |y|n.

(3.36)

It follows that if we choose μn >max{4nρ/ε,4nω̃2n/ε,|ξ|n}, then for |y|n > μn, we have
|Cy|n/|y|n < ε, this means that

lim
|y|n→∞

|Cy|n
|y|n = 0. (3.37)

By applying Theorem 2.1, the operator U +C has a fixed point y in X . Then (1.2) has
a solution x = y + ξ on [0,∞). Theorem 3.1 is proved. �

4. The asymptotically stable solutions

We now consider the asymptotically stable solutions for (1.2) defined as follows.

Definition 4.1. A function x is said to be an asymptotically stable solution of (1.2) if for
any solution x̃ of (1.2),

lim
t→∞

∣
∣x(t)− x̃(t)

∣
∣= 0. (4.1)
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In this section, we assume that (A1)–(A4) hold and assume in addition that
(A5) V(t,s,0)= 0, for all (t,s)∈ Δ;
(A6) there exist two continuous functions ω3,ω4 : Δ→R+ such that

∣
∣G(t,s,x)

∣
∣≤ ω3(t,s) +ω4(t,s)|x|, ∀(t,s)∈ Δ. (4.2)

Then, by Theorem 3.1, (1.2) has a solution on (0,∞).
On the other hand, if x is a solution of (1.2) then, as Step 1 of the proof of Theorem 3.1,

y = x− ξ satisfies (3.11). This implies that for all t ∈R+,

∣
∣y(t)

∣
∣≤ ∣∣Ay(t)∣∣+∣∣By(t)∣∣+∣∣Cy(t)∣∣, (4.3)

where

Ay(t)= q(t) + f
(
t, y(t) + ξ(t)

)− ξ(t), A0= 0,

By(t)=
∫ t

0
V
(
t,s, y(s) + ξ(s)

)
ds, in which V(t,s,0)= 0,

Cy(t)=
∫ t

0
G
(
t,s, y(s) + ξ(s)

)
ds.

(4.4)

Consequently, for all t ∈R+,

∣
∣y(t)

∣
∣≤ L

∣
∣y(t)

∣
∣+

∫ t

0
ω1(t,s)

∣
∣y(s) + ξ(s)

∣
∣ds+

∫ t

0

[
ω3(t,s) +ω4(t,s)

∣
∣y(s) + ξ(s)

∣
∣]ds.

(4.5)

It follows that

∣
∣y(t)

∣
∣≤ 1

1−L

∫ t

0
ω(t,s)

∣
∣y(s)

∣
∣ds+ a(t), (4.6)

where

ω(t,s)= ω1(t,s) +ω4(t,s),

a(t)= 1
1−L

∫ t

0
ω(t,s)

∣
∣ξ(s)

∣
∣ds+

1
1−L

∫ t

0
ω3(t,s)ds.

(4.7)

Using the inequality (a+ b)2 ≤ 2(a2 + b2), for all a,b ∈R, we get

∣
∣y(t)

∣
∣2 ≤ 2

(1−L)2

∫ t

0
ω2(t,s)ds

∫ t

0

∣
∣y(s)

∣
∣2ds+2a2(t). (4.8)

Putting v(t)= |y(t)|2, b(t)= (2/(1−L)2)
∫ t
0 ω

2(t,s)ds, (4.8) is rewritten as follows:

v(t)≤ b(t)
∫ t

0
v(s)ds+2a2(t). (4.9)
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By (4.9), based on classical estimates, we obtain

∣
∣y(t)

∣
∣2 = v(t)≤ 2a2(t) + b(t)e

∫ t
0 b(s)ds

∫ t

0
2e−

∫ s
0 b(u)dua2(s)ds, ∀t ∈R+. (4.10)

Then we have the following theorem about the asymptotically stable solutions.

Theorem 4.2. Let (A1)–(A6) hold. If

lim
t→∞2a

2(t) + b(t)e
∫ t
0 b(s)ds

∫ t

0
2e−

∫ s
0 b(u)dua2(s)ds= 0, (4.11)

where

a(t)= 1
1−L

∫ t

0

[
ω1(t,s) +ω4(t,s)

]∣∣ξ(s)
∣
∣ds+

1
1−L

∫ t

0
ω3(t,s)ds,

b(t)= 2
(1−L)2

∫ t

0

[
ω1(t,s) +ω4(t,s)

]2
ds,

(4.12)

then every solution x to (1.2) is an asymptotically stable solution.
Furthermore,

lim
t→∞

∣
∣x(t)− ξ(t)

∣
∣= 0. (4.13)

Proof of Theorem 4.2. Let x, x̃ be two solutions to (1.2).
Then y = x− ξ, ỹ = x̃− ξ are solutions to (3.11). It follows from (4.10) that

∣
∣y(t)

∣
∣2 ≤ 2a2(t) + b(t)e

∫ t
0 b(s)ds

∫ t

0
2e−

∫ s
0 b(u)dua2(s)ds, (4.14)

for all t ∈R+, and so is | ỹ(t)|2.
It follows from (4.11) and (4.14) that

lim
t→∞

∣
∣x(t)− ξ(t)

∣
∣= 0. (4.15)

Put c(t)= 2a2(t) + b(t)e
∫ t
0 b(s)ds

∫ t
0 2e

−∫ s0 b(u)dua2(s)ds. Then, by (4.14),

∣
∣x(t)− x̃(t)

∣
∣= ∣∣y(t)− ỹ(t)

∣
∣≤ 2

√
c(t), ∀t ∈R+. (4.16)

Combining (4.11), (4.16),

lim
t→∞

∣
∣x(t)− x̃(t)

∣
∣= 0. (4.17)

Theorem 4.2 is proved. �
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Remark 4.3. We present an example when condition (4.11) holds.
Let the following assumptions hold:
(H1)

∫ +∞
0 |q(s)|2ds < +∞,

∫ +∞
0 | f (s,0)|2ds < +∞;

(H2) limt→∞
∫ t
0 ω3(t,s)ds= 0,

∫ +∞
0 [

∫ s
0 ω3(s,u)du]2ds < +∞;

(H3) there exist continuous functions gi,hi :R+→R+, i= 1,4 such that for i= 1,4,
(i) ωi(t,s)= gi(t)hi(s), for all (t,s)∈ Δ,
(ii) limt→∞ gi(t)= 0,
(iii)

∫ +∞
0 g2i (s)ds < +∞,

∫ +∞
0 h2i (s)ds < +∞.

Then condition (4.11) holds. Indeed, we have the following.
Since ξ is a (unique) fixed point of Φ, for all t ∈R+, we have

∣
∣ξ(t)

∣
∣≤ ∣∣q(t)∣∣+∣∣ f (t,ξ(t))∣∣≤ ∣∣q(t)∣∣+∣∣ f (t,0)∣∣+∣∣ f (t,ξ(t))− f (t,0)

∣
∣

≤ ∣∣q(t)∣∣+∣∣ f (t,0)∣∣+L
∣
∣ξ(t)

∣
∣.

(4.18)

This means that

∣
∣ξ(t)

∣
∣≤ 1

1−L

(∣∣q(t)
∣
∣+

∣
∣ f (t,0)

∣
∣), (4.19)

so

∣
∣ξ(t)

∣
∣2 ≤ 2

(1−L)2

(∣
∣q(t)

∣
∣2 +

∣
∣ f (t,0)

∣
∣2
)
, (4.20)

and hence
∫ +∞
0 |ξ(s)|2ds < +∞, by the hypothesis (H1).

Therefore, it follows from (H3) that

(∫ +∞

0
hi(s)

∣
∣ξ(s)

∣
∣ds
)2
≤
∫ +∞

0
h2i (s)ds

∫ +∞

0

∣
∣ξ(s)

∣
∣2ds < +∞, i= 1,4;

lim
t→∞

∫ t

0
ωi(t,s)

∣
∣ξ(s)

∣
∣ds= lim

t→∞gi(t)
∫ t

0
hi(s)

∣
∣ξ(s)

∣
∣ds= 0, i= 1,4.

(4.21)

Combining these and (H2), we obtain

a(t)= 1
1−L

∫ t

0
ω1(t,s)

∣
∣ξ(s)

∣
∣ds+

1
1−L

∫ t

0

[
ω3(t,s) +ω4(t,s)

∣
∣ξ(s)

∣
∣]ds−→ 0, (4.22)

as t→∞.
By (H3), we also have

∫ t

0
ω2(t,s)ds≤ 2

∫ t

0

[
ω2
1(t,s) +ω2

2(t,s)
]
ds

= 2g21 (t)
∫ t

0
h21(s)ds+2g24 (t)

∫ t

0
h24(s)ds−→ 0, as t −→∞,

(4.23)
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and it follows that

b(t)= 2
(1−L)2

∫ t

0
ω2(t,s)ds−→ 0, as t −→∞. (4.24)

Furthermore, it follows from (4.23) and (H3)(iii) that

∫ +∞

0
b(s)ds < +∞. (4.25)

On the other hand, by

a2(t)≤ 3
(1−L)2

g21 (t)
∫ t

0
h21(s)ds

∫ t

0

∣
∣ξ(s)

∣
∣2ds+

3
(1−L)2

[∫ t

0
ω3(t,s)ds

]2

+
3

(1−L)2
g24 (t)

∫ t

0
h24(s)ds

∫ t

0

∣
∣ξ(s)

∣
∣2ds,

(4.26)

(H2) and (H3)(iii), we get

∫ +∞

0
a2(s)ds < +∞. (4.27)

Hence, from (4.22), (4.24)–(4.27), we conclude that

lim
t→∞2a

2(t) + b(t)e
∫ t
0 b(s)ds

∫ t

0
2e−

∫ s
0 b(u)dua2(s)ds= 0. (4.28)

Remark 4.4. If gi :R+→R+, i= 1,4, is uniformly continuous, then the hypothesis (H3)(ii),
limt→∞ gi(t)= 0, follows from the hypothesis (H3)(iii)1,

∫ +∞
0 g2i (s)ds < +∞.

Remark 4.5 (an example). Let us give the following illustrated example for the results we
obtain as above.

Let E = C([0,1],R) with the usual norm ‖u‖ = supζ∈[0,1]{|u(ζ)|}.
Consider (1.2), where

q :R+ −→ E, t −→ q(t),

f :R+×E −→ E, (t,x) −→ f (t,x),

V : Δ×E −→ E, (t,s,x) −→V(t,s,x),

G : Δ×E −→ E, (t,s,x) −→G(t,s,x),

(4.29)
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such that for every x ∈ X = C(R+,E), for all t,s≥ 0 (s≤ t), for all ζ ∈ [0,1],

q(t)(ζ)≡ q(t,ζ)= 1− k

et + ζ
e−2t,

f (t,x)(ζ)= k

et + ζ
e−2t sin

[
π

2

(
et + ζ

)
x(ζ)

]
,

V(t,s,x)(ζ)= 1
et + ζ

e−2s
(
es + ζ

)∣∣x(ζ)
∣
∣,

G(t,s,x)(ζ)= 1
et + ζ

e−2s
√
es
√
‖x‖,

(4.30)

in which k < 2/π is a positive constant.
We first note that for every x, y ∈ X = C(R+,E), for all t,s ≥ 0 (s ≤ t), and for all ζ ∈

[0,1],

∣
∣ f (t,x)(ζ)− f (t, y)(ζ)

∣
∣≤ k

et + ζ
e−2t

∣
∣
∣
∣sin

[
π

2

(
et + ζ

)
x(ζ)

]
− sin

[
π

2

(
et + ζ

)
y(ζ)

]∣∣
∣
∣

≤ ke−2t
π

2

∣
∣x(ζ)− y(ζ)

∣
∣≤ k

π

2
‖x− y‖,

∣
∣G(t,s,x)(ζ)

∣
∣= 1

et + ζ
e−2s

√
es
√
‖x‖

≤ 1
2
(
et + ζ

)e−2s
√
es +

1
2
(
et + ζ

)e−2s
√
es‖x‖,

(4.31)

by Cauchy’s inequality.
Combining these and the given hypotheses as above, we have q, f , V , G satisfying

(A1)–(A6), with

ω1(t,s)= e−te−2s
(
es +1

)
, ω2(t,s)= 0,

ω3(t,s)= ω4(t,s)= 1
2
e−te−2s

√
es.

(4.32)

Furthermore, it is obvious that (H1)–(H3) hold.
We conclude that Theorems 3.1, 4.2 hold for (1.2), in this case.
For more details, let us consider a solution x(t) of (1.2) as follows.
Let x ∈ X = C(R+,E) such that for all t ∈R+,

x(t)(ζ)≡ x(t,ζ)= 1
et + ζ

, ∀ζ ∈ [0,1]. (4.33)

It is clear that x defined as above is the solution of (1.2). Moreover,

∥
∥x(t)

∥
∥= sup

ζ∈[0,1]

{∣∣
∣
∣

1
et + ζ

∣
∣
∣
∣

}
= e−t −→ 0, as t −→ +∞. (4.34)



16 On a fixed point theorem and application

On the other hand, by

∣
∣ f
(
t,x(t)

)
(ζ)− f

(
t, y(t)

)
(ζ)
∣
∣≤ k

π

2

∥
∥x(t)− y(t)

∥
∥, (4.35)

for all x, y ∈ X , for all t ∈R+, and for all ζ ∈ [0,1], we obtain

sup
t∈[0,n]

{∥∥ f
(
t,x(t)

)− f
(
t, y(t)

)∥∥}≤ k
π

2
sup

t∈[0,n]

{∥∥x(t)− y(t)
∥
∥}, (4.36)

for all n∈N∗. Thus the equation

x(t)= q(t) + f
(
t,x(t)

)
, t ≥ 0 (4.37)

has a unique ξ(t)∈ X . We see at once that for all ζ ∈ [0,1],

∣
∣ξ(t,ζ)

∣
∣≤ ∣∣q(t,ζ)∣∣+∣∣ f (t,ξ(t))(ζ)∣∣≤ 1− k

et + ζ
e−2t +

k

et + ζ
e−2t

∣
∣
∣
∣sin

[
π

2

(
et + ζ

)
ξ(t,ζ)

]∣∣
∣
∣

≤ (1− k)e−3t + ke−3t = e−3t .
(4.38)

This implies that

∥
∥x(t)− ξ(t)

∥
∥≤ e−t + e−3t . (4.39)

Therefore, limt→∞‖x(t)− ξ(t)‖ = 0.

5. The general case

Since this will cause no confusion, let us use the same letters V , G, ωi, i= 1,2,3,4; Φ, ξ,
A, B, C, U to define the functions of Section 3 and of this section, respectively.

We consider the following equation:

x(t)= q(t) + f̂
(
t,x(t),x

(
π(t)

))

+
∫ t

0
V
(
t,s,x(s),x(σ(s)

))
ds+

∫ t

0
G
(
t,s,x(s),x

(
χ(s)

))
ds, t ∈R+,

(5.1)

where q :R+→ E; f̂ :R+×E×E→ E;G,V : Δ×E×E→ E are supposed to be continuous
and Δ= {(t,s)∈R+×R+, s≤ t}, the functions π,σ ,χ :R+→R+ are continuous.

We make the following assumptions.
(I1) There exists a constant L∈ [0,1) such that

∣
∣ f̂ (t,x,u)− f̂ (t, y,v)

∣
∣≤ L

2

(|x− y|+ |u− v|), ∀x, y,u,v ∈ E, ∀t ∈R+. (5.2)

(I2) There exists a continuous function ω1 : Δ→R+ such that

∣
∣V(t,s,x,u)−V(t,s, y,v)

∣
∣≤ ω1(t,s)

(|x− y|+ |u− v|), ∀x, y,u,v ∈ E, ∀(t,s)∈ Δ.
(5.3)
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(I3) G is completely continuous such that G(t,·,·,·) : I × J1 × J2 → E is continuous
uniformly with respect to t in any bounded interval, for any bounded subset
I ⊂ [0,∞) and for any bounded subset J1, J2 ⊂ E.

(I4) There exists a continuous function ω2 : Δ→R+ such that

lim
|x|+|u|→∞

∣
∣G(t,s,x,u)

∣
∣−ω2(t,s)

|x|+ |u| = 0, (5.4)

uniformly in (t,s) in any bounded subsets of Δ.
(I5) 0 < π(t)≤ t, 0 < σ(t)≤ t, χ(t)≤ t, for all t ∈R+.

Theorem 5.1. Let (I1)–(I5) hold. Then (5.1) has a solution on (0,∞).

Proof of Theorem 5.1. These follow by the same method as in Section 3. However, there
are also some changes.

At first, we note that the following exist. (a) By hypothesis (I1) and 0 < π(t)≤ t, for all
t ∈R+, the operator Φ : X → X defined by

Φx(t)= q(t) + f̂
(
t,x(t),x

(
π(t)

))
, ∀x ∈ X , t ∈R+, (5.5)

is the L-contraction mapping on the Fréchet space (X ,|x|n). Indeed, fix n ∈N∗. For all
x ∈ X and for all t ∈ [0,n],

∣
∣Φx(t)−Φy(t)

∣
∣≤ L

2

(∣∣x(t)− y(t)
∣
∣+

∣
∣x
(
π(t)

)− y
(
π(t)

)∣∣)

≤ L

2

(|x− y|n + |x− y|n
)= L|x− y|n.

(5.6)

So |Φx−Φy|n ≤ L|x− y|n. Therefore, Φ admits a unique fixed point ξ ∈ X .
By the transformation x = y + ξ, (5.1) is rewritten as follows:

y(t)= Ay(t) +By(t) +Cy(t), t ∈R+, (5.7)

where

Ay(t)= q(t) + f̂
(
t, y(t) + ξ(t), y

(
π(t)

)
+ ξ
(
π(t)

))− ξ(t), A0= 0,

By(t)=
∫ t

0
V
(
t,s, y(s) + ξ(s), y(σ(t)

)
+ ξ
(
σ(t)

))
ds,

Cy(t)=
∫ t

0
G
(
t,s, y(s) + ξ(s), y

(
χ(t)

)
+ ξ
(
χ(t)

))
ds.

(5.8)

(b) Put U = A+ B. Then, U is a contraction operator with respect to a family of semi-
norms ‖ · ‖n. Indeed, fix an arbitrary positive integer n∈N∗.
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For all t ∈ [0,γn] with γn ∈ (0,n), γn < σ̂n =min{σ(t), t ∈ [0,n]}, γn < π̂n =min{π(t),
t ∈ [0,n]} chosen later, we have

∣
∣Uy(t)−U ỹ(t)

∣
∣≤ L

2

∣
∣y(t)− ỹ(t)

∣
∣+

L

2

∣
∣y
(
π(t)

)− ỹ
(
π(t)

)∣∣

+
∫ t

0
ω1(t,s)

(∣∣y(s)− ỹ(s)
∣
∣+

∣
∣y
(
σ(s)

)− ỹ
(
σ(s)

)∣∣)ds

≤ (L+2ω̃1nγn
)|y− ỹ|γn .

(5.9)

This implies that

|Uy−U ỹ|γn ≤
(
L+2ω̃1nγn

)|y− ỹ|γn . (5.10)

For all t ∈ [γn,n], similarly, we also have

∣
∣Uy(t)−U ỹ(t)

∣
∣≤ L

2

∣
∣y(t)− ỹ(t)

∣
∣+

L

2

∣
∣y
(
π(t)

)− ỹ
(
π(t)

)∣∣

+ ω̃1n

∫ γn

0

(∣∣y(s)− ỹ(s)
∣
∣+

∣
∣y
(
σ(s)

)− ỹ
(
σ(s)

)∣∣)ds

+ ω̃1n

∫ t

γn

(∣∣y(s)− ỹ(s)
∣
∣+

∣
∣y
(
σ(s)

)− ỹ
(
σ(s)

)∣∣)ds.

(5.11)

By the inequalities

0 < e−hn(t−γn) < e−hn(π(t)−γn) < 1, ∀t ∈ [γn,n],

0 < e−hn(t−γn) < e−hn(σ(t)−γn) < 1, ∀t ∈ [γn,n],
(5.12)

in which hn > 0 is also chosen later, we get
∣
∣Uy(t)−U ỹ(t)

∣
∣e−hn(t−γn)

≤ L

2

∣
∣y(t)− ỹ(t)

∣
∣e−hn(t−γn) +

L

2

∣
∣y
(
π(t)

)− ỹ
(
π(t)

)∣∣e−hn(π(t)−γn) + 2ω̃1nγn|y− ỹ|γn

+ ω̃1n

∫ t

γn

(∣
∣y(s)− ỹ(s)

∣
∣+

∣
∣y
(
σ(s)

)− ỹ
(
σ(s)

)∣∣
)
e−hn(t−γn)ds

≤ L|y− ỹ|hn +2ω̃1nγn|y− ỹ|γn

+ ω̃1n

∫ t

γn

(∣∣y(s)− ỹ(s)
∣
∣e−hn(s−γn) +

∣
∣y
(
σ(s)

)− ỹ
(
σ(s)

)∣∣e−hn(σ(s)−γn)
)
ehn(s−t)ds

≤ L|y− ỹ|hn +2ω̃1nγn|y− ỹ|γn +2ω̃1n|y− ỹ|hn
∫ t

γn
ehn(s−t)ds

≤ L|y− ỹ|hn +2ω̃1nγn|y− ỹ|γn +
2ω̃1n

hn
|y− ỹ|hn ,

(5.13)
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where ω̃1n is as in the proof of Step 2, Theorem 3.1. We get

|Uy−U ỹ|hn ≤
(
L+

2ω̃1n

hn

)
|y− ỹ|hn +2ω̃1nγn|y− ỹ|γn . (5.14)

Combining (5.10)–(5.14), we deduce that

‖Uy−U ỹ‖n ≤
(
L+4γnω̃1n

)|y− ỹ|γn +
(
L+

2ω̃1n

hn

)
|y− ỹ|hn ≤ k̃n‖y− ỹ‖n, (5.15)

where k̃n =max{L+4γnω̃1n, L+2ω̃1n/hn}. Choose

0 < γn <min
{
1−L

4ω̃1n
,n, σ̂n, π̂n

}
, hn >

2ω̃1n

1−L
, (5.16)

then we have k̃n < 1, by (5.15), U is a k̃n-contraction operator with respect to a family of
seminorms ‖ · ‖n.

(c) C : X → X is also completely continuous. We first show that C is continuous. For
any y0 ∈ X , let (ym)m be a sequence in X such that limm→∞ym = y0.

Let n∈N∗ be fixed. Put

K1 =
{(
ym + ξ

)
(s) : s∈ [0,n], m∈N

}
,

K2 =
{(
ym + ξ

)(
χ(s)

)
: s∈ [0,n], m∈N

}
.

(5.17)

Then K1, K2 are compact in E. For any ε > 0, since G is continuous on the compact set
[0,n]× [0,n]×K1×K2, there exists δ > 0 such that for every ui ∈ K1, vi ∈ K2, i= 1,2,

∣
∣ui− vi

∣
∣ < δ =⇒ ∣∣G(t,s,u1,v1

)−G
(
t,s,u2,v2

)∣∣ <
ε
n
, ∀s, t ∈ [0,n]. (5.18)

Since limm→∞ym = y0, there existsm0 such that form>m0,

∣
∣(ym + ξ

)
(s)− (y0 + ξ

)
(s)
∣
∣= ∣∣ym(s)− y0(s)

∣
∣ < δ, ∀s∈ [0,n], (5.19)

and so

∣
∣(ym + ξ

)(
χ(s)

)− (y0 + ξ
)(
χ(s)

)∣∣= ∣∣ym
(
χ(s)

)− y0
(
χ(s)

)∣∣ < δ, ∀s∈ [0,n].
(5.20)

This implies that for all t ∈ [0,n] and for allm>m0,

∣
∣Cym(t)−Cy0(t)

∣
∣

≤
∫ t

0

∣
∣G
(
t,s,
(
ym+ξ

)
(s),
(
ym+ξ

)(
χ(s)

))−G(t,s,(y0+ξ
)
(s),
(
y0+ξ

)(
χ(s)

))∣∣ds < ε,

(5.21)

so |Cym−Cy0|n < ε, for allm>m0, and the continuity of C is proved.
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It remains to show that C maps bounded sets into relatively compact sets. Now, let Ω
be a bounded subset of X . We have to prove that for n∈N∗, (CΩ)n is equicontinuous in
Xn and for every t ∈ [0,n], the set (CΩ)n(t)= {Cy|[0,n](t) : y ∈Ω} is relatively compact
in E.

Put

S1 =
{
(y + ξ)(s) : y ∈Ω, s∈ [0,n]

}
,

S2 =
{
(y + ξ)

(
χ(s)

)
: y ∈Ω, s∈ [0,n]

}
.

(5.22)

Then S1, S2 are bounded in E. Since G is completely continuous, the set G([0,n]2× S1×
S2) is relatively compact in E, and so G([0,n]2× S1× S2) is bounded. Consequently, there
existsMn > 0 such that

∣
∣G
(
t,s, (y + ξ)(s), (y + ξ)

(
χ(s)

))∣∣≤Mn, ∀t, s∈ [0,n], ∀y ∈Ω. (5.23)

The rest of the proof runs as in (3.29), (3.31), and so (CΩ)n = {Cy|[0,n] : y ∈ Ω} is
equicontinuous and (CΩ)n(t) is relatively compact in E by

(CΩ)n(t)⊂ t convG
(
[0,n]2× S1× S2

)
. (5.24)

Using Lemma 3.3, C(Ω) is relatively compact in X . Therefore, C is completely continu-
ous.

(d) Finally, we also have that for all n∈N∗,

lim
|y|n→∞

|Cy|n
|y|n = 0. (5.25)

For any given ε > 0, the assumptions (I3), (I4) imply that there exists η > 0 such that for
all t,s∈ [0,n], for all u,v ∈ E, we get

∣
∣G(t,s,u,v)

∣
∣≤ ρ+ ω̃2n +

ε
8n

(|u|+ |v|), (5.26)

where ω̃2n is also as in the proof of Step 2, Theorem 3.1. This implies that for all t ∈ [0,n],

∣
∣Cy(t)

∣
∣≤

∫ t

0

∣
∣G
(
t,s, (y + ξ)(s),(y + ξ)

(
χ(s)

))∣∣ds

≤ nρ+nω̃2n +
ε
4
|ξ|n + ε4 |y|n.

(5.27)

It follows that if we choose μn >max{4nρ/ε,4nω̃2n/ε,|ξ|n}, then for |y|n > μn, we have
|Cy|n/|y|n < ε, this means that

lim
|y|n→∞

|Cy|n
|y|n = 0. (5.28)

By applying Theorem 2.1, the operator U +C has a fixed point y in X . Then (5.1) has a
solution x = y + ξ on (0,∞). The result follows. �
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Now, we also consider the asymptotically stable solutions for (5.1) defined as in Section
4. Here, we assume that (I1)–(I5) hold and assume in addition that

(I6) π(t)= t, for all t ∈R+;
(I7) V(t,s,0,0)= 0, for all (t,s)∈ Δ;
(I8) there exist two continuous functions ω3,ω4 : Δ→R+ such that

∣
∣G(t,s,x,u)

∣
∣≤ ω3(t,s) +ω4(t,s)

(|x|+ |u|), ∀(t,s)∈ Δ, x,u∈ E. (5.29)

Then, by Theorem 5.1, (5.1) has a solution on [0,∞).
On the other hand, if x is a solution of (5.1), then y = x− ξ satisfies (5.7). We note

more that under the hypotheses (I1), (I6), the function f̂ turns out to be f :R+×E→ E,
satisfying (A1). Consequently, for all t ∈R+,

∣
∣y(t)

∣
∣≤ L

∣
∣y(t)

∣
∣+

∫ t

0
ω1(t,s)

(∣∣y(s) + ξ(s)
∣
∣+

∣
∣y
(
σ(s)

)
+ ξ
(
σ(s)

)∣∣)ds

+
∫ t

0

[
ω3(t,s) +ω4(t,s)

(∣∣y(s) + ξ(s)
∣
∣+

∣
∣y
(
χ(s)

)
+ ξ
(
χ(s)

)∣∣)]ds.

(5.30)

It follows from (5.30) that for all t ∈R+,

∣
∣y(t)

∣
∣≤ 1

1−L

∫ t

0

(
ω1(t,s) +ω4(t,s)

)(∣∣y(s)
∣
∣+

∣
∣y
(
σ(s)

)∣∣+
∣
∣y
(
χ(s)

)∣∣)ds

+
1

1−L

∫ t

0

(
ω1(t,s) +ω4(t,s)

)(∣∣ξ(s)
∣
∣+

∣
∣ξ
(
σ(s)

)∣∣+
∣
∣ξ
(
χ(s)

)∣∣)ds

+
1

1−L

∫ t

0
ω3(t,s)ds,

(5.31)

and so

∣
∣y
(
σ(t)

)∣∣≤ 1
1−L

∫ σ(t)

0

(
ω1
(
σ(t),s

)
+ω4

(
σ(t),s

))(∣∣y(s)
∣
∣+

∣
∣y
(
σ(s)

)∣∣+
∣
∣y
(
χ(s)

)∣∣)ds

+
1

1−L

∫ σ(t)

0

(
ω1
(
σ(t),s

)
+ω4

(
σ(t),s

))(∣∣ξ(s)
∣
∣+

∣
∣ξ
(
σ(s)

)∣∣+
∣
∣ξ
(
χ(s)

)∣∣)ds

+
1

1−L

∫ σ(t)

0
ω3
(
σ(t),s

)
ds

≤ 1
1−L

∫ t

0

(
ω1
(
σ(t),s

)
+ω4

(
σ(t),s

))(∣∣y(s)
∣
∣+

∣
∣y
(
σ(s)

)∣∣+
∣
∣y
(
χ(s)

)∣∣)ds

+
1

1−L

∫ t

0

(
ω1
(
σ(t),s

)
+ω4

(
σ(t),s

))(∣∣ξ(s)
∣
∣+

∣
∣ξ
(
σ(s)

)∣∣+
∣
∣ξ
(
χ(s)

)∣∣)ds

+
1

1−L

∫ t

0
ω3
(
σ(t),s

)
ds,

(5.32)

and it is similar to |y(χ(t))|.
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Put d(t)= |y(t)|+ |y(σ(t))|+ |y(χ(t))|. Then, combining these, for all t ∈R+, we have

d(t)≤
∫ t

0
θ(t,s)d(s)ds+ e(t), (5.33)

where

θ(t,s)= 1
1−L

(
ω1(t,s) +ω4(t,s) +ω1

(
σ(t),s

)
+ω4

(
σ(t),s

)
+ω1

(
χ(t),s

)
+ω4

(
χ(t),s

))
,

(5.34)

e(t)=
∫ t

0
θ(t,s)

[∣∣ξ(s)
∣
∣+

∣
∣ξ
(
σ(s)

)∣∣+
∣
∣ξ
(
χ(s)

)∣∣]ds

+
1

1−L

∫ t

0

[
ω3(t,s)ds+ω3

(
σ(t),s

)
+ω3

(
χ(t),s

)]
ds.

(5.35)

Using the inequality (a+ b)2 ≤ 2(a2 + b2), we get

d2(t)≤ 2
∫ t

0
θ2(t,s)ds

∫ t

0
d2(s)ds+2e2(t), (5.36)

Putting z(t)= d2(t), p(t)= 2
∫ t
0 θ

2(t,s)ds, (5.36) is rewritten as follows:

z(t)≤ p(t)
∫ t

0
z(s)ds+2e2(t). (5.37)

By (5.37), based on classical estimates, we also obtain

d2(t)= z(t)≤ 2e2(t) + p(t)e
∫ t
0 p(s)ds

∫ t

0
2e−

∫ s
0 p(u)due2(s)ds, ∀t ∈R+. (5.38)

Then we have the following theorem about the asymptotically stable solutions.

Theorem 5.2. Let (I1)–(I8) hold. Assume that

lim
t→∞2e

2(t) + p(t)e
∫ t
0 p(s)ds

∫ t

0
2e−

∫ s
0 p(u)due2(s)ds= 0, (5.39)

where

p(t)

= 2
(1−L)2

∫ t

0

[
ω1(t,s)+ω4(t,s)+ω1

(
σ(t),s

)
+ω4

(
σ(t),s

)
+ω1

(
χ(t),s

)
+ω4

(
χ(t),s

)]2
ds,

(5.40)

and e(t) is defined as in (5.35).
Then every solution x to (5.1) is an asymptotically stable solution. Furthermore,

lim
t→∞

∣
∣x(t)− ξ(t)

∣
∣= 0. (5.41)
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Proof of Theorem 5.2. The proof is similar to that of Theorem 4.2. Let us omit here. �

Appendix

Proof of Lemma 3.3. Assume that for each n ∈ N∗, An is equicontinuous in Xn and for
every s∈ [0,n], the set An(s)= {x(s) : x ∈An} is relatively compact in E.

Let (xk)k be a sequence in A. We will show that there exists a convergent subsequence
of (xk)k.

In the Banach space Xn = C([0,n],E), by An being equicontinuous and for every s ∈
[0,n], An(s) = {x(s) : x ∈ An} is relatively compact in E, so applying the Ascoli-Arzela
theorem (see [5]), An is relatively compact in Xn.

For n= 1, since (A1) is relatively compact in the Banach space X1 = C([0,1],E), there

exists a subsequence of (xk)k, denoted by (x(1)k )k, such that

(
x(1)k |[0,1]

)
k −→ x1 in X1, as k −→∞. (A.1)

For n = 2, since (A2) is relatively compact in the Banach space X2 = C([0,2],E), there

exists a subsequence of (x(1)k )k, denoted by (x(2)k )k, such that

(
x(2)k |[0,2]

)
k −→ x2 in X2, as k −→∞. (A.2)

By the uniqueness of the limit, it is easy to see that x2|[0,1] = x1.

Thus, there exists a subsequence (x(2)k )k of (xk)k such that

(
x(2)k

∣
∣
[0,1]

)
k −→ x1 in X1, as k −→∞,

(
x(2)k

∣
∣
[0,2]

)
k −→ x2 in X2, as k −→∞,

x2
∣
∣
[0,1] = x1.

(A.3)

Therefore, for all n∈N∗, by induction, we can establish a subsequence (x(n+1)k )k of (xk)k
such that

(
x(n+1)k

∣
∣
[0,m]

)
k −→ xm in Xm, as k −→∞, ∀m= 1,n,

(
x(n+1)k

∣
∣
[0,n+1]

)
k −→ xn+1 in Xn+1, as k −→∞,

xn+1
∣
∣
[0,m] = xm, ∀m= 1,n.

(A.4)

Put yk = x(k)k . Then (yk)k is a subsequence of (xk)k and (yk)k converges to x in X , where x
is defined by

x(t)= xn(t) if t ∈ [0,n], ∀n∈N∗. (A.5)

The converse is obvious, and hence the lemma is proved. �
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