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This paper considers the problem of uplink transmission over multiple-input multiple-output (MIMO) channels affected by slow
frequency-nonselective uncorrelated and correlated Rayleigh fading. We consider the case when channel state information, cor-
rupted by estimation errors, is available at the receiver only. In this setting, we generalize the derivation of our previously proposed
linear-complexity MIMO signal detector and derive closed-form expressions for the distribution of its soft outputs and the approx-
imate symbol error probability. Based on this soft decision detector, we consider a turbo-coded MIMO uplink architecture with
iterative processing, which enables performance within 1.6 to 2.8 dB of the ergodic capacity limit and outperforms the T-BLAST
(turbo-Bell Laboratories layered space-time) system by about 10 dB at bit error rates of 10~°. The presented results illustrate that
this linear-complexity MIMO signal detector is highly robust to channel estimation errors.
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1. INTRODUCTION

The goal of next-generation wireless systems will be to pro-
vide high data rate access on both uplink and downlink
transmission scenarios, while compensating for the harsh
impairments introduced by the radio-frequency channel.
Powerful error-correcting codes such as turbo codes [4] have
already been included in the third-generation standard and
will form a key component in beyond 3G systems. Through
the use of spatial diversity, multiple-input multiple-output
(MIMO) wireless systems have the potential of supporting
very high data rates [5, 6]. However, availability of channel
state information only at the receiver and signal impairments
(such as noise, co-antenna interference, and multipath fad-
ing) are the main obstacles in achieving reliable transmis-
sion over wireless MIMO channels. Furthermore, in most
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practical scenarios, the occurrence of spatial correlation be-
tween antenna elements at the transmitter and receiver as
well as channel estimation errors at the receiver reduces the
MIMO channel capacity [7, 8]. The particular case of imper-
fect channel state information (CSI) has also been explored
and shown to reduce the performance of specific MIMO
transceiver architectures in [9, 10, 11, 12].

To achieve high data rates at low signal-to-noise ratios
when CSI is available only at the receiver, a soft decision
MIMO signal detector and a powerful error-correcting code
are required [1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20]. MIMO
signal detection should be of low complexity as signal con-
stellation size and optimal detection complexity increase ex-
ponentially as M"" with the modulation order M and the
number of transmit antennas #nr. Furthermore, MIMO sig-
nal detection should be robust to channel estimation errors.
These two requirements, robustness and complexity, are of
significance for future wireless systems as these operate on
harsh channels and are expected to use a large number of an-
tennas at both ends of the wireless link [21].
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The maximum likelihood (ML)-based method used in
space-time trellis codes [13] and MAP-based MIMO signal
detection used in [12, 14, 15] are limited to systems with a
small number of antennas due to their exponential complex-
ity. MIMO signal detection techniques of high-order polyno-
mial complexity have been proposed in [16, 17, 18] based on
the modified sphere detection algorithm. Alternately, lower-
complexity MIMO signal detection techniques include the
coded layered space-time architecture (of quadratic com-
plexity) [19] and T-BLAST system (of cubic complexity) [3],
which combine the suboptimal nulling and canceling tech-
niques of V-BLAST with iterative processing using convolu-
tional codes. Recently, a linearly complex MIMO signal de-
tector has been proposed and studied in [1, 2] for a turbo-
coded MIMO system.

In this paper, we focus on the specific problem of achiev-
ing reliable high data rate transmission on uplink wireless
channels where only the receiver possesses CSI, that is, cor-
rupted by estimation errors. We consider an asymmetric an-
tenna setup where the number of receive antennas at the base
station exceeds the number of transmit antennas at the mo-
bile. We generalize the linearly complex MIMO signal detec-
tor proposed in [1, 2] to channels with estimation errors. We
incorporate this detector into a turbo-coded MIMO system
and we observe that it achieves near ergodic capacity perfor-
mance and outperforms T-BLAST [3] by about 10 dB on se-
lected slow frequency-nonselective Rayleigh fading channels.

Section 2 of this paper discusses and reviews the consid-
ered MIMO channel models under different levels of channel
correlation and imperfect CSI, the ergodic capacity limits,
and the coded transmitter architecture. Section 3 focuses on
the derivation of the proposed MIMO signal detector and on
its incorporation into an iterative receiver. Section 4 contains
simulation results for the investigated turbo-coded MIMO
systems, while in Section 5, we analyze the proposed detec-
tor’s outputs. We conclude in Section 6.

2. SYSTEM MODEL

In this section, we consider the general MIMO channel
model that includes channel estimation errors and present
the utilized spatial correlation models. Furthermore, we re-
view the evaluation of the ergodic channel capacity and dis-
cuss the turbo-coded MIMO transmitter under considera-
tion.

2.1. The MIMO channel model

Figure 1 illustrates the MIMO system model in which the
transmitter sends complex symbols from n7 antennas and
the receiver utilizes ng antennas. The received vector is given

by
r=Hb+v, (1)

where b = [by,bs,...,b,,]T is the transmitted vector, v =
[Visv2s...s v, )T is a zero-mean complex white Gaussian

H = C{RGCI¥

Y/ ~ Y
MIMO | &, "
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FIGURE 1: A schematic block diagram illustrating the MIMO system
model.

MIMO
receiver

noise vector, where the elements are independent and iden-
tically distributed (i.i.d.) with a variance 6> = Ny/2 in each
dimension. The matrix H describes the effect of fading be-
tween the two ends of the wireless link, which is assumed to
be slow and frequency-nonselective.

The estimated channel matrix H is related to the channel
matrix H through

H=H+e, (2)

where € is an ng by ny matrix due to the channel estimation
errors. We assume that channel matrix H and the error ma-
trix € are uncorrelated and the elements of ¢ are i.i.d. com-
plex Gaussian random variables with zero mean and variance
02/2 in each dimension [8]. The variance ¢ indicates the
quality of channel estimation and is assumed to be known
at the receiver.

2.2. The spatial correlation model

The amplitude of the complex path gain H;; is assumed to
be Rayleigh distributed and the phase is uniform. We can in-
troduce spatial correlation via [22]

H = C{GCLy, (3)

where the elements of G are i.i.d. complex zero mean Gaus-
sian random variables with variance 1/2 in each dimension.
The correlation matrices Crx and Crx are real, symmetric,
and reflect the correlation between the elements of a uni-
formly spaced antenna array. If the antennas are spaced suf-
ficiently apart and there are many scatterers near the trans-
mitter or receiver, then Crx and Cry are given by the identity
matrix L.

We assume Jakes’ correlation model for the mobile
[23], that is, the (i, j)th element is given by Crx(i,j) =
]0(27TdZ]X//\), where d,T]X is the antenna spacing between the
ith and jth transmit antenna, A is the wavelength of the car-
rier frequency, and Jj is the Bessel function of the zeroth kind.
Figure 2 plots the power correlation (the square of Crx (i, j))
versus the antenna spacing.
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FiGURE 2: An illustration of the correlation models used at the mo-
bile (Jakes) and base station (Pedersen).

We use the Pedersen correlation model for the base sta-
tion, and, if the signals are impinging from broadside, the
(i, j)th element of Crx is adopted from [24]

o an}fj{
CRx(l,])_h( 1 )
2 T > ]Zm(zn'dz{{;(/A)
Afr-en(- )5
(4)

where J»,, is the Bessel function of the 2mth kind, le]X is the
antenna spacing between the ith and jth receive antenna, and
f is the angular spread measured at the base station. The an-
gular spread in a typical outdoor macrocellular urban en-
vironment for a carrier frequency of 2.1 GHz is between 7
and 12 degrees [25]. The power correlation (the square of
Crx (i, j)) versus antenna spacing is plotted in Figure 2 for
B =7,10, and 12 degrees.

2.3. Ergodic capacity evaluation with
channel estimation errors

The performance of the considered coded MIMO systems
will be compared to the ergodic capacity limit. Consequently,
in this section, we briefly review the evaluation of this quan-
tity and the effects of imperfect channel state information.
We can express the rate of transmission of a coded MIMO
system as R = nrR,,R. (in bits per channel use), where R, is
the modulation rate and the channel coding rate R, is given
by k/n when a k-bit message is represented as an n-bit coded
sequence. Furthermore, the transmitted bit energy-to-noise
ratio, which allows comparison to the ergodic channel ca-
pacity, is given by Ey/Ny = P/(2Ro?), where P is the average
transmitted power and 6> = Ny/2 is the noise variance in

each dimension. The ergodic capacity for a MIMO channel
with estimation errors is derived in [8] and is given by

Cuvmmo = E[ lo (det (I + P HA" 207 ))]
MO &2 2nro? 202+ 02P)) 1
(5)

where () is the Hermitian operator and E is the expecta-
tion on the random matrix H. Since the channel is assumed
to be ergodic, we approximate the statistical expectation in
(5) by an average over many realizations of H.

Figures 3 and 4 illustrate the impact of channel estima-
tion errors on the channel capacity for (nr, ng) = (2,10) and
(4, 20) antenna configurations (averaged over 100 000 chan-
nel realizations) in slow frequency-nonselective uncorrelated
and correlated Rayleigh fading channels, respectively. In gen-
eral, spatial correlation slightly reduces the ergodic capacity
curves from the uncorrelated scenario, whereas the capacity
curve for imperfect CSI at the receiver (62 = 0.1 or 10 per-
cent) saturates in the high SNR region, while the capacity for
perfect CSI at the receiver (62 = 0) continues to increase.
Conversely, at low SNRs, which is our region of interest, the
introduction of channel estimation errors slightly shifts the
capacity curve to the right with respect to the perfect CSI
case.

In terms of SNR performance degradation for actual
coded MIMO systems, the capacity results give the perfor-
mance degradation (in terms of SNR and/or data rates) be-
tween the “best” possible coded system without CSI errors
and the “best” possible coded system for given level of CSI
errors. If, on the other hand, one considers a specific coded
MIMO system, the performance degradation versus CSI er-
ror causes the following two limiting cases. For very high
values of SNR (02 < ¢2), the channel estimation errors
dominate the AWGN noise terms and the BER system per-
formance saturates for increasing SNR values. (A potentially
low error floor due to the estimation error will occur.) Con-
versely, for very low SNR values (02 > ¢2), the system per-
formance is noise limited, so the CSI error term will result in
aminor SNR degradation. Since the channel estimation error
causes an additional signal-dependent noise term corrupting
the signal (cf. (1) and (2)), a more precise analysis is not el-
ementary and strongly depends on the numerical stability of
the specific MIMO decoding algorithm(s).

2.4. The transmitter architecture

Figure 5 illustrates a schematic block diagram of the consid-
ered MIMO transmitter. The source is assumed to produce
independent, equiprobable bits that are passed to the channel
encoder, which is a turbo-code consisting of two constituent
recursive systematic convolutional encoders as described in
[4, 26]. We can describe the encoding process as message
symbols m € {0, 1}* being mapped into codeword symbol
of length #n given by ¢ = (fi(m), f,(1(m))), where f;(+) and
f2(+) denote the constituent encoders that are separated by
an interleaver 7. The coded symbols are then interleaved and
mapped (using a lookup table) into an M-ary modulation
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FIGUrEg 3: The comparison of the ergodic capacity for slow frequency-nonselective (a) uncorrelated and (b) correlated Rayleigh fading
channels with perfect channel state information and 10% channel estimation errors for an (nr, ng) =(2, 10) antenna configuration.
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FiGURE 4: The comparison of the ergodic capacity for slow frequency-nonselective (a) uncorrelated and (b) correlated Rayleigh fading
channels with perfect channel state information and 10% channel estimation errors for an (nr, ng) =(4, 20) antenna configuration.
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FIGURE 5: Schematic block diagram of the considered MIMO transmitter.
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FIGURE 6: Schematic block diagram of the considered MIMO receiver with iterative processing.

symbol. These symbols are demultiplexed onto nr streams,
channel interleaved, and transmitted. The role of the chan-
nel interleaver and deinterleaver is to break up channel fades
affecting consecutively transmitted symbols in coded pack-
ets.

3. THE RECEIVER ARCHITECTURE

In this section, we first derive a linearly complex MIMO sig-
nal detector in the presence of channel estimation errors.
The detector tries to separate nr transmitted symbols from
the received vector r and provides soft-decision outputs on
the modulation symbols. These soft decisions are then used
by a channel decoder, which in our case is a turbo decoder.
In addition, a particular low-complexity iterative processing
scheme improves the overall system performance. (Figure 6
illustrates the overall schematic block diagram of the itera-
tive space-time receiver under consideration.)

3.1. Derivation of the MIMO signal detector
We will assume the discrete-time MIMO channel model
from (1). The proposed detector tries to recover channel ob-
servations on each transmitted modulation symbol, thus re-
ducing the dimensionality of the problem from ny to nr,
where for uplink transmission scenarios, nr < ng. The fol-
lowing paragraphs outline the general operation of the de-
tector and are followed by an illustrative numerical example.
As the first step, the estimated channel matrix H is de-
composed into two matrices, H-= §1A\, where the matrix A is
a diagonal matrix containing the column norms of H along
its main diagonal,

A = diag(|[b | [[ha],- ... [ ), (6)
and S is composed of the normalized columns of ﬁ,
§—[ hy b o hy } 7)
[[ha [ [[ha] |[h,, ||

(Please note this decomposition is not related to any of the
traditional matrix decompositions used in signal processing,
e.g., Cholesky, QR, LU, SVD, etc.)

Consequently, we obtain estimates of the transmitted
symbol vector b by filtering the vector of received observa-
tions r by a bank of parallel filters represented by the matrix
§, that is,

y=8"r=SH(H+e)b+5"v =RAb+S"eb+n, (8)
where R = SH§ is the antenna correlation matrix. The ele-
ments of the ny-by-one vector y are channel observations on
the transmitted vector b which are corrupted by co-antenna
interference due to RA, as well as the channel estimation er-
ror in Seb and the filtered noise n. The jth element of ¥ is
given by

nr
?j = Aj’jbj + Z Rj)kAk,kbk + (SHSb)j +nj,

k=1
k#j

(9)

NP
where Rjx = Rf;

R;j; = 1, and the filtered noise elements #; have zero means

§§I§k (conjugate is denoted by (e)*),

and covariance matrix 202R.

In order to compute the likelihood (soft decision) for the
transmitted symbol b; being the /th modulation symbol, that
is, P(pj|bj = Qi), we approximate in (9) the sum of the co-
antenna interference ZZLI R j,kgk,kbk, the channel estimation

k#j
error (§H €b);, and the filtered noise #; as a two-dimensional
Gaussian random variable. As shown in Appendix A, the
mean #; of this Gaussian random variable is given by

nr nr
=R D E[RjxAekQ] [, 99 D E[RixAriQl | (10)
k=1

k=1
k#j k#j
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and covariance matrix K; of this complex Gaussian random
variable is

Ki(1,1) = > E[(R{R;4AriQ})’]
k=1
k#j

PN o2
— (E[R{R;4AxxQ}])* + 0% + Ex

Kj(2,2) = > E[ (9 {R;xArkQ})’ ]

o

- (E[s{ﬁj,kgk,kQ}])z +o%+ 073)
K;(1,2) = K;(2,1)

= S (BLR (RedeQ) 3 (R Ars))
oy
— E[R (R4 AkkQ)]) E[T (RjxAckQ)])),
(11)

where R{e} and J{e} denote the real and imaginary parts
and E is the expectation on the discrete random variable Q,
which can be one of M possible modulation symbols.

Finally, we can express the likelihood for the transmitted
symbol from the jth antenna b; being the Ith modulation
symbol Q; as follows:

p(yilb; = Qi)

~ _ ~ T
e (- (U2 (x5 = Apy@)K; (- - Agyan))

- 27,/det (K;) ’

(12)

where x; = [R{y;},3{7;}]1T, @ = [R{Q},5{Q}]7, and
(o)7 is transpose operator. The following example illustrates
the numerical operations of the detector.

Example 1. Consider an (nr,ng) = (2,4) system, where the
transmitter sends a BPSK symbol vector b = [1, —1] and the
channel matrix is given by

0.5+0.5i 0.5— 0.5
1+1i  1-1i
H=| ) ) . (13)

—1i —1i

Assume that the receiver estimates the channel with an es-
timation error of 62 = 0.1 and that the channel matrix is
estimated as

0.70 +0.42i 0.28 — 0.64i
0.97 +0.68i 1.09 +0.73i
—0.84 +0.10i 0.96 — 0.47i
—0.31 — 1.30i 0.30 — 0.80:

H = (14)

and the Gaussian noise variance in each dimension is 6% = 1.
The received vector r was observed to be

~0.28 + 0.45i
~1.14 — 0.67i

'=1-1.66-0.10i | (1)
~1.32 — 0.04i

Step 1 (matrix decomposition). The detector decomposes
the channel matrix into the two submatrices according to (6)
and (7):

~ 213 o

A= [ 0 2.02}
0.33+0.20i 0.14 —0.32i (16)
0.46 +0.32i  0.54 + 0.36i

—0.39+0.05i 0.47 —0.237 |~
—0.14 - 0.61i 0.15 — 0.40i

S=

Step 2 (acquiring channel observations). We filter the re-
ceived vector r by the matrix S to lower the dimensionality
of the problem (from ng = 4 to ny = 2) and acquire channel
observations on the transmitted symbols contained in y. The
channel observation vector y (using (8)) is given by

[ 0.13-0.42i
Y= [—1.97—0.941'] (17)

Note that this reduction in dimensionality is interesting for
the case of large number of receive antennas (at the base sta-
tion) when compared to the number of transmit antennas (at
the mobile), for example, practical prototype systems with
ng = 60 have already been explored, as mentioned in [21].

Step 3 (computing statistics for the Gaussian approxima-

tion). The co-antenna correlation matrix R = $H§ is given
by
~ 1 0.37 +0.08i
R= [0.37 ~008i 1 ] ’ (18)

and hence the statistics for the Gaussian approximation for
the co-antenna interference, channel estimation error, and
the filtered noise from (10) and (11) for the first transmit
antenna are

# =0,

o _ |65 0 (19)
Y10 n13p

where the mean vector g, and K, (1,2), K;(2,1) are zero as
the constellation is centered around zero and all points are
equiprobable.
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Step 4 (determination of the soft decisions). Using (12), the
likelihoods for the symbol from the first transmit antenna
are given by P(y11b; = —1) = 0.022 and P(y,1b; = 1) =
0.033 repeating the above calculation for the second transmit
antenna, P(,|b, = —1) = 0.077 and P(J11b, = 1) = 0.006.
(Please note that these likelihoods are not normalized as a
posteriori probabilities would be.)

3.2. Turbo decoding and iterative processing

The demapper in Figure 6 translates the soft decisions of the
detector into a posteriori probabilities on the codeword sym-
bols. For instance, the estimate for the pth codeword bit in
the jth modulation stream is given by

P(cp = 11yj,)
_ Zoem-aamig=0 P(3jplbj = Q) P(b; = Q)
 Saem-aamie-1 P(3jplbj = Q)P(bj = Q)

p=
(20)

The estimates A, are assumed to be the channel observations
on the bits of codeword symbols.

In the ith iteration, the iterative loop between the decoder
and demapper can be formally described as

[Wll,Wé] = ¢(u) [zilil)zéil]) - [zililazéilL
(20, %3] = g2 (wh,xi') —x7, (21)

(20 x1] = @1 (Wi, %3) - x,

where the soft decision demapper and decoding functions
are represented by ¢ and ¢, ¢,, respectively. The vectors u
and w!, w), denote the soft outputs of the linear detector and
the demapper, respectively in Figure 6. The decoding func-
tions ¢; and ¢, evaluate logarithmic arrays of a posteriori
probabilities for message symbols and codeword symbols of
the constituent encoders of the turbo-code. The extrinsic in-
formation vectors on the codeword symbols (z} and z}) and
on the message bits (x| and x}) are initially (for i = 0) set
to a constant and are treated as independent coordinatewise
observations of these symbols or bits, so that, for instance,
P(m; = kl|x) is proportional to exp(x ;). The decisions on
the message symbols are formed by thresholding outputs of
the first decoder ¢ (wi,x}) after each iteration.

Turbo equalization was first proposed in [27] and in-
volves the recomputation of the probabilities on the trans-
mitted modulation symbols from the a posteriori probabil-
ities on the codeword symbols. These computed probabili-
ties on the modulation symbols become the extrinsic infor-
mation for the detector and hence will result in better esti-
mates on the codeword symbols. Although this method may
be feasible in single-antenna systems, the transmitted signal
vector constellation quickly becomes too large for a coded
MIMO system as it increases as M"" for M-ary modulation
with nr antennas. In the approach under consideration, we
reassemble the codeword symbol probabilities into probabil-
ities on the modulation symbols P(b; = Q;) and recompute

the mean vector and covariance matrix of the Gaussian ap-
proximation using (10) and (11). As the system iterates, the
mean of the co-antenna interference will approach the true
interference value and its variance becomes zero, thus the ef-
fect of the interference is removed from the received symbol.

4. SIMULATION RESULTS

In this section, we present simulation results of the proposed
linear-complexity detector in two uplink coded MIMO
systems. These simulation results are evaluated for slow,
frequency-nonselective Rayleigh fading channels when per-
fect and imperfect channel state information is available at
the receiver only. As discussed in the introduction, we con-
sider the uplink transmission scenario where it is possible to
have a large number of receive antennas, for example, 10 and
20. The message block size was chosen to be 32000 bits and
the channel code is a rate 1/2 turbo-code, which is composed
of two eight state quaternary recursive systematic encoders
(rate 2/3) adopted from [26]. The turbo encoder contains a
symmetric S-rand interleaver [28], where S = 80. The coded
bits are mapped into 16-QAM modulation symbols, whose
lookup table has been adopted from [29]. We use the spatial
correlation model, described in Section 2.2, where the an-
tenna spacing at the mobile and base station is assumed to be
A/2 and A, respectively, and the angular spread f3 is assumed
to be 10 degrees. The ergodic capacity limits are evaluated
numerically by averaging over 1 million channel realizations
and the variance of the estimation errors o7 is set to be 10
percent. The turbo decoder in the receiver performs 10 de-
coding iterations and uses the BCJR algorithm [30] in the
constituent decoders.

Figures 7 and 8 compare the performance of the coded
MIMO system utilizing the proposed detector (of linear
complexity) to the T-BLAST system [3] (of cubic MIMO sig-
nal detection complexity) for the (2, 10) and (4, 20) antenna
configurations in an uncorrelated Rayleigh fading channel
with perfect CSI at the receiver. Both systems operate at
equivalent rates (the T-BLAST using a 16-PSK modulation),
use the same antenna setups and perform 10 decoding iter-
ations. Our proposed system outperforms the T-BLAST sys-
tem by about 10 dB in both cases at a bit error rate of 107>
and achieves performance within 1.5dB of the ergodic ca-
pacity limit.

Figure 9 illustrates the performance of the considered
coded MIMO system with iterative processing for (nr,ng)
= (2, 10) antennas (R= 4 bits per channel use) and (4, 20)
antennas (R= 8 bits per channel use) in a slow frequency-
nonselective uncorrelated Rayleigh fading channel. The
coded MIMO system with imperfect CSI for both antenna
configurations performs within 1.6 dB of the ergodic ca-
pacity limit and 1 dB worse than the corresponding system
with perfect CSI. Figure 10 illustrates the performance of the
coded MIMO system with iterative processing for (nr, ng)=
(2, 10) and (4, 20) antennas in a slow frequency-nonselective
correlated Rayleigh fading channel. Since we consider a
strongly correlated environment, channel estimation errors
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FIGURE 8: Performance comparison illustrating the 10dB coding
gain between the proposed coded MIMO system and the T-BLAST
architecture [3] for (nr,ng) = (4,20) antennas. Simulation results
are shown after iterations 1, 2, 4, 8, and 10 on an uncorrelated
Rayleigh fading channel with perfect CSI at the receiver only.

have a larger impact than in the uncorrelated case. That is,
the performance of the coded MIMO system with (nr, ng)=
(2,10) and (4, 20) antennas is within 2.1 and 2.8 dB of the er-
godic capacity limit, respectively. These systems perform 1.2
and 1.6 dB worse for (nr,ng)= (2, 10) and (4, 20) antenna
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FIGURE 9: Performance of the proposed MIMO system in a slow
frequency-nonselective uncorrelated Rayleigh fading channel for
(n,nr)= (2, 10) and (4, 20) antennas.

configurations, respectively, when compared to the corre-
sponding systems which have perfect CSI at the receiver. An
estimation error variance of 10% represents a large value and
the works in [9, 10, 11] indicate that the error variance is
usually much smaller, that is, lower than 1 percent. In these
scenarios, the performance loss due to channel estimation er-
rors in our considered coded MIMO system is expected to be
smaller, if not negligible.

Figure 11 illustrates reduction of the co-antenna interfer-
ence during the iterative decoding process for different CSI/
correlation scenarios and values of SNR. In all four cases, at
low SNRs, the variance does not converge to zero, whereas for
slightly higher SNRs, the variance reaches zero in less than
ten iterations. In correlated channels, the initial variance of
the co-antenna interference is about three times larger than
in the uncorrelated case. Furthermore, for the variance of the
co-antenna interference to converge, channel estimation er-
rors require an additional SNR increase of 1dB and 1.6dB
in the uncorrelated (Figures 11a, 11b) and correlated fading
(see Figures 11c, 11d) scenarios, respectively.

5. ANALYSIS OF THE PROPOSED DETECTOR

Bit error rate (versus SNR) performance analysis of the pro-
posed detector in a coded MIMO system with an iterative re-
ceiver is difficult due to the nature of the MIMO fading chan-
nels and the process of iterative detection/decoding. Current
union-bound-based techniques provide approximations that
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FIGURe 10: Performance of the proposed system in a slow
frequency-nonselective correlated Rayleigh fading channel for
(nt,ng)= (2, 10) and (4, 20) antennas.

are loose by about 2 dB at low SNRs [31]. The other classes
of techniques are either limited to low-density parity-check
codes [32] or provide only the SNR value at which the turbo
decoder starts to converge [33]. Consequently, as an initial
step towards the desired BER performance analysis, this sec-
tion derives closed-form expressions for the proposed detec-
tor’s soft-output statistics and symbol error rates after the de-
tector.

5.1.  Analysis of co-antenna interference
in Rayleigh fading channels

To better characterize the co-antenna interference, we will
determine the mean and variance of the column norms and
correlations between the normalized columns of the ng by
nt random channel matrix H. In the following, we assume
02 = 0, that is, perfect CSI is available at the receiver and
drop the use of the “hat” symbol. To permit mathematical
tractability, we assume the base station antennas are corre-
lated and mobile antennas are uncorrelated.

Claim 1. The jth column norm of H A;; is a chi ran-
dom variable with ng degrees of freedom, mean /2T (ng/2 +
0.5)/T(ng/2) Jhg, and variance of aﬁm = 2I(np/2 +
1)/T'(ng/2) — ‘uim ~ 1/2 for reasonable values of ng, (ng <
100), an angular spread f of ten degrees, and antenna spacing
at the receiver given by A.

Justification of Claim 1

Using (3), the norm of the jth column norm of HA; ; is given

H 1/2 1/2
Ajj = bl Teid

(22)

= /8] Crxg; = \/85" VAV'g; = \/ef*'ef»

where in the fourth step we performed the eigenvalue de-
composition on the real and symmetric matrix Cgx result-
ing in the real orthogonal and diagonal matrices V and A,
respectively. The Ith element of e; is a realization of a com-
plex Gaussian random variable with zero mean and variance
Ayy/2 in the real and imaginary dimensions, [ = 1,2,..., ng.
Further expanding the last line of (22),

MR

S ((Rieuh)? + (3{esa))’)

=1

nR nR
= |2 Wi+ XX
\Nio =1

Ajj =
(23)

where W and X; are independent and Gaussian distributed
with zero mean and variance A;;/2, 1 = 1,2,...,ng. Conse-
quently, the random variable A? ; is chi-squared distributed
with 2nr degrees of freedom (as it is the sum of 2ny chi-
squared random variables [34]), and its mean and variance
are given by

nR nRr NnR All
Mz, = Dbz + 2 =22, 55
1=1 1=1 =1
(24)

nR nR nR Alzl
— 2 20— —
=S G o =2 S
=1 1=1 I=1

Since by (4), the elements of Crx depend on the random
parameter 3 (angular spread measured at the receiver), the
quantities in (24) are random variables.

For the specific case of § = 10 degrees and an antenna
spacing at the receiver is A, the mean and the variance in (24)
become approximately ng and 2ng, respectively. Hence, A; ;
is a chi random variable with nr degrees of freedom that can
be expressed as follows:

nR
Ajj= |> e} (25)
I=1

where @; are i.i.d. Gaussian random variables with zero mean
and unit variance for [ = 1,2,...,ng. The mean of A;; is
given by pa,;, = V2T (ng/2 + 0. 5)/F(nR/2) and its variance
is UA = 2T(ng/2 + 1)/T'(np/2) — yA [35]. The mean can
be approx1mated as /Mg, which grows slowly with i 1ncreasmg
number of receive antennas, and the variance of A; ; is close
to 1/2 for reasonable ng (e.g., up to 100).
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FiGure 11: Reduction of the co-antenna interference during the iterative decoding process for the (n7, ng) = (4,20) antenna coded MIMO
system on slow frequency-nonselective Rayleigh fading channels: (a) uncorrelated fading and perfect CSI, (b) uncorrelated fading and im-
perfect CSI (10% error variance), (c) correlated fading and perfect CSI, and (d) correlated fading and imperfect CSI (10% error variance).

Claim 2. The (j, k)th element of the antenna correlation ma-
trix Rjy is a zero-mean complex Gaussian random variable
with variance 1/ng in each dimension for an angular spread
B of ten degrees and an antenna spacing at the receiver of A.

Justification of Claim 2

Assuming the same parameters as before for the spatial cor-
relation, that is, 8 = 10°, and the antenna spacing at the re-
ceiver given by A, we can express the correlation between the
jth and kth normalized columns of H as

A h'he bRy
. -
P il e 26)
H
8/ (CX) "Cikee 8] Crugie
B ngr - ngr ’

where the column norms are approximated by ./ng, as the
variance is reasonably small (approximately 1/2). Using the
eigenvalue decomposition on Crx,

gg-{ VAVTgk e? ek
Rj,k ~ =
nR nR

1 ngR NR nRr nR
= _<ZWI+ZXl+i(zYl+ZZZ>)’
R\ 1S I=1 =1

I=1

(27)

where W, X, Y}, and Z; are independent Gaussian prod-
uct variables with zero mean and variance Aj,/4 for I =
1,2,...,ng. Since X%, A})/4 ~ ng/2, we can apply the central

limit theorem on each summation, and hence express R;x
as a complex Gaussian random variable with zero mean and
variance 1/np in each dimension.

Finally, the uncorrelated fading scenario is a special case
of the correlated case, where Crx = I. Hence, W; and X
in (23) are i.i.d. zero-mean Gaussian random variables with
variance 1/2 for [ = 1,2,...,ng. Therefore, the norm of the
jth column of H, A ;, is a chi random variable with 2ny de-
grees of freedom and its mean is yu,; = T'(ng+0.5)/T(ng) and
variance is 0/2;))]_ =T(ng+1)/T(ng) — %24],]-- The mean can still
be approximated as . /#g and, for reasonably large ny (e.g., up
to 100), the variance of A; ; is close to 1/4. Similarly, W}, Xj,
Y}, and Z; in (27) are i.i.d Gaussian product random variables
with zero mean and variance 1/2 for I = 1,2,...,ng. Using
the central limit theorem, we can approximate the summa-
tions in the real and imaginary dimensions of R; in (27)
as a Gaussian random variable with zero mean and variance
2ngp/(4n%) = 1/(2ng).

5.2. Performance analysis of the MIMO detector

We consider the average and approximate probability of sym-
bol error of the proposed detector for the cases of perfect and
imperfect CSI at the receiver in slow frequency-nonselective
uncorrelated and correlated Rayleigh fading channels. The
average probability of symbol error considers the full corre-
lation model (Crx and Cgx), while (to permit mathemati-
cal tractability) the approximate symbol error only consid-
ers spatial correlation at the base station only. The transmit-
ter is assumed to use a square QAM constellation with M
points and a minimum distance of 2B between signal points.
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Furthermore, the transmitted symbols from each antenna are
assumed to be equiprobable and independent of transmitted
symbols from other antennas.

Claim 3. Let the channel observation vector in the presence of
channel estimation errors be given by y = RAb + n, where R =
SHS. Then the probability of symbol error conditioned on the
estimated channel H for the first transmit antenna is given by

piemod (error|H)

4
=

ME
u|’|[\4§

i [ (‘R{D}—ﬁl,lz‘\l,13>

[

S
Il
—

(VM-2)*
Mnr

I{D} —§1,1A1,1B)] +
o

«af

(- (2121 st

S
Il
—
o
Il
—_
=

X

M=
T M=
5 M

<(1-agH Jutut)

- §1,1A1,1B>
o

LS [

>

)]

(28)

where D = — 2222 ﬁl,kAk,lek is the co-antenna interference
for j = 1 transmit antenna and for the case of perfect CSI at
the receiver, R = S8, and Ry ; = 1.

(Note that for a time-varying channel, the average prob-
ability of symbol error can be determined by averaging the
above expression over many channel realizations as the chan-
nel is assumed to be stationary and ergodic.)

Justification of Claim 3

We can reexpress the channel observation vector y from (8)
as

v = RAb +n, (29)

where H = SA, R = §HS, n = §Hv, and ), is given by

nr
?1 =Ry 1A1b1 + Z Ry x Ak ibi + ny, (30)
k=2

where R} ; is a loss factor corresponding to the imperfect CSI
being available at the receiver. The probability of symbol er-
ror conditioned on the estimated channel matrix is given by

M
Pflem"d(errorlﬁ) = Zp[bl = QlP[y € Zilby = Q], (31)
I=1

where the minimum distance decision region Z; corresponds
to the Ith QAM symbol Q. If we further condition P[y; ¢
Zi1by = Q] on the remaining transmit antennas, that is, let
br = Qi, k = 2,3...,nr, then the co-antenna interference
term in (30) becomes a deterministic quantity. Therefore, the
QAM symbol transmitted from the first antenna b, is only
corrupted by additive Gaussian noise and hence assuming
the real and complex parts of ), are independent the prob-
ability of error in (31) is given by the weighted sum of the
probability of error when b; = Q is a corner, middle, or side
point of the constellation,

Pe

corner —

P[R{m} > R{D} - R, 1A,,B]
X P[S{nl} > 9{D} — Ry A1,B],
=1-P[R{D}—R, A B<R{n } <R{D}+R, A, B]
X P[F{D}~Ri A1 B<TF{n} <I{D}+R,,A,,B],
=1-P[R{n} < R{D} +Rj,A,.B]

XP[I{D}—Ri1A11B<3{n} <F{D}+R,1A1,B],
(32)

(4
Pliddie

51de

where D = — 3T, ﬁl,kAk,lek is the co-antenna interference
for the first (j = 1) transmit antenna and R {n;}, I{n,} are
the real and imaginary components of the noise ;.

We can evaluate (31) by using (32) and the Q-function
(36]

pdemod (error|H)
4
= o
M M M ~
Ri{D} — R 1A1,1B
x> > .Z[l_Q({} L1 1,1)
o
L=1h=1 e
S{D}—ﬁl,lAl,lB)] WM-2)°
XQ( o + Mnr
M M M ~
"DEDIEEEDY [1_(1_2Q(M>)
h=1 =1 Iy =1 o

y (1 _2Q<S{D}+§MAMB)>]

4(J¥ - 2) ’
Mrr
M M M ~
X ZZZ::l lgl .. .lnél [1 - Q(—‘R{D} ;R],lAl,lB)
<1 _ZQ(M))]

(33)
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If we have perfect CSI at the receiver, then R = $H$ and
Ri; = 1.Fora time-varying H, we can average the symbol
error probability in (33) over many channel realizations as
the channel is assumed to be stationary and ergodic. In the
following, we derive the approximate performance of the de-
tector as a closed-form expression.

Claim 4. Let the channel observation vector in the presence of
channel estimation errors be given by y = RAb +n, where R =

SHS. Then the approximate probability of symbol error for j =
1 transmit antenna is given by

Pfem(’d(error)
= b)
zi% M i I_Q(—Rl,l\/ﬁB) +(\/]\71—2)2
Mrr L=1 =1 lyp=1 \IGéAI + 02 Mrr

M| = 2
£ (o)
i 0&a + 02

S| Q(‘ﬁ”“m)

Ve +0?
_El 1/nrB
X 1_2Q — >
( (\/‘TéAI+‘72 ))}

(34)

where Ry, is the average loss factor due to imperfect CSI at
the receiver and the variance of the co-antenna interference
in each dimension is given by o¢y = i, Q. l?/2 and
0&ar = 215, 1Qu |12 for the uncorrelated and correlated fading
scenario, respectively. For the case of perfect CSI at the receiver,

ﬁ = SHS and ﬁl,l =1.

Justification of Claim 4

As mentioned earlier, to permit mathematical tractability, we
assume spatial correlation at the base station only. Without
loss of generality, we consider the j = 1 transmit antenna,
where the channel observation is given in (30) and the corre-
sponding probability of symbol error is given by

M
Piiemod(error) _ Zp[bl = QI]P[j’\l & Z1|by = Ql] (35)
-1

If we condition P[y; ¢ Zj1b; = Q] on the remaining trans-
mit antennas, that is, let by = Qy, k = 2,3,...,nr, then
the co-antenna interference (CAI) term in (30) will be de-
pendent on two random variables Ay, and §1,k- Using the
results of the previous section, we can approximate Ay,
k = 1,2,...,nr, by its mean ,/ng as its variance is small
(1/4 or 1/2) and since the elements of £ are much smaller
than the slements of the channel matrix, the correlation co-
efficient Ry (k # 1) will be assumed to remain as a zero-
mean complex Gaussian random variable with a variance of

1/(2ng) and 1/ng in each dimension for the uncorrelated and
correlated fading scenarios, respectively. Hence, the CAI term
is a complex Gaussian random variable with zero mean and
variance 02, = D070, [1Q,112/2 and oy = 277, 1Qy 1% in
each dimension and the probability of error in (35) is given
by the classical expression for a QAM symbol corrupted by
additive Gaussian noise. As mentioned previously, the prob-
ability of symbol error is the weighted sum of the three ex-
pressions for the probability of error for b; = Q; is a corner,
middle, or side point of the constellation

Pgorner =1 —P[%{;l} > —ﬁl)lAl’lB]P[S{;’l\l} >—ﬁ1,1A1’lB],
Preniddle =1- P[ — §1)1A1)1B < %{;’1\1} < §1,1A1’1B:|

X P[ ~RiiALB<3{m}< §1,1A1,1B],

side

tae = 1—P[Rin} <Ry1AB]

X P[ — R A;B < I{n} < §1,1A1,1B],
(36)

where we assumed the real and complex parts of y; are in-

dependent and 21 is the sum of the Gaussian noise n; and
the CAI term (R and J refer to the real and imaginary com-
ponents). Since ﬁl,l is random variable with an unknown
density function, we can approximate it by its value averaged
over many channel realizations ﬁl,l, where for instance, 1N21,1
is equal to 0.95 for an estimation error variance of 10% (av-
eraged over 100 000 channel realizations). Therefore, the ap-
proximate probability of error for the first transmit antenna
using (36) and the Q-function [36] is given by

P‘liem"d(error)

= 2
M M M N 2
4 _Rl,l HRB ( M—Z)
mTzz---zl—o( . )
L=1L=1 Ly =1

M \/GéAI+02 M
M M M = 2
SIS - (1—2Q(__R;1\/ﬁlj))
h= =1 \ocart o

X
-
ol
[
-
=

) % _1 3 Q(—El,l\/ﬁB)

\/0(2:A1+C’2
_Ell\/”_RB
X |11-2Q| ————= >
( (\/C’éAﬁ'Uz

where for perfect CSI at the receiver R = S#S and hence EM
=11in (37).

(37)

5.3. Numerical results

We provide numerical results to support the probabilistic
analysis of Section 5.1 by simulating 1 million channel re-
alizations for (nr,ng)= (4, 20) antennas in uncorrelated



1692

EURASIP Journal on Applied Signal Processing

0.03

0.025

0.02 |

0.015

0.01

Normalized occurrence rate

0.005

0 . .
0 2.5 5 7.5 10

Norm of the first column in the channel matrix

— Derived density function
Simulated density function

()

0.03

0.025

0.02 r

0.015

0.01

Normalized occurrence rate

0.005

0
0 2.5 5

7.5

Norm of the first column in the channel matrix

10

— Derived density function
Simulated density function

(b)

FiGure 12: The derived and simulated density functions of A, for (ny,ng) = (4, 20) antennas in slow frequency-nonselective (a) uncorre-

lated and (b) correlated Rayleigh fading channels.

and correlated Rayleigh fading channels. As mentioned in
Section 5.1, we will only consider spatial correlation at the
base station, that is, using Pedersen’s model (4) with an an-
tenna spacing of A and an angular spread of § = 10°.

In Figures 12a and 12b, we plot the derived chi den-
sity function of A;; and compare it against the simulated
density function. In both the uncorrelated and correlated
cases, the mean is approximately 4.5 (= ,/ng) and the vari-
ance is 1/4 and 1/2, respectively, which agrees with their
predicted values from Section 5.1. In Figures 13a and 13b,
we plot the derived and simulated density functions of the
real component of R;, for 1 million channel realizations.
In Section 5.1, we showed that by the central limit theo-
rem, the derived density function is approximately Gaussian
and this is confirmed by the simulated density function. In
both uncorrelated and correlated cases, the simulated den-
sity function has zero mean and variance, 0.025 and 0.05 re-
spectively, which agrees with the derived mean and variance.
Since 99% of all correlation coefficient values lie in the range
[-3/+/2ng, 3/+/2ng] = [—0.47,0.47] for the uncorrelated case
and [—-3/./ng, 3/ /nr]= [-0.67, 0.67] for the correlated case,
we observe that high correlations are possible between trans-
mit antennas (> 15%).

5.4. Performance results of the detector

We consider the performance of the linear MIMO signal
detector in slow frequency-nonselective uncorrelated and
correlated Rayleigh fading channels. The spatial correlation
model is as described in Section 2.2 with an antenna spacing
of /2 and A at mobile and base station, respectively and the

angular spread § is assumed to be 10 degrees. Figures 14 and
15 illustrate the average symbol error rate of the MIMO sig-
nal detector averaged over 100 000 channel realizations (us-
ing (33)) and the corresponding approximate symbol error
rate (using (37)) for (nr,nr)= (2, 10) and (4, 20) antennas,
respectively using a 16-QAM symbol constellation with per-
fect and imperfect channel state information (62 = 10%) be-
ing available at the receiver. In the uncorrelated cases (Fig-
ures 14a and 15a), there is a close match between the approx-
imate and average performance. However, in the correlated
cases (Figures 14b and 15b), there exists a small difference be-
tween the approximate and average symbol error rate as the
approximate performance does not include the spatial corre-
lation between transmit antennas. For comparison, the per-
formance of the optimal detector is also shown for the same
system parameters.

Although the proposed detector is co-antenna interfer-
ence limited at high SNRs, it only performs slightly worse
than the exponentially complex optimal detector at very low
SNRs, for example, —5 to —10 dB, which is the region cor-
responding to the performance of the coded MIMO systems
as shown in Figures 9 and 10. Furthermore, Figures 14 and
15 illustrate that the performance of the detector is robust to
channel estimation errors.

6. CONCLUSION

Low-complexity soft-decision MIMO signal detectors are re-
quired to exploit the capacity of MIMO channels in beyond
3G wireless systems. These detectors must be robust, as in
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most practical scenarios, channel estimation errors occur at
the receiver, especially in the uplink transmission scenarios
due to power limitations at the mobile. In this paper, we gen-
eralized the linear detector proposed in prior work [1, 2]
to accommodate channel estimation errors and considered
its robustness in coded MIMO systems on slow frequency-
nonselective correlated Rayleigh fading channels.

We consider an uplink transmission scenario, where it is
feasible to have a larger number of receive antennas at the
base station than the number of transmit antennas at the
mobile. In an uncorrelated Rayleigh fading channel with per-
fect CSI at the receiver, the proposed detector in the turbo-
coded MIMO system outperforms the T-BLAST system [3]
by about 10 dB while performing within 1.5 dB of the ergodic
capacity limit (at a bit error rate of 10~°) for the (n7, ng)= (2,
10) and (4, 20) antenna configurations. Furthermore, for a
channel estimation error variance of 10%, we demonstrated
that the turbo-coded MIMO system with (nr,ng) = (2,10)
(4 bits per channel use) and (4, 20) antennas (8 bits per
channel use) operates within 1.6 dB of the ergodic capacity
limit at a bit error rate of 10~ for uncorrelated channels,
whereas in spatially correlated channels and the same esti-
mation error variance, the performance of the (nr,ng)= (2,
10) and (4, 20) antenna systems is within 2.1 dB and 2.8 dB
of the ergodic capacity limit at a bit error rate of 10>, respec-
tively.

We characterized the co-antenna interference at the out-
put of the proposed detector through density functions of
the column norm and the correlation between the columns
of the random channel matrix H. By doing so, we determined

the approximate closed-form expressions for the perfor-
mance of the detector and compared this to an average based
on many channel realizations. Although the linearly complex
detector was found to be co-antenna interference limited at
high SNRs, at very low SNRs, that is, —5 to —10 dB, which
is the region corresponding to the coded MIMO system per-
formance, it performs only marginally worse than the expo-
nentially complex optimal detector. Furthermore, the linear
detector is robust to channel estimation errors in correlated
and uncorrelated Rayleigh fading channels.

Future work includes a BER performance analysis of the
coded MIMO system that features the proposed detector and
turbo decoder, extending the system to frequency-selective
channels and a multiuser uplink scenario.

APPENDICES

A. APPROXIMATING THE OUTPUT STATISTICS
OF THE PROPOSED MIMO SIGNAL DETECTOR

We would like to analyze the output statistics of the MIMO
signal detector from Section 3.1. The jth element of the
channel observation vector y (from (9)) is given by

Vi = Aj,jbj +> ﬁj,kA\k,kbk + (§H£b)]‘ tnj, (A1)

k=1
k#j

where the transmitted symbol b; is corrupted by the co-
antenna interference, channel estimation error, and filtered
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noise. We can approximate these three complex impairments
as a two-dimensional Gaussian random variable 1n;. The
mean of 1i; is given by

nr
Z Rj,kAk,kbk + (SHsb)j +nj,
k=
o

E[§;] = E| ®
(A.2)

nr

J Z Rj,kAk,kbk + (SHsb)j +n;j
k=
i

The expectation can be applied on each term in the braces
{+}. The mean of n; is zero as the expectation on the fil-
tered noise vector is zero, that is, E[n] = SH E[v] = 0. The
elements of the vector S7eb have a zero-mean as the ele-
ments of & are zero mean Gaussian random variables and
E[SHeb] = SH E[e]E[b] = 0. Therefore, the expression in
(A.2) simplifies to

l‘j:E[ﬁj]
T
nr . . nr . .
= | R1 D E[RjxAxQ] {> 31 D E[RixAxQ] { |
k7 o
(A.3)

where the kth symbol by, k = 1,2,...,n7, k # j, can be de-
scribed as a discrete random variable Q taking one of M pos-
sible values (as we are using M-ary signaling).

The three impairments are independent of each other,
and hence the variance of the two-dimensional Gaussian ran-
dom variable 1n; in each dimension is the sum of the indi-
vidual variances. The variance of #; is the (j, j)th entry of
the covariance matrix of n = SHv which is E[nnf/] = SH
E[w!]S = 20?R. Since the main diagonal of R is composed
of ones, the variance of n; remains the same as the variance
of the elements of the white Gaussian noise vector v, that is,
0% in each dimension. Similarly, the variance of (S”eb); is
the (j, j)th entry of the covariance matrix given by

E[SHebb" 18]

H (A.4)

&€

:§HE[E[£be£H\£]]§=§HE[ ]§=ofﬁ.

nr

Since the main diagonal of R is composed of ones, the vari-
ance of the jth element of S &b remains the same as the vari-
ance of the elements of ¢, that is, 62/2 in each dimension. In
the second step, we used E [be] = 1/n7I and the elements of
the random product matrix ee” have a mean of nrg? along
the main diagonal and zero for the off-diagonal terms [35].

Therefore, we can express the elements of the covariance
matrix of i as

Ki(1,1) = > E[ (R{R;4rxQ})’
%
2

A A 0,
— (B[R {RjxAesQ}])" +0” + 7,

K;(2,2) = > E[(S{ﬁj,kﬁk,kQ})Z]

&

- (E[S{ﬁj,kAAk,kQ}]f +o%+ %82,
K;(1,2) = K;(2, 1)

= S (B[R (RixAuQ)5 (RAixQ))]
: L

ey
i

— (E[R (RixAxkQ)]) (E[T (RjxAkkQ)])),
(A.5)

where the transmitted symbols by, k = 1,2,...,n7, k # j, are
assumed to be independent of each other at any time instant.
The off-diagonal entries K;(1,2) and K;(2, 1) do not include
terms from the filtered noise and channel estimation error
as the real and imaginary dimensions of #; and (SH¢eb); are

independent of each other and E[n;] = 0 and E [(§H eb);] =
0.

B. COMPARISON BETWEEN THE PROPOSED MIMO
AND DS-CDMA SIGNAL DETECTION

The discrete representation of a MIMO system in (1) and
further exemplified in (8) has parallels to a synchronous
DS-CDMA system. The formulation of the detector in
Section 3.1 reveals that the jth transmit antenna corresponds
to the jth user and the receive antennas correspond to the
chips of a user’s spreading sequences in a synchronous DS-
CDMA system. As seen in (9), the other (ny — 1) anten-
nas result in co-antenna interference which is analogous to
multiple-access interference. The proposed detector is best
suited for an uplink scenario (mobile to base station), where
it is feasible to have more receive antennas than transmit
antennas, that is, it corresponds to a typical underloaded
CDMA system [36]. Finally, the filtering by the matrix S in
(8) and the Gaussian approximation for the filtered noise
and the co-antenna interference is analogous to that per-
formed by the conventional CDMA detector based on a bank
of match filters.

Due to the fundamental change in the problem defini-
tion, there exist many differences between the two scenarios.
One of the apparent differences is the use of multilevel mod-
ulation in MIMO transmission, which has not been stud-
ied extensively, for example, see [37, 38, 39, 40] for syn-
chronous DS-CDMA systems. Another key difference is that
elements of the correlation matrix R are functions of random
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spreading sequences (i.e., the normalized columns of H) and,
as such, cannot be designed. Finally, the issue of channel es-
timation errors has no parallel in synchronous DS-CDMA
systems as the spreading sequences are perfectly known by
the receiver.
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