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The problem of detecting the onset of a signal impinging at an unknown angle on a sensor array is considered. An algorithm
based on parallel CUSUM tests matched to each of a set of discrete beamforming angles is proposed. Analytical approximations
are developed for the mean time between false alarms, and for the detection delay of this algorithm. Simulations are included to
verify the results of this analysis.
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1. INTRODUCTION

In this paper, we consider the problem of detecting, as soon
as possible, a target that appears abruptly and at an unknown
angle in a sensor array. This is a problem that arises in a
number of applications including radar, sonar, and commu-
nications. For a fixed angle of incidence and known signal
and noise distributions, this is a classical problem in statis-
tical change detection, and can be solved, for example, by
the Page’s CUSUM algorithm. However, here we consider
the situation in which the angle of incidence and the sig-
nal and noise statistics are unknown. In this case, alterna-
tives to the classic CUSUM must be considered, and a num-
ber of such methods have been developed for such problems
[1, 2, 3, 4, 5].

Here, we use an approach motivated by Nikiforov [4]
in which we discretize the set of incidence angles and run
parallel change-detection algorithms, each one matched to a
beamformer pointed at a particular angle. The presence of
a signal is announced the first time the test statistic associ-
ated with any of these parallel algorithms crosses a threshold.
The angle of incidence is then estimated as the pointing angle
corresponding to the first test to detect. This test can be ana-
lyzed by adapting the methodology of Lorden [6], and we do
so by deriving expressions for the mean time between false
alarms and the asymptotic mean detection delay for our test.
We include a number of simulation results to verify these ex-
pressions and to illustrate further properties of the proposed

algorithm, including the effects on the performance of in-
creasing the number of array elements.

This paper is organized as follows. In Section 2, we de-
scribe a model for the problem of interest, including rel-
evant performance criteria. In Section 3, we review briefly
the action and properties of the classic Page’s CUSUM test
to provide a framework for our algorithm. Section 4 de-
velops our parallel beamformer-based CUSUM algorithm,
while Section 5 contains an analysis of the algorithm under
the assumption of Gaussian noise. We also measure the per-
formance of the proposed method against the optimal al-
gorithm that has perfect knowledge of the signal and noise
distributions together with the direction of arrival, for the
case when both the signal and noise are Gaussian distributed.
Section 6 discusses simulation results that illustrate the algo-
rithm’s properties. And, finally, Section 7 contains some con-
cluding remarks.

2. STATEMENT OF THE PROBLEM

We assume a uniform linear sensor array with L elements and
consider the following signal model:

yi =
ni, i = 1, 2, . . . , ν− 1,

a(φ)Xi + ni, i = ν, ν + 1, . . . ,
(1)

where ν is an unknown change point after which {Xi},
an independent identically distributed (i.i.d.) narrowband
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Figure 1: Linear sensor array with 5 elements with a narrowband
source in the far-field impinging on the array from a direction φ.

complex-valued random signal source, is incident on the ar-
ray (see Figure 1) at an unknown angle φ ∈ [−π/2,π/2), and
a(φ) is the L×1 array response vector (also called the steering
vector) associated with it. The array response has the follow-
ing form:

a(φ) = [1 e− j2π(d/λ) sin(φ) · · · e− j(L−1)2π(d/λ) sin(φ)]T , (2)

where λ is the wavelength and d is the sensor spacing, typi-
cally chosen as half the wavelength. Finally, {ni} is the ambi-
ent noise independent of the source signal, and white in both
space and time, with covariance matrix σ2nIL.

According to the above model, before an unknown time
instant ν (the change point), there is only noise in the sys-
tem, and after the change point, a random signal appears at
an angle φ in addition to the noise. We wish to detect the ap-
pearance of this random signal as soon as possible and also
to estimate the angle of arrival of this source. In particular,
we would like to design a detection algorithm that does not
rely on the knowledge of the distribution of the random pro-
cess {Xi} and the noise process {ni}, except that the noise
variance is assumed to be known. In the following, we pose
this problem formally as a quickest change detection prob-
lem [1, 6], and define the criteria involved in designing an
algorithm for this purpose.

Let P(ν) denote the distribution of the sequence of ob-
servations y1, y2, . . . , yν−1, yν, yν+1, . . ., where ν is the change
point, and let E(ν) denote expectation under P(ν). We assume
that, under P(ν), the random variables {yi} are independent
with a marginal probability density function (pdf) p0 for
i < ν and p1 �= p0 for i ≥ ν. Let P0 correspond to the case
where ν = ∞, that is, {yi} ∼ p0 for all i ≥ 1 (the no-change
situation), and let expectation under P0 be denoted by E0.
Also, we use P1 and E1 instead of P(1) and E(1) for the case
when ν = 1, that is, {yi} ∼ p1 for all i ≥ 1. The goal is to
minimize, over all possible stopping times N , the worst-case
mean delay for detection,

τ̄(N)=sup
ν≥1

ess supE(ν)
{
N − ν + 1 | N ≥ ν, y1, . . . , yν−1

}
,

(3)

such that the mean time before a false alarm satisfies

E0{N} ≥ γ (4)

for a given γ > 0. So, the idea is to detect the presence of a
change as soon as possible while keeping the false alarm rate
below a desired level.

3. PAGE’S CUSUM TEST

Before moving on to the more complex case of composite hy-
potheses, in the following, we review the basic case in which
both the pre- and postchange hypotheses are simple. Later
on, we will discretize the parameter space of the angle of ar-
rival, reduce the composite alternative to a set of simple hy-
potheses in that parameter, and apply parallel simple-change
detection tests.

When the likelihood ratio of the observations under the
two hypotheses can be written explicitly, the following algo-
rithm, called Page’s CUSUM test [7], is known to be opti-
mal in the minimax sense described above [6, 8]. Page’s test
declares the detection of a change point the first time the
CUSUM statistic

max
1≤n≤i

Gi
n, (5)

or the equivalent and computationally efficient recursive
form

Qi =
(
Qi−1 + g

(
yi
))+ (

Q0 = 0
)

(6)

exceeds a threshold h > 0, where Gi
n =

∑i
m=n g(ym) and

g(yi) = log p1(yi)/p0(yi) is the log-likelihood function (or
score function) which should satisfy 0 < ρ � E1{g(yi)} <
∞. Recall that ρ = E1{g(yi)} is the Kullback-Leibler dis-
tance between the two densities and is always positive, while
E0{g(yi)} is always negative.

Thus, the stopping time N of the CUSUM algorithm is
given by

N = inf
{
i ≥ 1 : max

1≤n≤i
Gi
n ≥ h

}
(7)

or, equivalently,

N = inf
{
i ≥ 1 : Qi ≥ h

}
, (8)

where the equivalence is true under the condition that we use
h > 0. For this algorithm, we have the following well-known
result of Lorden [6]:

E0{N} ≥ eh, τ̄(N) = E1{N} ∼ h

ρ
as h −→ ∞. (9)

Note that for the CUSUM stopping rule, the worst-casemean
detection delay corresponds to the change point ν = 1, since
this is when the CUSUM statistic Qi ≥ 0, for all i, is at its
minimum (Q0 = 0) and hence is the farthest from the thresh-
old h > 0.

The idea behind the CUSUM algorithm is that it stops
at the first time instant i such that for some n ≤ i, the
log-likelihood ratio test to decide between the hypotheses
H0[i] : yn, . . . , yi ∼ i.i.d. p0 and H(n)[i] : yn, . . . , yi ∼ i.i.d. p1
exceeds a certain threshold. The basic operating principle of
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the recursive form (6) is that, before the change, E0{g(yi)} <
0, so that Qi remains close to zero; whereas after the change,
Qi starts drifting upward with a positive mean ρ = E1{g(yi)}
until it ultimately crosses the threshold h.

In general, when the likelihood ratio is not known ex-
plicitly, which we assume to be so in our situation, the score
function g(·) can be replaced by any other function with neg-
ative mean before the change, and positive mean after the
change; that is, satisfying the conditions E0{g(yi)} < 0 and
E1{g(yi)} > 0. In this case, the stopping time is no longer
guaranteed to be optimal but still a very good candidate once
an appropriate function is chosen [1, 9, 10] satisfies

E0{N} ≥ es0h, τ̄(N) = E1{N} ∼ h

E1
{
g
(
yi
)} as h −→ ∞,

(10)

where s0 > 0 is the (nontrivial) root of the equation
E0{esg(yi)} = 1, which exists and is unique under certain reg-
ularity conditions.

4. PARALLEL BEAMFORMER-BASED
CUSUMALGORITHM

Since the angle of arrival φ after the change point is un-
known, we have a composite alternative hypothesis in that
parameter. Motivated by Nikiforov’s approach [4] for detect-
ing a change under such a condition, we propose a simple
scheme in which we run simultaneously K parallel CUSUM
algorithms, each using a conventional beamformer. Since we
assume no knowledge of the probability distributions of the
target signal and noise, this suboptimal method acts as an
energy detection scheme with each CUSUM “tuned” for the
detection of signal energy from a particular direction of ar-
rival.

The array weight vector, w(θ), for the conventional
beamformer [11] (also called the fixed-phased array beam-
former) is given by w(θ) = a(θ)/L, where a(θ), defined
in (2), is the array response or the steering vector associ-
ated with a source incident at angle θ. Hence, the output of
the conventional beamformer is unity in the look direction
w(θ)Ha(θ) = (1/L)a(θ)Ha(θ) = 1, where w(θ)H is the con-
jugate transpose ofw(θ). Note that the beamformer response
is maximal in the look direction θ, that is,

1
L
a(θ)Ha(φ) ≤ 1 ∀θ,φ ∈

[
− π

2
,
π

2

)
, (11)

with equality if and only if θ = φ. In general, given an array
weight vector w(θ), the function

z(θ,φ) = ∣∣w(θ)Ha(φ)∣∣ (12)

for fixed θ, and as a function of φ, is called the beampattern
corresponding to the beamformer pointing in the direction
θ, and it is the collection of that beamformer’s responses as
the angle of incidence varies over φ. On the other hand, for
fixed φ, z(θ,φ), as a function of θ, is called the steered response
corresponding to the angle of incidence φ, and it is the collec-
tion of beamformer’s responses as the look direction varies
over θ.

To devise a test for (1), we discretize the parameter space
[−π/2,π/2) into K angles {θ1, θ2, . . . , θK} such that −π/2 ≤
θ1 < · · · < θK < π/2. We can then design a CUSUM test for
the detection of a target incident from each of such angles,
operate them in parallel to provide the coverage for the whole
space, and then combine them into a single change-detection
algorithm. For d = λ/2, the fixed-phased array beamformer
pointing in the direction θk is defined as

wk = 1
L

[
1 e− jπ sin(θk) · · · e− jπ(L−1) sin(θk)]T ,
for θk ∈

[
− π

2
,
π

2

)
, k = 1, . . . ,K.

(13)

The stopping time, N , of our parallel beamformer-based
CUSUM test is then given by

N = inf
{
i ≥ 1 : Q̄i ≥ h

}
, (14)

with Q̄i defined as follows:

Q̄i � max
1≤k≤K

Qk
i , (15)

and, for each 1 ≤ k ≤ K , the CUSUM statistic Qk
i is given by

Qk
i =

(
Qk

i−1 + gi(k)
)+

with Qk
0 = 0, (16)

where we use the following equation:

gi(k) =
∣∣wH

k yi
∣∣2 − σ2n

L
− c. (17)

Defining the function gi(k) in the above fashion makes
each CUSUM test act as an energy accumulator “tuned” to
the direction θk, which will make the alarm go off in the
presence of a target once it starts drifting upward collect-
ing signal energy coming from the look direction. In order to
see this, first, we examine the behavior under the prechange
(noise only) case. Notice that, since yi = ni for i < ν, we
have E(ν){yiyHi } = σ2nIL, and using the fact that wH

k wk = 1/L,
we obtain E(ν){gi(k)} = wH

k E(ν){yiyHi }wk − σ2n/L − c = −c.
Here, the bias term c must be chosen to satisfy the condi-
tion c > 0, so that the expected value of gi(k) is negative
when there is no target present, that is, E(ν){gi(k)} < 0 for
i < ν. This negative drift is needed to keep the CUSUM
statistic Qk

i , 1 ≤ k ≤ K , (16) close to zero before the tar-
get presence. Next, looking at the postchange behavior (sig-
nal plus noise), it is easy to see that, since yi = a(φ)Xi + ni

for i ≥ ν, and {Xi} and {ni} are independent, we have
E(ν){gi(k)|φ} = |wH

k a(φ)|2σ2s − c, where σ2s = E{|Xi|2} is the
target signal energy and |wH

k a(φ)| is the kth beamformer’s
response for the signal coming from direction φ. Now, we
can see that the bias term c > 0 plays an important role in
the postchange situation and should be chosen based on the
designed set of beamformers and the minimum signal to-
noise-ratio (SNR) requirements so that it satisfies the condi-
tion c < max1≤k≤K |wH

k a(φ)|2σ2s , for all φ. Then, for any an-
gle of arrival φ, we have max1≤k≤K E(ν){gi(k)|φ} > 0 for i ≥ ν,
which will guarantee that at least one of the CUSUM statis-
tics (16) will start drifting upward with a positive mean that
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Figure 2: Beampattern samples for a two-sensor array (L = 2) for look directions (a) θ = 0◦, (b) θ = 45◦, and (c) θ = 90◦.

90

60

30
0

330

300

2700.20.40.6
0.8

1

(a)

90

60

30
0

330

300

2700.20.40.6
0.8

1

(b)

90

60

30
0

330

300

2700.20.40.6
0.8

1

(c)

Figure 3: Beampattern samples for a six-sensor array (L = 6) for look directions (a) θ = 0◦, (b) θ = 45◦, and (c) θ = 90◦.

is proportional to the target signal energy σ2s , and the beam-
former response for that direction |wH

k a(φ)|2, enabling the
detection of the target as soon as it exceeds a certain thresh-
old value h. In particular, let the angle of arrival of the in-
coming signal φ∗ be such that for some 	, θ	 = φ∗, namely,
we assume that the incoming angle of arrival matches exactly
one of the look directions in our set of beamformers. Then,
the 	th CUSUM test based on that beamformer is expected to
be responsible for the detection of the target since that beam-
former will have the unity (and maximal) response com-

pared to the others, that is, |wH
	 a(φ

∗)| = 1, for φ∗ = θ	 . Now,
if K , the number of beamformers, is chosen large enough,
then we can cover the whole interval [−π/2,π/2), and we do
not need to restrict φ∗ to belong to the set {θ1, . . . , θK}, that
is, φ∗ can be any real number in the interval. In this situa-
tion, the response of the beamformer whose look direction is
the closest to φ∗ will be approximately unity again. This is of
course true if, for a given number of sensors L, the number
of beamformers K is chosen such that the main lobe width
of the beampatterns (see Figures 2a, 2b, 2c, 3a, 3b, and 3c) is
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not very small compared to the difference between the beam-
former look directions. Namely, for large L, we have better
resolution and, accordingly, K must also be chosen propor-
tionately large so that we have close-to-unit response for all
angles of arrival φ. Thus, each beamformer will have an in-
terval of responsibility for detection, and the union of these
intervals will cover the whole region.

We can now proceed to find the mean time to a false
alarm for the parallel CUSUM algorithm whose stopping
time is given in (14). First, we define the following K stop-
ping times corresponding to each CUSUM rule (16):

Nk � inf
{
i ≥ 1 : Qk

i ≥ h
}
, (18)

and the final stopping time, which is equivalent to (14), is
then given by

N = min
1≤k≤K

Nk. (19)

Now, using the equivalent representation (7), the stopping
time Nk (18) can be expressed as

Nk = min
{
Tk(n) : n = 1, 2, . . .

}
, (20)

where

Tk(n) = inf
{
i ≥ n : Gi

n(k) ≥ h
}

(21)

with Gi
n(k) =

∑i
m=n gm(k). Hence, the stopping time (19) is

given by

N = min
1≤k≤K

min
n≥1

Tk(n)

= min
n≥1

min
1≤k≤K

Tk(n).
(22)

For any finite n, Tk(n) is the stopping time of a sequential
hypothesis test acting on observations yn, yn+1, . . . for which
we have [1, 10]

P0
(
Tk(n) <∞) ≤ e−s0(k)h (23)

which implies

P0

(
min
1≤k≤K

Tk(n) <∞
)
≤

K∑
k=1

e−s0(k)h, (24)

where s0(k) is the nonzero root of the following equation:

E0
{
esgi(k)

} = 1. (25)

Now, using Lorden’s theorem [6] which states that, for a
stopping time T̃ with respect to a sequence of random vari-
ables yi, i = 1, 2, . . ., such that P0(T̃ < ∞) ≤ α, the extended
stopping time Ñ � min{T̃(n) | n = 1, 2, . . .}, where T̃(n) is

obtained by applying T̃ to yn, yn+1, . . ., satisfies E0{Ñ} ≥ 1/α,
we get from (20)–(24),

E0
{
Nk
} ≥ es0(k)h, (26)

and most importantly,

E0{N} ≥ 1∑K
k=1 e−s0(k)h

. (27)

Next, based on the definition (19), the asymptotic detec-
tion delay can be derived using the upper bound

E1{N} ≤ min
1≤k≤K

E1
{
Nk
}

(28)

together with (10), which leads to

E1{N} ∼ h

max1≤k≤K E1
{
gi(k)

} as h −→ ∞. (29)

Finally, at the alarm time N , as a byproduct of this al-
gorithm, we can obtain an estimate of the angle of arrival,
which follows from the idea that the CUSUM rule corre-
sponding to the beamformer with the largest response (the
one whose look direction is the closest to the angle of inci-
dence) will have the sharpest increase and reach the thresh-
old more quickly. Hence the estimate φ̂ is obtained via

φ̂ = θk∗ , k∗ = argmax
k

Qk
N . (30)

In the next section, we analyze the properties of our al-
gorithm in the case where the noise in our model (1) is
i.i.d. zero-mean Gaussian, ni ∼ N (0, σ2nIL).

5. ANALYSIS UNDER GAUSSIAN NOISE

We first recall the parallel beamformer-based CUSUM test,
presented in (14) with Q̄i and Qk

i defined as before, and

gi(k) = L
∣∣wH

k yi
∣∣2

σ2n
− 1− c, (31)

where it is easy to see that the threshold h and bias c values
above are related to the ones in (14), (15), (16), and (17), by a
scale factor σ2n/L. From now on, we will use the above equiv-
alent form of the CUSUM test, which makes the following
analysis and interpretation of the results simpler.

Now, we look at the mean time to a false alarm for each
CUSUM test in the parallel algorithm. UnderH0, that is, yi =
ni for i ≥ 1, we have

gi(k) = L
∣∣wH

k ni

∣∣2
σ2n

− 1− c, (32)
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and the solution to (25) is the nonzero root of the equation

E0
{
es(L|w

H
k ni|2/σ2n )}e−s(1+c) = 1. (33)

If we also assume that the real and imaginary components of
the zero-mean complex Gaussian noise vector ni = �ni +
j�ni are independent and have equal covariance, that is,
E{�ni�nT

i } = E{�ni�nT
i } = (σ2n/2)IL, and E{�ni�nT

i } =
0, then Y = L|wH

k ni|2/σ2n is an exponential random vari-
able with mean E{Y} = (L/σ2n)w

H
k E{ninH

i }wk = 1, where
we used the fact that wH

k wk = 1/L. In order to see this, we
write Y = Y 2

R + Y 2
I and obtain

YR =
√
L

σn

(�wT
k�ni + �wT

k �ni
)
,

YI =
√
L

σn

(�wT
k �ni −�wT

k�ni
)
.

(34)

Under the assumptions made above, YR and YI are zero-
mean jointly Gaussian random variables with zero covari-
ance, and hence are independent, that is,

Cov
(
YR,YI

) = E
{
YRYI

}=−L

2
�wT

k �wk+
L

2
�wT

k�wk = 0.

(35)
Thus, Y is a chi-square random variable with two degrees
of freedom, which is equivalent to an exponential random
variable. The moment generating function of Y is then given
by

E
{
esY
} = 1

1− s
(36)

and the solution to (25) is the nonzero root of the equation

e−s(1+c) = 1− s (37)

which can be solved numerically. The solution is a function
of c and does not depend on k, so we will denote the root as
s0(c) and from (26) and (27), we obtain

E0
{
Nk
} ≥ es0(c)h, E0{N} ≥ es0(c)h

K
. (38)

In Figure 4, we plot the nonzero root s0 of the above equation
as a function of the bias term c > 0. Notice that, s0 approaches
1 rapidly as the bias c increases from value 0.

Next, we will look at the mean detection delay perfor-
mance. Under the assumption that the incoming signal al-
ways coincides with one of the look directions, that is, φ =
θ	 , 1 ≤ 	 ≤ K , the stopping time corresponding to the beam-
former that is perfectly tuned to the incoming signal (the
one with unit response) will be N	 . Under H1, that is, when
the target is present, we have yi = a(θ	)Xi + ni for i ≥ 1.
Then using the independence of {Xi} and {ni}, the fact that
wH
	 a(θ	) = 1, and wH

	 w	 = 1/L, we obtain

E1
{
gi(	) | φ = θ	

}
= E1

{
L

∣∣wH
	

(
a
(
θ	
)
Xi + n(i)

)∣∣2
σ2n

}
− 1− c

= L
σ2s
σ2n
− c,

(39)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

c = 1
s0 = 0.797

c = 2
s0 = 0.94

c = 3
s0 = 0.98

c = 4
s0 = 0.993

c

s0

Figure 4: Exponent s0 versus bias c (cf. (37)).

where σ2s = E{|Xi|2} and c is chosen so that it satisfies 0 <
c < Lσ2s /σ

2
n . Since the 	th beamformer’s look direction is the

closest to the target, clearly we have max1≤k≤K E1{gi(k) | φ =
θ	} = Lσ2s /σ

2
n − c, and therefore from (29), we obtain E1{N |

φ = θ	} ∼ h/(Lσ2s /σ
2
n − c) as h → ∞, which does not depend

on 	, and hence

E1{N} ∼ h

Lσ2s /σ2n − c
as h −→ ∞. (40)

Now, in the case when the incoming signal is not constrained
to belong to the discrete set of look directions, we will get

E1{N} ∼ h

βLσ2s /σ2n − c
as h −→ ∞, (41)

where

β = min
φ

max
1≤k≤K

∣∣wH
k a(φ)

∣∣2 (42)

will be close to unity, according to the preceding discussion
in Section 4, provided that a sufficient number of beamform-
ers K is used according to the given array size L such that
for every angle of arrival φ, the beamformer with the closest
look direction has approximately unity response. Of course,
this happens when the main lobes of our set of beamformers
considerably overlap with each other.

Now, assuming h is large enough that the asymptotically
linear relationship applies, we can make the following obser-
vations. Mean detection delay is inversely proportional to the
number of antenna elements L and increases linearly with the
threshold value h; whereas, the lower bound for mean time
to a false alarm is independent of L and increases exponen-
tially with h. So, for a given SNR value, keeping the threshold
h and bias value c fixed, we can reduce the mean detection
delay by increasing L while satisfying the same false alarm
requirement, or by increasing L and keeping c fixed, we can
achieve the samemean detection delay with a higher h, yield-
ing an exponential reduction in the false alarm rate.
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Next, for the case where both the signal and noise are
Gaussian, we will compare the performance of the proposed
method to that of the optimal detector that has perfect
knowledge of the signal and noise distributions and the an-
gle of incidence. Then, as described in Section 3, the optimal
CUSUM test takes the following form:

N∗ = inf
{
i ≥ 1 : Q∗i ≥ h

}
(43)

with Q∗i = (Q∗i−1 + g∗(yi))+ and g∗(yi) = log p1(yi)/p0(yi).
So, we assume that under H0, we have yi = ni and
yi ∼ N (0,Σ0), where Σ0 = σ2nIL, and under H1, we have
yi = a(φ)Xi + ni and yi ∼ N (0,Σ1(φ)), where Σ1(φ) =
σ2s a(φ)a(φ)

H + σ2nIL. Then

g∗
(
yi
∣∣φ) = log

p1
(
yi
∣∣φ)

p0
(
y0
∣∣φ)

= −1
2
log

∣∣Σ1(φ)
∣∣∣∣Σ0
∣∣ − 1

2
yHi
(
Σ−11 (φ)− Σ−10

)
yi.

(44)

It is easy to see that the determinants |Σ1(φ)| and |Σ0| are
given by |Σ0| = (σ2n)

L and |Σ1(φ)| = (σ2n)
L−1(Lσ2s +σ2n), where

we used the fact that a(φ)Ha(φ) = L. Then

ρ∗(φ) = E1
{
g
(
yi
∣∣φ)}

= −1
2
log

∣∣Σ1(φ)
∣∣∣∣Σ0
∣∣ − 1

2
trace

((
Σ−11 (φ)− Σ−10

)
Σ1(φ)

)

= −1
2
log

(
1 + L

σ2s
σ2n

)
+
1
2
L
σ2s
σ2n

,

(45)

where we have used the fact that E1{yiyHi |φ} = Σ1(φ). Note
that ρ is independent of direction of arrival φ. Hence, from
(9), the mean detection delay for the optimal detector is

E1
{
N∗} ∼ h

1/2
(
Lσ2s /σ2n

)−1/2 log (1 + Lσ2s /σ2n
) as h −→ ∞,

(46)

and the lower bound on the mean time to a false alarm is
given by

E0
{
N∗} ≥ eh. (47)

And for the proposed parallel CUSUMmethod, we have

E0{N} ≥ es0(c)h

K
, E1{N} ∼ h

βLσ2s /σ2n − c
as h −→ ∞.

(48)

Now, we can investigate under what circumstances the
proposed method’s performance is close to that of the opti-
mal one. First, we know from Figure 4 that, as the bias term
c increases, the exponent s0(c) will get closer to 1, and hence
the false alarm performance of the parallel CUSUM method
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Figure 5: Bias values for optimal mean detection delay versus σ2
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will get closer to the optimal algorithm, assuming the perfor-
mance is measured with respect to the exponent term in the
lower bound expression for the mean time to a false alarm.
On the other hand, the detection delay performance is also
related to the choice of c, and given the antenna array size
L and desired target SNR to be detected, we can determine
the bias value c in our proposed method that is needed in or-
der to get the same asymptotic detection delay performance
obtained from the optimal algorithm, assuming that the per-
formance is measured with respect to the slope term in the
asymptotic expression for the mean detection delay. So, from
(41) and (46), with β = 1, we can write

Lσ2s
σ2n

− c = 1
2
Lσ2s
σ2n

− 1
2
log
(
1 +

Lσ2s
σ2n

)
(49)

from which we get

c = 1
2
Lσ2s
σ2n

+
1
2
log
(
1 +

Lσ2s
σ2n

)
. (50)

In Figure 5, we plot the values of c as a function of SNR for
different numbers of antenna elements L. Now, we can make
the following interpretation. Given L and SNR values, we can
find the value of the bias term c that is needed to give usmean
detection delay performance equivalent to that of the opti-
mal algorithm, and from Figure 4, we can find the value of
the exponent s0 corresponding to that bias value c, which in
turn specifies the achievable performance on the false alarm
rate given by (38). Or, given L and the requirement on the
false alarm rate determined by the value of the exponent s0,
we can obtain from (37) c = (1/s) log(1/(1−s))−1, the value
of the bias term c that is needed to satisfy this requirement;
and corresponding to that bias value, we can retrieve from
Figure 5 the SNR value for which we can achieve mean de-
tection delay performance equivalent to that of the optimal
algorithm.
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Given the number of sensor elements L, we can see that
the parallel CUSUM method, with c chosen according to
(50), can achieve optimal detection delay performance, while
its false alarm performance gets closer to the optimal as the
SNR increases. For instance, looking at point B in Figure 5,
we see that with L = 2 and for values of SNR ≥ 4.81 dB, we
can find a bias value c ≥ 4, for which we get optimal detec-
tion delay with false alarm performancemeasured in terms of
the exponent s0 ≥ 0.993, where s0 = 1 is the optimal expo-
nent. Also, looking at point A, we see that with a larger array
size L = 8, we can use the same bias value c ≥ 4, and achieve
the optimal detection delay performance with the same false
alarm performance (s0 ≥ 0.993) under lower SNR conditions
(SNR ≥ −1.21 dB). So by increasing the number of antenna
elements L, we can achieve the same performance levels un-
der lower SNR conditions.

Next, we will present some simulation results in order to
make the ideas developed in this paper more concrete.

6. SIMULATION RESULTS

For the simulations, we will take both the noise and the in-
coming signal to be i.i.d. zero-mean complex Gaussian with
noise covariance σ2nI and signal covariance σ2s I. We choose a
value of SNR = σ2s /σ

2
n = 5 dB, and for different array sizes

L, the bias term is chosen according to (50). Overall, we per-
form 10 000 Monte Carlo simulations for each data point in
detection delay measurements, and 1000 Monte Carlo simu-
lations for each data point in false alarm measurements. The
reason why we used fewer simulations for false alarm mea-
surements is that even for threshold values h that are much
smaller than the ones we used for detection delay measure-
ments, the false alarm times were much longer which made
each Monte Carlo simulation take that much longer to com-
plete.

In Figures 2a through 3c, some sample beampatterns for
a conventional beamformer with two and six sensors are
plotted. We see that as the number of sensors increases, the
width of the main lobe decreases and the resolution of our
detector improves, which is expected to result in a better per-
formance in terms of angle-of-arrival estimation. For sim-
plicity, we divide the interval [−π/2,π/2) equally into 180
points and employ 180 beamformers such that each beam-
formerwk points in the direction−π/2+((k − 1)/180)π, k =
1, . . . , 180. We also note that even for 10 sensors (L = 10),
where the main lobe width is very small, a separation of one
degree provides the essential overlap of the main lobes of the
collection of beampatterns to cover the whole region. That
is to say, according to this configuration with K = 180, as L
ranges from 2 to 10, we get β = 0.9999 through β = 0.9969,
where we have defined β as in (42).

Now looking at Figures 2a through 3c, we notice the fol-
lowing. As the look direction moves away from 0◦ in either
direction, another sidelobe starts to appear, the beampattern
starts to have asymmetry, and the peak of the second lobe
increases in the opposite direction. For 90◦, there is perfect
symmetry and the beamformer aimed at−90◦ will have unity
response for a signal coming from 90◦. For small L, this phe-

180

160

140

120

100

80

60

40

20

20 60 100 140 180 220 260 300 340 380

E
1
{N
}

h

L = 2

L = 4

L = 8

Figure 6: Mean detection delay versus h for L = 2, 4, and 8. Solid
lines: simulation; asterisks: theoretical.

nomenon is more dramatic; when we compare Figures 2b
and 3b, we see that the second lobe for L = 2 is much larger
than it is for L = 6.

We estimate the angle of arrival (30) using the idea that
the beamformer whose look direction corresponds to (or is
the closest to) the angle of arrival will be the one responsi-
ble for the detection, since it will have the largest response
among all beamformers. Ideally, we would like to have a col-
lection of beampatterns in the shape of a daisy in which each
petal corresponds to a specific beamformer so that we have
the large responses from those beamformers that are looking
in the direction of arrival, and not from those beamformers
looking in the opposite direction. Now, for small L, and for
a signal coming from, say −70◦, the beamformer looking in
the +70◦ direction will have a significant response due to its
large second lobe. Because of this, we may get large estima-
tion errors coupled with a sign ambiguity. For this reason, in
our simulations, we restrict the target’s angle of arrival to the
interval [−50◦, 50◦] so that even for L = 2, the response of
the second lobe remains at a comfortably low level and we
can get reliable estimates.

In the following, we investigate the properties of the al-
gorithm under the case of a minimal configuration with two
sensors (L = 2), and we also vary the number of sensor ele-
ments to observe the performance improvement achieved by
increasing the array size.

Figure 6 shows the mean detection delay for L = 2,
4, and 8 as threshold h varies from 20 to 400 in steps of
20. Solid line shows the simulation results and the aster-
isks show the locations obtained from the theoretical asymp-
totic expression (41). We observe that the mean detection
delay follows the asymptotic expression very closely and in-
creases linearly with h, meaning that the asymptotic result
is fairly general (it holds for finite values of h), and it can
be used as a design guideline. We also see that for fixed h,
the mean detection delay decreases as the array size L in-
creases, as expected. In particular, we can observe this in
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Figure 7: Mean detection delay versus L for h = 400. Solid line:
simulation; asterisks: theoretical.
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Figure 8: Histogram of detection times for h = 400 and L = 2.

Figure 7, where we plot the mean detection delay as a func-
tion of L, for threshold h = 400. In Figure 8, we show the
histogram of detection delays for h = 400 and L = 2, based
on which we can make the observation that it has a gamma-
like density.

In Figure 9, we plot the mean time to a false alarm for
L = 2, as h varies from 1 to 6 in steps of 0.5. We see that the
mean time to a false alarm increases exponentially with h. For
this value of L, we used c = 4.16 obtained from (50), and cor-
responding to that, we have s0(c) = 0.99. Based on this, we
can conclude that the theoretical lower bound (38) is rather
loose since we get e6 � 403, which is much smaller than the
simulation results. In Figure 10, we show the histogram of
false alarm times for h = 6 and L = 2, based on which we
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Figure 9: Simulation results for mean time to a false alarm versus h
for L = 2.
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Figure 10: Histogram of false alarm times for h = 6 and L = 2.

can make the observation that it has an exponential-like dis-
tribution.

In Figures 11 and 12, we look at the mean detection de-
lay and the mean false-alarm time properties of the optimal
detector we have defined in Section 5. Comparing Figure 6
with Figure 11, and Figure 9 with Figure 12, we see that the
mean detection delays for the parallel CUSUM exactly match
those of the optimal detector, as expected, whereas the mean
time to a false alarm for the optimal detector is higher than
that achieved by the parallel CUSUM method for the same
threshold h. We note that the theoretical lower bound (47)
is very loose for the optimal algorithm as well. We also com-
pare, in Figure 13, the parallel CUSUM method to the op-
timal algorithm in terms of the standard deviation of the
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the optimal algorithm. Solid lines: simulation; asterisks: theoretical.
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Figure 12: Simulation results for mean time to a false alarm versus
h for L = 2, with the optimal algorithm.

detection delay as a function of threshold h for different array
sizes L = 2, 4, and 8. We see the standard deviation increases
with h and the gap between the optimal and the proposed
method is smaller for larger L.

In Figure 14, we consider the mean-squared angle-of-
arrival estimation error as a function of threshold h, while
keeping the number of sensors fixed (L = 2). As we increase
h (causing more delay in detection), initially we see consid-
erable improvement which diminishes slowly as we further
increase the threshold size. In Figure 15, we again look at the
mean-squared estimation error; this time with a larger ar-
ray size (L = 6), and see that the estimation errors are sig-
nificantly lower. In Figure 16, we vary the number of sen-
sors in the array for a fixed detection threshold h = 20,
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Figure 13: Simulation results for the standard deviation of the de-
tection delay times versus h for L = 2, 4, and 8. Solid lines: parallel
CUSUMmethod; dashed lines: optimal algorithm.
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Figure 14: Mean-squared angle-of-arrival estimation error versus
h for L = 2.

and observe that the mean-squared error exhibits a sharp
decrease initially as L increases from 2, and then tapers off.
Note that while comparing the estimation errors as a func-
tion of L for a fixed threshold h, we should keep in mind that
we not only get a reduction in the mean-squared estimation
error with a larger array size, but also we detect the target
sooner as evident from Figures 6 and 7. Finally, Figure 17
shows the histogram of squared estimation error for h = 100
and L = 6.

7. CONCLUSION

We have examined the problem of detecting a target that
appears abruptly in a noisy environment. For this purpose,
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Figure 15: Mean-squared angle-of-arrival estimation error versus
h for L = 6.

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0
2 3 4 5 6 7 8 9 10

L

E
1
{(
φ̂
−
φ
)2
}

Figure 16: Mean-squared angle-of-arrival estimation error versus
L for h = 20.

we have applied a sensor array and devised a parallel
CUSUM algorithm based on beamforming. The algorithm
not only detects quickly the existence of the target, but
it also provides an estimate on the target’s angular direc-
tion. We have developed analytical bounds on the algo-
rithm performance and verified these bounds through sim-
ulation, and also demonstrated the algorithm’s effective-
ness by varying different parameters in the system. We
have also compared, under the Gaussian signal and noise
case, the proposed algorithm’s performance against the op-
timal algorithm that has perfect knowledge of the sig-
nal and noise distributions, together with the direction of
arrival.
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