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We consider the energy savings that can be obtained by employing network coding instead of plain routing in wireless multiple
unicast problems. We establish lower bounds on the benefit of network coding, defined as the maximum of the ratio of the
minimum energy required by routing and network coding solutions, where the maximum is over all configurations. It is shown
that if coding and routing solutions are using the same transmission range, the benefit in d-dimensional networks is at least
2d/�√d�. Moreover, it is shown that if the transmission range can be optimized for routing and coding individually, the benefit in
2-dimensional networks is at least 3. Our results imply that codes following a decode-and-recombine strategy are not always optimal
regarding energy efficiency.

1. Introduction

Emerging applications in wireless networks, like environ-
ment monitoring in rural areas by ad hoc networks, require
more and more resources. One of the most important
limitations is formed by battery life. Since battery technology
is not keeping up with the increasing demand from resource-
consuming applications, it is imperative that more efficient
use is made of the available energy. There has been significant
recent attention to the problem of minimizing energy
consumption in networks. Some of the topics considered are
minimum cost routing [1–3], power control algorithms [4–
6], and cross-layer protocol design for energy minimization
[7]. In this work, we are interested in the use of network cod-
ing [8–14] for reducing the energy consumption in wireless
networks. We compare the reduction with traditional routing
solutions. The contributions of this work are lower bounds
on the energy reduction that can be achieved by using
network coding for multiple unicast problems in wireless
networks.

In recent years, there has been significant interest in net-
work coding with the aim of reducing energy consumption
in networks. More generally, network coding with a cost
criterion has been considered. Much progress has been made
in understanding the case of multicast traffic. In fact, it has
been shown by Lun et al. that a minimum-cost network
coding solution can be found in a distributed fashion in
polynomial time [15]. The fact that the complexity of finding
this solution is polynomial in time is surprising, since the
corresponding routing problem is a Steiner tree problem that
is known to be NP-complete [16].

Besides constructing minimum-cost coding solutions, it
is also of interest to know what the benefits of network coding
are compared to routing. In this work we, are interested in the
energy benefit of network coding, which is the ratio of the
minimum energy solution in a routing solution compared to
the minimum energy network coding solution, maximized
over all configurations. It has been shown by Goel and
Khanna [17] that the energy benefit of network coding for
multicast problems in wireless networks is upper bounded
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by a constant. The problem of reducing energy consumption
for many-to-many broadcast traffic in wireless networks has
been studied by Fragouli et al. in [18] and Widmer and
Le Boudec in [19], providing lower bounds on the energy
benefit of network coding for specific topologies. More
importantly, algorithms have been presented in [18, 19] that
allow to exploit these benefits in practical scenarios, that is,
in a distributed fashion.

The above demonstrates that for multicast traffic and
for many-to-many broadcast traffic, there is some under-
standing of the energy benefits of network coding and how
to exploit them. In order to reduce energy consumption
in practical networks, however, it is important to consider
also multiple unicast traffic. Indeed, in practice a large
part of the data will be generated by unicast sessions. For
the case of multiple unicast traffic, contrary to multicast
and broadcast, not much is known. This paper deals with
the energy benefits of network coding for wireless multiple
unicast. Remember from the above that for multicast,
the problem of minimum-cost routing is hard, whereas
minimum-cost network coding is easy. In stark contrast,
the problem of minimum-cost multiple unicast routing is
easy. One constructs the minimum-cost solution, that is, the
shortest path, for each session individually. The minimum-
cost multiple unicast network coding problem, however,
seems hard and in general very little is known.

Network coding for the multiple unicast problem was
first studied by Wu et al. in [20], in which it was shown
that in the information exchange problem on the line
network, the energy saving achieved by network coding is
a factor two. The network codes that we construct in this
work are in a sense a generalization of the results on one-
dimensional networks [20], to higher-dimensional networks.
The networks considered in this work are lattices. More
specifically, the hexagonal lattice and the rectangular lattice.
Effros et al. [21] and Kim et al. [22] have considered energy-
efficient network codes on the hexagonal lattice. We improve
the lower bounds on the energy savings of network on the
hexagonal lattice given in [21]. More precisely, we improve
the previously known bound of 2.4 and obtain a new bound
of 3.

Kramer and Savari have developed techniques that can
be used to upper bound the achievable throughputs in a
multiple unicast problem [23]. No methods are known,
however, to lower bound the cost of network coding
solutions for a configuration. A lower bound to the ratio of
the minimum energy consumption of routing and coding
solutions for a given multiple unicast configuration was
provided by Keshavarz-Haddad and Riedi in [24]. For the
type of configurations used in this paper, however, the results
from [24] give the trivial lower bound of one. We will see,
however, that network coding has large energy savings for
these configurations.

An important class of network codes operates according
to a principle that we will refer to in the remainder as
decode-and-recombine. These codes satisfy the constraint that
each symbol in each linear combination that is transmitted
is explicitly known by the node transmitting that linear
combination. Note, that this is a restriction from the

general linear coding strategy, in which linear combinations
of coded messages can be retransmitted. The motivation
behind using decode-and-recombine codes is that it prevents
information from spreading too much in the network, away
from the path between source and destination, a heuristic
introduced by Katti et al. [25]. The use of a decode-and-
recombine strategy results in reduced complexity. However,
an important question that has to be addressed is whether
the use of decode-and-recombine codes leads to a higher
energy consumption than is strictly necessary. We answer
this question affirmatively. An upper bound of three on
the energy benefit of decode-and-recombine codes has been
given by Liu et al. [26]. One of the contributions of this
work is to show that larger energy benefits can be obtained
by considering also other types of codes.

This paper is organized as follows. In Section 2 we
specify our model and problem statement more precisely.
Our main results are presented in Section 3. Constructions of
configurations that allow a large energy benefit for network
coding and proofs of our results are given in Sections 4 and
5. In Section 6, finally, we discuss our work.

2. Model and Problem Statement

Let V ⊂ Rd be the nodes of a d-dimensional wireless net-
work. We consider a wireless network model with broadcast,
where all nodes within range r of a transmitting node can
receive, and nodes outside this range cannot. More precisely,
given a transmission range r, a node v is broadcasting to all
nodes in the set

{u ∈ V | ‖u− v‖ ≤ r}, (1)

where ‖u − v‖ denotes the Euclidean norm of u − v. The
energy required to transmit one unit of information to all
other nodes within range r equals crα, where α is the path
loss exponent and c is some constant. In analyzing the energy
consumption of nodes, we will consider only the energy
consumed by transmitting. Receiver energy consumption as
well as energy consumed by processing are assumed to be
negligible compared to transmitter energy consumption. In
particular, note that little additional processing is required
for network coding, compared to the processing that is
performed in a traditional wireless protocol stack.

The traffic pattern that we consider is multiple unicast.
All symbols are from the field F2, that is, they are bits and
addition corresponds to the xor operation. The source of
each unicast session has a sequence of source symbols that
need to be delivered to the corresponding destination. Let
M be the set of unicast sessions. We call {V ,M, r} a wireless
multiple unicast configuration.

We will compare energy consumption of routing and
network coding. Our goal is to establish lower bounds on the
maximum of the ratio of the minimum energy required by
routing and network coding solutions, where the maximum
is over all configurations. We will refer to this ratio as
the energy benefit of network coding. Let Ecoding(V ,M, r)
and Erouting(V ,M, r) be the minimum energy required for
network coding and routing solutions, respectively, for
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a configuration {V ,M, r}. The energy consumption of a
coding or routing scheme is defined as the time-average of
the total energy spent by all nodes in the network to deliver
one symbol for each unicast session. In analyzing coding
schemes, we will ignore the energy consumption in an initial
startup phase and consider only steady-state behavior.

Note that since energy consumption per transmission
equals crα, the transmission range r is an important factor
in the energy consumption. Therefore, it is of particular
interest to optimize the transmission range such that energy
consumption is minimized. In this work, we consider two
different quantities: (1) Bfixed, denoting the energy benefit
that can be obtained if the transmission range is given and
fixed and (2) Bvar, denoting the energy benefit that can
be obtained if one is allowed to optimize the transmission
range. Note that the transmission range can be individually
optimized for the routing and network coding scenarios.
More precisely, the goal of this work is to establish lower
bounds on

Bfixed(d) = max
V ,M,r

Erouting(V ,M, r)

Ecoding(V ,M, r)
, (2)

where the maximization is over all node locations V ⊂ Rd,
multiple unicast sessions M, and transmission ranges r, with
the transmission range equal for the routing and network
coding solutions, and

Bvar(d) = max
V ,M

minrErouting(V ,M, r)

minrEcoding(V ,M, r)
, (3)

where the maximization is over all node locations V ⊂ Rd

and multiple unicast sessions M, with the transmission range
being optimized individually for the routing and network
coding solutions. If no confusion can arise, we will omit
dependency on d in the notation for Bfixed and Bvar.

Since in Bfixed, r is equal for Erouting and Ecoding, the energy
per transmission is equal in Erouting and Ecoding and the benefit
is equal to the ratio of the number of transmissions required
in routing and network coding solutions.

Since we are interested in energy consumption only, we
can assume that all transmissions are scheduled sequentially
and/or that there is no interference. All coding and routing
schemes that we consider proceed in time slots or rounds.
In each time slot, all nodes are allowed to transmit one or
more messages. We assume that the length of the time slot
is large enough to accommodate sequential transmission of
all messages in that round. Coding operations will be based
on messages received in previous time slots only. Finally,
we assume that all nodes have complete knowledge of the
network topology and the network code that is being used.

To conclude this section, we introduce here some of the
notation that will be used in the remainder of the paper. The
symbol transmitted by a node v ∈ V in time slot t is denoted
by xt(v). If v transmits more than one symbol in time slot
t, these will be distinguished by a superscript, giving, for
instance, x1

t (v) and x2
t (v). Nodes are represented by vectors.

Given vectors u = (u1, . . . ,ud) and v = (v1, . . . , vd), let
ulk � (uk, . . . ,ul), (u, v) � (u1, . . . ,ud, v1, . . . , vd), and u\i �
(u1, . . . ,ui−1,ui+1, . . . ,ud) = (ui−1

1 ,udi+1).

Unicast sessions are denoted by mi(u), with i being an
integer and u a vector. We will see in Sections 4 and 5 that u
defines the location of the source and i the relative location of
the destination, that is, the direction of the session. In some
cases mi(u) will be denoted as mi(u1,ud2) or similar forms.
The tth source symbol of a session mi(u) is denoted by mi

t(u).
The source and destination of session mi(u) are denoted by
si(u) and ri(u), respectively.

3. Results

We provide lower bounds on Bvar and Bfixed.

Theorem 1. The ratio of the minimum energy consumption
of routing solutions and the minimum energy consumption of
network coding solutions, maximized over all node locations,
multiple unicast sessions, and transmission ranges, with the
transmission range equal for the routing and network coding
solutions, is at least 2d/�√d�, that is,

Bfixed(d) ≥ 2d⌊√
d
⌋ . (4)

The result states that Bfixed is at least 2, 4, and 6 for
1-, 2- and 3-dimensional networks, respectively. The result
that Bfixed is at least 2 in one-dimensional networks also
follows from the results in [20]. The lower bound 4 for 2-
dimensional networks exceeds the previously known bound
of 2.4 [21]. This new lower bound is of particular interest,
since it exceeds the upper bound of 3 for decode-and-
recombine type network codes [26]. Indeed, the code that we
construct does not follow a decode-and-recombine strategy.
This shows that energy can be saved by considering strategies
other than decode-and-recombine. No lower bounds for
three-dimensional networks have been previously estab-
lished.

Before proving Theorem 1 in Section 5, we provide
some intuition. The configuration used to proof Theorem 1
has nodes placed at a d-dimensional rectangular lattice,
connectivity r = √

d and is parameterized by an integer K
controlling the size of the network. The network is given
in Figure 1 for d = 2 and K = 5. For d = 2, the result
of Theorem 1 is obtained as follows. First consider the case
of routing. Note, that the minimum-energy solution is to
route all packets along the shortest path between source
and destination. Therefore, all nodes in the interior of the
network will need to transmit four times. Now, for the case of
network coding, we will show in Section 5 that it is possible
to construct a network code in which each node in the
interior of the network is transmitting only once in each
time slot. Therefore, by considering large K and neglecting
the energy consumption at the borders of the network, the
obtained energy benefit is 4.

In Section 5 we will consider the general case of arbitrary
d. Again, the network coding solution will be such that each
of the Kd + O(Kd−1) nodes in the interior of the network
is transmitting only once in each time slot. In analyzing the
routing solution, some care needs to the taken. Since r = √d,
the number of hops that need to be taken on the shortest path
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K + 1 nodes

(a) (b)

Figure 1: Configuration for which Erouting/Ecoding = 2d/�√d�, with d = 2 depicted here, is achievable. Nodes are located at integer coordinates
in a d-dimensional space, with connectivity given by r = √d, as depicted in (a). Unicast sessions are placed according to (b).

(a) (b)

Figure 2: Configuration for which Erouting/Ecoding = 3 is achievable. Nodes are a subset of the hexagonal lattice, with connectivity as depicted
in (a). Unicast sessions are placed according to (b).

between source and destination equals 
K/�√d��. By noting
that the number of sessions is roughly equal to the number of
nodes at the border of the network, that is, 2dKd−1+O(Kd−2),
and ignoring all transmission from nodes at the border of the
network, we establish

Bfixed(d) ≥ lim
K→∞

[
2dKd−1 + O

(
Kd−2

)]⌈
K/
⌊√

d
⌋⌉

Kd + O(Kd−1)

= lim
K→∞

2d/
⌊√

d
⌋
Kd + O

(
Kd−1

)

Kd + O(Kd−1)

= 2d⌊√
d
⌋ .

(5)

Details of the configuration and a proof of Theorem 1 are
given in Section 5.

The configuration and network code construction used
for Theorem 1 are not useful for obtaining bounds on Bvar.
Since r = √

d, the cost per transmission in the network
coding scheme is cdα/2. One can verify, however, that the
optimal transmission range under routing is r = 1. This
requires K hops per session, with the cost per transmission
being equal to c. Using the network code described above and
the optimal routing solution at r = 1 gives

Bvar(d) ≥ lim
K→∞

cK
[

2dKd−1 + O
(
Kd−2

)]

cdα/2[Kd + O(Kd−1)]

= 2d1−α/2,

(6)

which is at most 2, since α ≥ 2. Note that it was already
shown in [20] that Bvar(1) ≥ 2 and in [21] that Bvar(2) ≥ 2.4.

By considering a different configuration, we show that
Bvar(2) ≥ 3.

Theorem 2. For 2-dimensional wireless networks, the ratio of
the minimum energy consumption of routing solutions and
the minimum energy consumption of network coding solutions,
maximized over all node locations and multiple unicast
sessions, with the transmission range optimized individually for
the routing and network coding solutions, is at least 3, that is,
Bvar(2) ≥ 3.

Here we provide an intuitive explanation of this result;
details of the configuration and a proof of Theorem 2
are provided in Section 4. The result is established using
a multiple unicast configuration on a subset of the 2-
dimensional hexagonal lattice as depicted in Figure 2. The
minimum cost routing solution on this network follows
shortest paths for all sessions and will require all nodes in
the interior of the network to transmit three times in order
to deliver one symbol for each session. In Section 4, we
construct a network code in which each node in the interior
is only transmitting once per delivered symbol. By making
the size of the network large, the influence of the borders
becomes negligible. Hence, the energy benefit is 3.

Besides providing new lower bounds on the energy
benefit of network, the network codes that are constructed
in this paper are of interest by themselves. They might lead to
insight in how to operate in networks with another structure.
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Finally, even though the case d > 3 is not of any practical
relevance, the bounds as well as the code constructions might
lead to a better insight for lower-dimensional networks.

4. An Efficient Code on the Hexagonal Lattice

In this section, we present a multiple unicast configuration
in which the nodes form a subset of the hexagonal lattice. It
will be shown that the energy benefit on this configuration
is 3, proving Theorem 2. Since the code construction used
here is less involved then the construction used to prove
Theorem 1, we start with the proof of Theorem 2. This
section is organized as follows. In Section 4.1 we present
the configuration in more detail after which we give the
construction of the network code in Section 4.2. Section 4.3
is used to prove that the code is valid. Finally, in Section 4.4
we analyze the energy consumption of the network code and
prove Theorem 2.

4.1. Configuration. The size of the configuration is parame-
terized by a positive integer K . The nodes V form a subset of
the hexagonal lattice. We index nodes with a tuple (v1, v2) ∈
N2. V is given by

V = {(v1, v2) | v1, v2 ≥ 0, v1, v2 ≤ K , v1 + v2 ≤ K}. (7)

The location of node v ∈ V in R2 is given by vG, where

G =
⎡
⎣

1 0
1
2

√
3

2

⎤
⎦. (8)

Let
◦
V denote the interior of the network, that is,

◦
V = {v ∈ V | v1, v2 > 0, v1, v2 < K , v1 + v2 < K}. (9)

The transmission range that we are interested in is r = 1. This
leads to connectivity between the six nearest neighbours.

Hence, the neighbours of a node (u1,u2) ∈
◦
V are

(u1 − 1,u2 + 1), (u1,u2 + 1), (u1 − 1,u2),

(u1 + 1,u2), (u1,u2 − 1), (u1 + 1,u2 − 1).
(10)

The nodes V and the connectivity are depicted in Figure 3.
There are 3(K − 1) unicast sessions, denoted by m1(i),

m2(i), and m3(i), 1 ≤ i ≤ K − 1. Sources and destinations of
the sessions are positioned as follows:

m1(i) : s1(i) = (0, i), r1(i) = (K − i, i),

m2(i) : s2(i) = (i,K − i), r2(i) = (i, 0),

m3(i) : s3(i) = (K − i, 0), r3(i) = (0,K − i),

(11)

as depicted in Figure 4. Remember from Section 2, that ses-

sion mj(i) has the sequence of source symbols m
j
0(i),m

j
1(i),

m
j
2(i), . . . to be transferred.

(0,K)

(0, 1)

(0, 0)
(1, 0) (K , 0)

Figure 3: Nodes at a subset of the hexagonal lattice with the
connectivity induced by a transmission range r = 1. The size of
the network is controlled by K , with K = 5 in this figure.

4.2. Network Code. The network code is such that in
each time slot a new source symbol from each session is
transmitted. Also, one symbol of each session is decoded by
its destination in each time slot. After successfully decoding
a symbol, it is retransmitted by the destination in the next
time slot. Nodes at the border will, therefore, transmit twice
in each time slot. Nodes in the interior of the network
transmit only once. The symbol that they transmit is a
linear combination of one symbol from each of the sessions
for which the shortest path between source and destination
includes that node.

The operation of the network code is demonstrated in
Figure 5 in which the transmissions of all nodes in the first
four time slots are depicted. Different transmissions by the
same node are separated by a comma. Note, moreover, that
there is a startup phase, time slots 0 to 2, in which not all
destinations are able to decode a symbol. From time slot 3
onwards, all destinations decode one symbol in every time
slot. In analyzing the energy consumption of the coding
scheme, we will ignore the startup phase.

The symbol transmitted at t = 3 by the node with the
dotted border can be obtained by summing all transmissions
from nodes with a dashed border in earlier time slots. Indeed

m1
1(3) + m2

1(2) + m1
0(1) + m3

0(2) + m2
2(1)

+ m1
1(3) + m1

2(2) + m3
0(2) + m1

0(1) + m2
1(2)

+ m3
1(1) = m1

2(2) + m2
2(1) + m3

1(1).

(12)

This coding operation (i.e., in time slot t, a node transmits
the sum of what was transmitted by its top-left neighbour
in time slot t − 2, by its top right-neighbour in time
slot t−1, and so forth, as visualized in Figure 5) is performed
by all nodes that are in the interior of the network. The idea
behind the coding operation is to cancel, by means of the
XOR operation, all symbols that should not be retransmitted.
In (12), for instance, we have m1

1(3) + m1
1(3) = 0. The

exact operation of the network code is made more precise in
the remainder of this subsection. The coding operation for
interior nodes is given in exact form in (17).

Nodes at the border of the network operate as follows. Let
0 < u2 < K . In time slot t node (0,u2) transmitstwo symbols
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s1(1), r3(4)

s1(2), r3(3)

s1(3), r3(2)

s1(4), r3(1)

s2(4), r1(1)

s2(3), r1(2)

s2(2), r1(3)

s2(1), r1(4)

s3(4)

r2(1)

s3(3)

r2(2)

s3(2)

r2(3)

s3(1)

r2(4)

Figure 4: The unicast sessions on the network from Figure 3.

x1
t (0,u2) and x3

t (0,u2), where

Left border:

x1
t (0,u2) = m1

t (u2),

x3
t (0,u2) = m3

t−u2
(K − u2).

(13)

Since (0,u2) is the source of session m1(u2) it has source
symbol m1

t (u2), available. Also, (0,u2) is the destination
for session m3(K − u2). It remains to be shown that
symbol m3

t−u2
(K − u2) can be decoded by (0,u2) using the

information obtained from its neighbours up to time slot t.
For notational convenience, let

Left border:

xt(0,u2) � x1
t (0,u2) + x3

t (0,u2). (14)

In a similar fashion, we have the following transmissions at
the right and bottom borders of the network.

Right border:

x1
t (v1, v2) = m1

t−v1
(v2),

x2
t (v1, v2) = m2

t (v1),

xt(v1, v2) � x1
t (v1, v2) + x2

t (v1, v2),

(15)

Bottom border:

x2
t (u1, 0) = m2

t−K+u1
(u1),

x3
t (u1, 0) = m3

t (K − u1),

xt(u1, 0) � x2
t (u1, 0) + x3

t (u1, 0),

(16)

where u1, v1, v2 > 0, u1, v1, v2 < K , and v1+v2 = K . Moreover,
xt(v1, v2) and xt(u1, 0) are not symbols that are transmitted,
but only notational shortcuts.

Nodes in the interior of the network transmit once in

each time slot. Let (u1,u2) ∈
◦
V . The coding operation it

performs is given by

xt(u1,u2) = xt−1(u1 − 1,u2) + xt−2(u1 − 1,u2 + 1)

+xt−1(u1,u2 + 1) + xt−3(u1,u2)

+xt−2(u1 + 1,u2) + xt−2(u1,u2 − 1)

+xt−1(u1 + 1,u2 − 1).

(17)

4.3. Validity of the Network Code. We need to show that
destinations can decode in time in order to retransmit the
required symbols according to (13), (15), and (16). In order
to do so we first analyze how data propagates through the
network. If we look at the nodes in the network that transmit
linear combinations that contain a certain source symbol, we
see that symbols propagate exactly along the shortest paths
between source and destination. This is made more precise
in the following two lemmas.

Lemma 1. Let 0 < u2 < K . Assume that the only nonzero
source symbol transmitted in the network is m1

0(u2) by node

(0,u2) in time slot 0. Then, for all t ≥ 0 and (v1, v2) ∈
◦
V

xt(v1, v2) =
⎧⎨
⎩
m1

0(u2) if v1 = t, v2 = u2,

0, otherwise.
(18)

Proof. We use induction over time. The base case is time slot
t = 0, for which it is readily verified that the statement is
true. Now, for the induction step, suppose that the lemma
holds for all t′ smaller than t. This implies that for all τ > 0

and (v1, v2) ∈
◦
V ,

xt−τ(v1, v2) = xt−τ−1(v1 − 1, v2). (19)

Hence,

xt(v1, v2) = xt−1(v1 − 1, v2) + xt−2(v1 − 1, v2 + 1)

+ xt−1(v1, v2 + 1) + xt−3(v1, v2) + xt−2(v1 + 1, v2)

+ xt−2(v1, v2 − 1) + xt−1(v1 + 1, v2 − 1)

= xt−1(v1 − 1, v2) + xt−2(v1 − 1, v2 + 1)

+ xt−2(v1 − 1, v2 + 1) + xt−3(v1, v2) + xt−3(v1, v2)

+ xt−2(v1, v2 − 1) + xt−2(v1, v2 − 1)

= xt−1(v1 − 1, v2),
(20)

which by the induction hypothesis is equal to m1
0(u2) if v1 = t

and v2 = u2 and zero otherwise.

Lemma 2. Let (u1,u2) ∈
◦
V .

xt(u1,u2) = m1
t−u1

(u2) + m2
t−K+u1+u2

(u1)

+ m3
t−u2

(K − u1 − u2).
(21)
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Proof. From Lemma 1, the time-invariance of the system,
and the symmetry of the coding operation (17) of the
internal nodes.

We are now ready to prove that the destinations can
correctly decode source symbols. We present the decoding
procedure for nodes on the right border of the network. The
decoding procedures at the other borders can be obtained by
exploiting the symmetry of the system.

Lemma 3. Consider (u1,u2), with u1 + u2 = K , 0 < u2 < K ,
that is, the destination of session m1(u2). It can decode symbol
m1

t−u1
(u2) at the end of time slot t − 1 as

x2
t−2(u1 − 1,u2 + 1) + xt−1(u1 − 1,u2) + x2

t−3(u1,u2)

+ xt−2(u1,u2 − 1) + x1
t−1(u1 + 1,u2 − 1).

(22)

Proof. From Lemma 2, (15), it follows that (22) equals

m1
t−u1

(u2) + m1
t−u1−2(u2 − 1) + m1

t−u1−2(u2 − 1)

+ m2
t−2(u1 − 1) + m2

t−2(u1 − 1) + m2
t−3(u1)

+ m2
t−3(u1)m3

t−u2−1(1) + m3
t−u2−1(1) = m1

t−u1
(u2).

(23)

4.4. Energy Consumption. The energy consumption of the
network coding scheme presented above is given in the
following lemma.

Lemma 4. minr Ecoding(V ,M, r) ≤ Ecoding(V ,M, 1) ≤ (c/
2)K2 + O(K).

Proof. From (13)–(17), we have that each of the 3(K −
1) nodes at the border that are source or destination are
transmitting twice in each time slot. Each of the (K − 1)(K −
2)/2 internal nodes is transmitting once in each time slot.
Since r = 1, the energy consumption per transmission is c.
This gives

Ecoding(V ,M, 1) ≤ 6c(K − 1) +
c(K − 1)(K − 2)

2

= c

2
K2 + O(K).

(24)

Next, we give the minimum energy required by a routing
solution.

Lemma 5. minrErouting(V ,M, r) = Erouting(V ,M, 1) =
(3c/2)K2 + O(K).

Proof. Since we consider routing, we need to take the shortest
path for each session. Since the energy consumption per
hop equals crα, the energy consumption under routing
is minimized for r = 1. Now, we see that the number
of transmissions required to deliver a symbol for the

sessions m1(1), . . . ,m1(K −1) equals K(K −1)/2. Adding the
transmissions for sessions of type 2 and 3 gives

Erouting(V ,M, 1) = 3c
2
K(K − 1) = 3c

2
K2 + O(K). (25)

Using the above two lemmas, we are able to prove
Theorem 2.

Proof of Theorem 2. Remember that Bvar is defined as the
maximum of minrErouting(V ,M, r)/minrEcoding(V ,M, r) over
V and M. Hence, minrErouting(V ,M, r)/minrEcoding(V ,M, r)
for any specific V and M will provide a lower bound to Bvar.
In addition, any upper bound to minrEcoding(V ,M, r) will
result in a lower bound to Bvar. Hence, from Lemmas 4 and
5, we have

Bvar(2) ≥ lim
K→∞

minrErouting(V ,M, r)

minrEcoding(V ,M, r)

≥ lim
K→∞

Erouting(V ,M, 1)

Ecoding(V ,M, 1)

≥ lim
K→∞

(3c/2)K2 + O(K)
(c/2)K2 + O(K)

= 3.

(26)

5. An Efficient Code on the d-Dimensional
Rectangular Lattice

In this section, we present a multiple unicast configuration
in which the nodes are placed at integer coordinates in a d-
dimensional space, that is, at the rectangular lattice.

5.1. Configuration. The size of the configuration is parame-
terized by a positive integer K . We have

V = {(v1, . . . , vd) | 0 ≤ vi ≤ K , i = 1, . . . ,d}. (27)

The interior of the network is given by

◦
V = {v ∈ V | 0 < vi < K , i = 1, . . . ,d}. (28)

We will make use of

V = {v ∈ V | ∃unique i : vi ∈ {0,K}}, (29)

which corresponds to those nodes that are part of exactly one
face of the network.

The transmission range that will be used is r = √d. This
transmission range induces a neighbourhood consisting of
all neighbours within distance

√
d. The coding operation of

our network code is based on only part of the neighbour-
hood, that is, it uses

Nv = {u ∈ V | |ui − vi| ≤ 1 ∀i, u /= v}. (30)

Note, that for d ≤ 3, Nv corresponds to the complete neigh-
bourhood of v. We will be using dist(u, v) � ‖u− v‖1 =∑d

i=1 |ui − vi|, that is, dist(u, v) denotes the Manhattan
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Figure 5: Example operation of the network code of Section 4, with K = 4. The transmissions of all nodes in the time slots 0, . . . , 3 are
depicted. Different transmissions by the same node are separated by a comma. Note, that the symbol transmitted at t = 3 by the node with
dotted border can be obtained by summing all transmissions from nodes with a dashed border in earlier time slots. All nodes in the interior
of the network perform this simple coding operation.

distance from u to v. The network and its connectivity are
depicted for d = 2 in Figure 6.

A source is located at each v ∈ V . Therefore, there
are |V | = 2d(K − 1)d−1 sessions. If vi = 0, we denote
the session corresponding to this source by mi(v\i). Recall
from Section 2 that v\i denotes the d-1 dimensional vector
obtained by removing the ith element from v. If vi = K ,
we denote the session by md+i(v\i). The destination of each
session is located at the other side of the network, that is, we
have ri(v\i) = sd+i(v\i) and rd+i(v\i) = si(v\i). The positions
of sources and destinations are depicted for d = 2 in Figure 7.

It can be seen that mi(v\i) and md+i(v\i) form oppositely
directed sessions.

5.2. Network Code. We introduce sets Θδ ⊂ {1, . . . , 2d}, 0 ≤
δ ≤ d, which are defined recursively as follows:

Θd = {d},
Θδ = (Θδ+1 − 1)Δ(Θδ+1 + 1), 0 < δ < d,

Θ0 = (Θ1 − 1)Δ(Θ1 + 1) \ {0},
(31)
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(0,K)

(0, 1)

(0, 0)
(1, 0) (K , 0)

Figure 6: Nodes at a subset of the d-dimensional rectangular lattice,
d = 2 depicted in the figure, with the connectivity induced by a
transmission range r = √d. The size of the network is controlled by
K , with K = 5 in this figure.
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Figure 7: The unicast sessions on the network from Figure 6.

where Δ denotes symmetric difference and Θδ ± 1 = {τ ± 1 |
τ ∈ Θδ}. Note that irrespective of d we have 1 ∈ Θ1. As
an example for d = 2 we have Θ2 = {2}, Θ1 = {1, 3} and
Θ0 = {4}.

The scheme is very similar in flavour to the scheme
presented in Section 4; its operation is demonstrated in
Figure 8 in which, for d = 2 and K = 3, the transmissions
of all nodes in the first four time slots are depicted. The
operation of the scheme is such that in time slot t sources
transmit the tth source symbol and destinations decode
the (t − K)th source symbol. Besides transmitting a new
source symbol in each time slot, sources/destinations will
also retransmit the symbol that has been decoded in that
time slot, that is, they transmit two different symbols in each
time slot. In the figure, different transmissions by the same
node are separated by a comma. Nodes in the interior of the
network transmit only once. The symbol that they transmit is
a linear combination of one symbol from each of the sessions
for which the shortest path between source and destination
includes that node. The symbol transmitted at t = 3 by the
node with the dotted border can be obtained by summing
all transmissions from nodes with a dashed border in earlier
time slots. This coding operation is performed by all nodes
that are in the interior of the network. The exact operation
of the network code is made more precise in the remainder

of this subsection. The coding operation for interior nodes is
given in exact form in (34).

Let node v ∈ V . Remember that v ∈ V implies that there
exists a unique i such that vi ∈ {0,K}. Node v transmits

xit(v) = mi
t−vi
(
v\i
)
,

xd+i
t (v) = md+i

t−K+vi

(
v\i
)
.

(32)

For notational convenience, let

xt(v) � xit(v) + xd+i
t (v). (33)

The coding operation performed by an internal node is as
follows:

xt(v) = ∑
u∈Nv∪{v}

∑
τ∈Θdist(u,v)

xt−τ(u). (34)

5.3. Validity of the Network Code. The following result
follows directly from the definition of the sets Θδ , but is
stated here as a lemma because of its importance in the
remainder of the paper.

Lemma 6. Let {xt} be a sequence of symbols from F2 and let
0 < δ < d. We have

∑

τ∈Θδ

xt−τ =
∑

τ∈Θδ+1

[xt−τ+1 + xt−τ−1],

∑

τ∈Θ0

xt−τ =
∑

τ∈Θ1\{1}
xt−τ+1 +

∑

τ∈Θ1

xt−τ−1.
(35)

Lemma 7. Consider node (0,ud2) ∈ V . Assume that the only
nonzero source symbol transmitted in the network ism1

0(ud2) by
node (0,ud2) in time slot 0. Then

xt(v) =
⎧⎪⎨
⎪⎩
m1

0

(
ud2
)

, if v1 = t, vd2 = ud2 ,

0, otherwise,
(36)

for all v ∈ V and t ≥ 0.

Proof. We use induction over t. At time t = 0, the lemma
holds, giving us our base case. Now suppose that the lemma
holds for all time slots smaller than t. If v ∈ V , the
lemma follows directly from (32)–(33). In the remainder we

consider u ∈
◦
V . From the induction hypothesis, it follows

that for any t′ < t

xt′(u) = xt′−1

(
u1 − 1,ud2

)
. (37)

If u1 = K − 1, it follows from (32) and the induction
hypothesis that

xt′−1(u) = xt′
(
u1 + 1,ud2

)
. (38)

Now, at t the coding operation performed by u can be
decomposed as

xt(u) =
∑

w∈Nu∪{v}

∑

τ∈Θdist(w,u)

xt−τ(w) =
∑

w∈Nu :
w1=u1

g(w), (39)
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Figure 8: Example operation of the network code of Section 5, with K = 3. The transmissions of all nodes in the time slots 0, . . . , 3 are
depicted. Different transmissions by the same node are separated by a comma. Note, that the symbol transmitted at t = 3 by the node with
dotted border can be obtained by summing all transmissions from nodes with a dashed border in earlier time slots. All nodes in the interior
of the network perform this simple coding operation.

where

g(w) =
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 − 1,wd

2

)
+

∑

τ∈Θdist(w,u)

xt−τ(w)

+
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 + 1,wd

2

)
.

(40)

In the remainder, we show that

g(w) =
⎧⎪⎨
⎪⎩
xt−1

(
w1 − 1,wd

2

)
if w = u

0, otherwise,
(41)

which proves the lemma, since by the induction hypothesis
xt−1(u1 − 1,ud2) = m1

0(ud2) if u1 = t and zero otherwise.
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For w /=u we, have

g(w) =
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 − 1,wd

2

)
+

∑

τ∈Θdist(w,u)

xt−τ(w)

+
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 +1,wd

2

)

=
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 − 1,wd

2

)
+

∑

τ∈Θdist(w,u)+1

xt−τ+1(w)

+
∑

τ∈Θdist(w,u)+1

xt−τ−1(w) +
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 + 1,wd

2

)

=
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1−1,wd

2

)
+

∑

τ∈Θdist(w,u)+1

xt−τ
(
w1−1,wd

2

)

+
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 +1,wd

2

) ∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 +1,wd

2

)

= 0,
(42)

where the second equality follows from Lemma 6, the third
equality follows from (37)-(38), and the last equality holds
because we work over F2.

For w = u, we have

g(u) =
∑

τ∈Θ1

xt−τ
(
u1 − 1,ud2

)
+
∑

τ∈Θ0

xt−τ(u)

+
∑

τ∈Θ1

xt−τ
(
u1 + 1,ud2

)

=
∑

τ∈Θ1

xt−τ
(
u1 − 1,ud2

)
+

∑

τ∈Θ1\{1}
xt−τ+1(u)

+
∑

τ∈Θ1

xt−τ−1(u) +
∑

τ∈Θ1

xt−τ
(
w1 + 1,wd

2

)

=
∑

τ∈Θ1

xt−τ
(
u1 − 1,ud2

)
+

∑

τ∈Θ1\{1}
xt−τ

(
u1 − 1,ud2

)

+
∑

τ∈Θ1

xt−τ
(
u1 + 1,ud2

)
+
∑

τ∈Θ1

xt−τ
(
u1 + 1,ud2

)

= xt−1

(
u1 − 1,ud2

)
.

(43)

Lemma 8. Let u ∈
◦
V

xt(u) =
d∑

i=1

[
mi

t−ui
(
u\i
)

+ md+i
t−K+ui

(
u\i
)]
. (44)

Proof. By linearity, time-invariance and symmetry of (34)
together with Lemma 7.

We are now ready to prove that the destinations can
correctly decode source symbols. We present the decoding
procedure for nodes on the right border of the network,
that is, for nodes of type (K ,ud2) ∈ V . The decoding

procedures at the other borders can be obtained by exploiting
the symmetry of the system.

Lemma 9. Consider node u = (K ,ud2) ∈ V . At the end of time
slot t − 1, it can decode symbolm1

t−K (ud2) as

∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

xt−τ(v)

+
∑

v∈Nu :
v1=K

∑

τ∈Θdist(u,v)+1

[
x1
t−τ+1(v) + xd+1

t−τ−1(v)
]

+
∑

τ∈Θ1\{1}
x1
t−τ+1(u) +

∑

τ∈Θ1

xd+1
t−τ−1(u)

(45)

Proof. First note that all terms in (45) correspond to symbols
that have been received by (K ,ud2) before or in time slot t−1.

Now, from Lemma 8, we have

∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

xt−τ(v)

=
∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

d∑

i=1

[
mi

t−vi−τ
(
v\i
)

+ md+i
t−K+vi−τ

(
v\i
)]

=
∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

[
m1

t−v1−τ
(
v\1
)

+ md+1
t−K+v1−τ

(
v\1
)]

+
d∑

i=2

⎡
⎢⎢⎣

∑

v∈Nu :
v1<K ,vi=ui

⎡
⎣ ∑

τ∈Θdist(u,v)+1

mi
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

mi
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

mi
t−vi−1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

md+i
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

md+i
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

md+i
t−vi−1−τ

(
v\i
)⎤⎦

⎤
⎥⎥⎦

(a)=
∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

[
m1

t−v1−τ
(
v\1
)

+ md+1
t−K+v1−τ

(
v\1
)]

=
∑

τ∈Θ1

[
m1

t−K+1−τ
(
u\1
)

+ md+1
t−1−τ

(
u\1
)]

+
∑

v∈Nu :
v1=K

∑

τ∈Θdist(u,v)+1

[
m1

t−K+1−τ
(
v\1
)

+ md+1
t−1−τ

(
v\1
)]

,

(46)
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where (a) holds, because for dist(u, v) > 0, Lemma 6 gives

∑

τ∈Θdist(u,v)+1

mi
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

mi
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

mi
t−vi−1−τ

(
v\i
)
= 0,

(47)

and
∑

τ∈Θdist(u,v)+1

md+i
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

md+i
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

md+i
t−vi−1−τ

(
v\i
)
= 0.

(48)

From (32) it follows that
∑

v∈Nu :
v1=K

∑

τ∈Θdist(u,v)+1

[
x1
t−τ+1(v) + xd+1

t−τ−1(v)
]

=
∑

v∈Nu :

v1=K

∑

τ∈Θdist(u,v)+1

[
m1

t−K+1−τ
(
v\1
)

+ md+1
t−1−τ

(
v\1
)]

,

(49)

and
∑

τ∈Θ1\{1}
x1
t−τ+1(u) +

∑

τ∈Θ1

xd+1
t−τ−1(u)

=
∑

τ∈Θ1\{1}
m1

t−K+1−τ
(
u\1
)

+
∑

τ∈Θ1

md+1
t−1−τ

(
u\1
)
.

(50)

The proof of the lemma follows by adding the final expres-
sions from (46), (49) and (50) observing that the outcome is
m1

t−K (ud2).

5.4. Energy Consumption. The energy consumption of the
network coding scheme presented above provides an upper
bound to minrEcoding(V ,M, r).

Lemma 10. Ecoding(V ,M,
√
d) ≤ 4cd1+α/2(K − 1)d−1 +

cdα/2(K − 1)d.

Proof. All transmissions are over distance
√
d and cost cdα/2.

The nodes in V are transmitting twice. On each of the 2d
sides of the network, there are (K − 1)d−1 nodes from V ;
hence |V | = 2d(K − 1)d−1. This gives 2|V | = 4d(K − 1)d−1

transmissions. In addition, there are (K − 1)d nodes in the
interior, that are all transmitting once.

Next, we give the minimum energy required by a routing
solution.

Lemma 11. Erouting(V ,M,
√
d) = 2cd1+α/2
K/�√d��(K −

1)d−1.

Proof. Since the transmission range is equal to
√
d, a routing

solution requires 
K/�√d�� transmissions per session. More-
over, there are |V | = 2d(K − 1)d−1 sessions.

Using the above two lemmas, we are able to prove
Theorem 1.

Proof of Theorem 1. Lemmas 10 and 11 give

Bfixed(d) ≥ lim
K→∞

Erouting

(
V ,M,

√
d
)

Ecoding

(
V ,M,

√
d
)

≥ lim
K→∞

2cd1+α/2
⌈
K/
⌊√

d
⌋⌉

(K − 1)d−1

cdα/2
[

4d(K − 1)d−1 + (K − 1)d
]

= 2d⌊√
d
⌋ .

(51)

(52)

6. Discussion

We have given several constructions of energy-efficient
network codes. These constructions serve to show that
compared to plain routing, network coding has the potential
of reducing energy consumption in wireless networks. Since
we have provided only codes that are based on a centralized
design, it remains to be shown in future work if and how this
potential can be exploited using practical codes. Moreover,
it would also be of interest to consider the energy-benefit in
topologies in which the nodes are not positioned at a lattice,
for instance, random networks.

In this work we have provided lower bounds on the
energy benefit of network coding for wireless multiple
unicast. Another open problem is to find upper bounds on
the benefit.
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