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We study several types of periodicity to a class of fractional order differential equations.

1. Introduction

Fractional order differential equations is a very important subject matter. These orders
can be complex in viewpoint of pure mathematics. During the last few decades fractional
order differential equations have emerged vigorously (cf., [1–8]). We observe that there is
much interest in developing the qualitative theory of such equations. Indeed, this has been
strongly motivated by their natural and widespread applicability in several fields of sciences
and technology. Many real phenomena in those fields can be described very successfully
by models using mathematical tools of fractional calculus, such as dielectric polarization,
electrode-electrolyte polarization, electromagnetic wave, modeling of earthquake, fluid
dynamics, traffic model with fractional derivative, measurement of viscoelastic material
properties, modeling of viscoplasticity, Control Theory, and economy (cf., [3, 4, 9–15]).
Very recently, some basic theory for initial value problem of fractional differential equations
involving the Riemann-Liouville differential operators was discussed by Benchohra et al.
[16], Agarwal et al. [17–19], Lakshmikantham [20], and Lakshmikantham and Vatsala
[21, 22]. Mophou and N’Guérékata [23] have studied existence of mild solution for fractional
semilinear differential equations with nonlocal conditions (more details can be found in [24–
29]). El-Sayed and Ibrahim [30] and Benchohra et al. [31] initiated the study of fractional
multivalued differential inclusions. In this direction, we refer to the article by Henderson
and Ouahab [32] concerning the existence of solutions to fractional functional differential
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inclusions with finite delay, and existence of solutions for these types of equations in the
infinite delay framework (see [16, 31]). In the case that fractional order is α ∈ (1, 2], existence
results for fractional boundary value problems of differential inclusions were studied by
Ouahab [33].

We study in this work some sufficient conditions for the existence and uniqueness
of pseudo-almost periodic mild solutions to the following semilinear fractional differential
equation:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), t ∈ R, (1.1)

where 1 < α < 2, A : D(A) ⊂ X → X is a linear densely defined operator of sectorial
type on a complex Banach space X, and f : R × X → X is a pseudo-almost periodic
function (see Definition 2.10) satisfying suitable conditions in x. The fractional derivative
is understood in the Riemann-Liouville sense. Type (1.1) equations are attracting increasing
interest. For example, anomalous diffusion in fractals by Eidelman and Kochubei [10] or
in macroeconomics by Ahn and McVinisch [1] has been recently studied in the setting of
fractional differential equations like (1.1). The study of almost automorphic mild solutions of
(1.1) was studied by Cuevas and Lizama in [34] (see also [35]).

As for almost periodic functions, pseudo-almost periodic functions have many
applications in several problems, for example, in theory of functional differential equations,
integral equations, and partial differential equations. The concept of pseudo-almost periodic
was introduced by Zhang [36–39] in the early nineties. Since then, such notion became of
great interest to several mathematicians (see [40–49]). To the knowledge of the authors, no
results yet exist for pseudo-almost periodic mild solution of (1.1).

We also discuss sufficient conditions for the existence and uniqueness of an
asymptotically almost periodic mild solution of the fractional Cauchy problem

v′(t) =
∫ t

0

(t − s)α−2

Γ(α − 1)
Av(s)ds + f(t, v(t)), t ≥ 0, (1.2)

v(0) = u0 ∈ X. (1.3)

In a work by Cuevas and de Souza [50] the authors proved existence and uniqueness
of an S-asymptotically ω-periodic solution of problem (1.2)-(1.3) (see also [51]). On the other
hand, we give results on existence and uniqueness of an asymptotically almost automorphic
mild solution to a class of fractional integrodifferential neutral equations.

We now turn to a summary of this work. The second section provides the definitions
and preliminaries results to be used in theorems stated and proved in this article. In particular,
we review some of the standard properties of the solution operator generated by a sectorial
operator (see Proposition 2.2). We also recall the notion of almost periodicity, asymptotically
almost periodicity, asymptotically almost automorphy, and pseudo-almost periodicity. In the
third section, we obtain very general results on the existence of pseudo-almost periodic
mild solution to equation (1.1). The fourth section is concerned with the existence of an
asymptotically almost periodic mild solution to problem (1.2)-(1.3). While in the fifth section
we use the machinery developed in the previous sections to obtain new results on existence
and uniqueness of an asymptotically almost automorphic solution to a class of fractional
integrodifferential neutral equation. To build intuition and throw some light on the power of
our results and methods, we give, in the sixth section, a few applications.
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2. Preliminaries and Basic Results

Let (Z, ‖ · ‖) and (W, ‖ · ‖) be two Banach spaces. The notation C(R, Z) and BC(R, Z)
stand for the collection of all continuous functions from R into Z and the Banach space of
all bounded continuous functions from R into Z endowed with the uniform convergence
topology, respectively. Similarly, C(R × Z,W) and BC(R × Z,W) stand, respectively, for the
class of all jointly continuous functions from R × Z into W and the collection of all jointly
bounded continuous functions from R×Z intoW . The notationL(Z,W) stands for the space
of bounded linear operators from Z into W endowed with the uniform operator topology,
and we abbreviate it to L(Z) whenever Z = W . We set Br(Z) for the closed ball with center
at 0 radius r in the space Z. A closed and linear operator A is said to be sectorial of type μ
if there exist 0 < θ < π/2, M > 0 and μ ∈ R such that its resolvent exists outside the sector
μ + Sθ := {μ + λ : λ ∈ C, | arg(−λ)| < θ} and ‖(λ − A)−1‖ ≤ M/|λ − μ| , λ/∈μ + Sθ. Sectorial
operators are well studied in the literature. For a recent reference including several examples
and properties we refer the reader to [52]. In order to give an operator theoretical approach,
we recall the following definition (cf., [50, 51]).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X. Recall A the generator of a solution operator if there exist μ ∈ R and a strongly
continuous function Sα : R+ → L(X) such that {λα : Reλ > μ} ⊂ ρ(A) and λα−1(λα −A)−1x =∫∞
0 e

−λtSα(t)x dt, Reλ > μ, x ∈ X. In this case, Sα(t) is called the solution operator generated
by A.

We note that if A is sectorial of type μwith 0 ≤ θ < π(1 − α/2), then A is the generator
of a solution operator given by Sα(t) := 1/2πi

∫
γe

λtλα−1(λα−A)−1dλ, where γ is a suitable path
lying outside the sector μ+Sθ (cf., Cuesta’s paper [53]). Very recently, Cuesta [53, Theorem 1]
has proved that ifA is a sectorial operator of type μ < 0 for someM > 0 and 0 ≤ θ < π(1−α/2),
then there exists C > 0 such that

‖Sα(t)‖L(X) ≤
CM

1 +
∣∣μ∣∣tα , t ≥ 0. (2.1)

Note that Sα(t) is, in fact, integrable. The concept of a solution operator, as defined above,
is closely related to the concept of a resolvent family (see Prüss [54, Chapter 1]). For the
scalar case, where there is a large bibliography, we refer the reader to the monography
by Gripenberg et al. [55] and references therein. Because of the uniqueness of the Laplace
transform, in the border case α = 1, the family Sα(t) corresponds to a C0-semigroup, whereas
in the case α = 2 a solution operator corresponds to the concept of a cosine family; see Arendt
et al. [56] and Fattorini [57]. We note that solution operators, as well as resolvent families, are
a particular case of (a, k)-regularized families introduced by Lizama [58]. According to [58]
a solution operator Sα(t) corresponds to a (1, tα−1/Γ(α))-regularized family. The following
result is a direct consequence of [58, Proposition 3.1 and Lemma 2.2].

Proposition 2.2. Let Sα(t) be a solution operator onX with generatorA. Then, one has the following.

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) Let x ∈ D(A) and t ≥ 0. Then Sα(t)x = x +
∫ t
0((t − s)α−1/Γ(α))ASα(s)ds.

(c) Let x ∈ X and t ≥ 0. Then
∫ t
0((t − s)α−1/Γ(α))Sα(s)x ds ∈ D(A),

Sα(t)x = x +A

∫ t

0

(t − s)α−1

Γ(α)
Sα(s)x ds. (2.2)
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A characterization of generators of solution operators, analogous to the Hille-Yosida
Theorem for C0-semigroup, can be directly deduced from [58, Theorem 3.4]. Results on
perturbation, approximation, representation as well as ergodic type theorems can be deduced
from the more general context of (a, k)-regularized resolvents (see [58–61]).

Let us recall the notions of almost periodicity, asymptotically almost periodicity,
asymptotically almost automorphy, and pseudo-almost periodicity which shall come into
play later on.

Definition 2.3 (see [62]). Let (X, ‖ · ‖) be a Banach space. Then f : R → X is called almost
periodic if f is continuous, and for each ε > 0 there exists l(ε) > 0 such that for every interval
of length l(ε)it contains a number τ with the property that ‖f(t + τ) − f(t)‖ ≤ ε for each
t ∈ R. The number τ above is called an ε-translation number for f , and the collection of such
functions will be denoted by AP(X).

Remark 2.4 (see [63]). Note that each almost periodic function is bounded and uniformly
continuous. It is well known that the range Rf = {f(t) : t ∈ R} of an almost periodic function
f is relatively compact. AP(X) endowed with the norm of uniform convergence on R is a
Banach space.

Definition 2.5. Let X and Y be two Banach spaces. Then f : R × Y → X is called almost
periodic in t uniformly for x ∈ Y if f is continuous, and for each ε > 0 and any compact
K ⊂ Y there exists l(ε) > 0 such that every interval I of length l(ε)it contains a number τ with
the property that ‖f(t+τ, x)−f(t, x)‖ ≤ ε for all t ∈ R, x ∈ K. The collection of such functions
will be denoted by AP(R × Y,X).

It is well known that the study of composition of two functions with special properties
is important and basic for deep investigations. We begin with the following standard result
in the theory of almost periodic function (see [39, 63]).

Lemma 2.6. Let f ∈ AP(R × Y,X) and h ∈ AP(Y ). Then the function f(·, h(·)) ∈ AP(X).

Definition 2.7. A continuous function f : [0,∞) → X (resp., [0,∞) × Y → X) is called
asymptotically almost periodic (resp., asymptotically almost periodic in t uniformly in y ∈ Y )
if it admits a decomposition f = g + φ, where g ∈ AP(X) (resp., g ∈ AP(R × Y,X)) and
φ ∈ C0([0,∞), X) (resp., φ ∈ C0([0,∞) × Y,X)). Here C0([0,∞), X) denotes the subspace
of BC([0,∞), X) such that limt→∞‖x(t)‖ = 0 and C0([0,∞) × Y,X) denotes the space of all
continuous functions h : [0,∞) × Y → X such that limt→∞h(t, x) = 0 uniformly for x in
any compact subset of Y . Denote byAAP(X) (resp.,AAP(Y,X)) the set of all such functions.
AAP(X) is a Banach space with the sup norm.

Definition 2.8. A continuous function f : [0,∞) × Y → X is called uniformly continuous on
bounded sets uniformly for t ≥ 0 if for every ε > 0 and every bounded subset K of Y there
exists δε,K > 0 such that ‖f(t, x)−f(t, y)‖ ≤ ε for all t ≥ 0 and all x, y ∈ K so that ‖x−y‖ ≤ δε,K.

Lemma 2.9. Let f ∈ AAP(Y,X) and let f(t, y) be uniformly continuous on bounded sets uniformly
for t ≥ 0. If u ∈ AAP(Y ), then f(·, u(·)) ∈ AAP(X).

Let PAP0(X) denote the space of all bounded continuous functions Φ : R → X such
that

lim
r→∞

1
2r

∫ r

−r
‖Φ(t)‖dt = 0, (2.3)
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and PAP0(R×Y,X) denotes the space of all continuous functions such thatΦ(·, x) is bounded
for all x ∈ Y and

lim
r→∞

1
2r

∫ r

−r
‖Φ(t, x)‖dt = 0, (2.4)

uniformly in x ∈ Y .

Definition 2.10 (see [36, 64]). A function f ∈ BC(R, X) (resp, f ∈ BC(R × Y,X)) is called
pseudo-almost periodic (resp., pseudo-almost periodic in t ∈ R uniformly in x ∈ Y ) if f =
g + Φwhere g ∈ AP(X) (AP(R × Y,X)) and Φ ∈ PAP0(X) (PAP0(R × Y,X)).

The functions g and Φ are called the almost periodic component and, respectively,
the ergodic perturbation of the function f . The set of all such functions will be denoted by
PAP(X) (resp., PAP(R×Y,X)). Obviously PAP(X) is a subspace of BC(R, X). Furthermore,
we have that PAP(X) is a closed subspace of BC(R, X); hence, it is a Banach space with the
supremum norm (see [65]).

Lemma 2.11 (see [65]). Letf ∈ PAP(R × Y,X) satisfy the following conditions.

(i) {f(t, x) : t ∈ R and x ∈ K} is bounded for every bounded subset K ⊂ Y .

(ii) f(t, ·) is uniformly continuous in each bounded subset of Y uniformly in t ∈ R. More
explicitly, given ε > 0 and K ⊂ Y bounded, there exists δ > 0 such that x, y ∈ K and
‖x − y‖ ≤ δ imply that ‖f(t, x) − f(t, y)‖ ≤ ε for all t ∈ R.

If h ∈ PAP(Y ), then f(·, h(·)) ∈ PAP(X).

Lemma 2.12. Assume that A is sectorial of type μ < 0. If g : R → X is an almost periodic function
and Γg is given by

(
Γg

)
(t) =

∫ t

−∞
Sα(t − s)g(s)ds, t ∈ R, (2.5)

then Γg ∈ AP(X).

Proof. For ε > 0, we take l(ε) involved in Definition 2.3, then for every interval of length l(ε)
contains a number τ such that ‖g(t + τ) − g(t)‖ ≤ ε for each t ∈ R. The estimate

∥∥Γg(t + τ) − Γg(t)
∥∥ ≤

∫∞

0
‖Sα(s)‖

∥∥g(t − s − τ) − g(t − s)
∥∥ds

≤
(
CM

∫∞

0

1
1 +

∣∣μ∣∣sα ds
)
ε =

CM
∣∣μ∣∣−1/απε

α sin(π/α)

(2.6)

is responsible for the fact that Γg ∈ AP(X).
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Lemma 2.13. Assume that A is sectorial of type μ < 0. If f : [0,∞) → X is an asymptotically
almost periodic function and Γ∗f is given by

(
Γ∗f

)
(t) =

∫ t

0
Sα(t − s)f(s)ds, t ≥ 0, (2.7)

then Γ∗f ∈ AAP(X).

Proof. If f = g + Φ, where g ∈ AP(X) and Φ ∈ C0([0,∞), X), then we have that Γ∗f(t) =
G∗(t) +H∗(t), where

G∗(t) :=
∫ t

−∞
Sα(t − s)g(s)ds t ∈ R, (2.8)

H∗(t) :=
∫ t

0
Sα(t − s)Φ(s)ds −

∫0

−∞
Sα(t − s)g(s)ds. (2.9)

By the previous lemma G∗ ∈ AP(X). Next, let us show that H∗ ∈ C0([0,∞), X). Since Φ ∈
C0([0,∞), X), for each ε > 0 there exists a constant T > 0 such that ‖Φ(s)‖ ≤ ε for all s ≥ T .
Then for all t ≥ 2T , we deduce

‖H∗(t)‖ ≤ CM‖Φ‖∞
∫ t/2

0

1
1 +

∣∣μ∣∣(t − s)α
ds + εCM

∫ t

t/2

1
1 +

∣∣μ∣∣(t − s)α
ds

+ CM
∥∥g∥∥∞

∫0

−∞

1
1 +

∣∣μ∣∣(t − s)α
ds

≤ CM
(‖Φ‖∞ +

∥∥g∥∥∞
)∫∞

t

1
1 +

∣∣μ∣∣sα ds +
εCM

∣∣μ∣∣−1/απ
α sin(π/α)

.

(2.10)

Therefore, limt→∞H∗(t) = 0, that is, H∗ ∈ C0([0,∞), X). This completes the proof.

Lemma 2.14. Assume that A is sectorial of type μ < 0. If f : R → X is pseudo-almost periodic
function and Γf is the function defined in (2.5). Then Γf ∈ PAP(X).

Proof. It is clear that Γf ∈ BC(R, X). In fact, we get ‖Γf‖∞ ≤ (CM|μ|−1/απ‖f‖∞)/(α sin(π/α)),
where C and M are given by (2.1). If f = g + Φ, where g ∈ AP(X) and Φ ∈ PAP0(X), then
from Lemma 2.12, Γg ∈ AP(X). To complete the proof, we show that ΓΦ ∈ PAP0(X). For
r > 0 we see that

1
2r

∫ r

−r

∥∥∥∥
∫∞

0
Sα(s)Φ(t − s)ds

∥∥∥∥dt ≤ 1
2r

∫ r

−r

∫∞

0
‖Sα(s)‖‖Φ(t − s)‖dsdt ≤ CM

∫∞

0

Φr(s)
1 + |μ|α ds,

(2.11)

where Φr(s) = (1/2r)
∫ r
−r‖Φ(t − s)‖dt, s ≥ 0.
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It is not hard to check that Φr(t) → 0 as r → ∞. Next, since Φr(s) is bounded and
1/(1 + |μ|sα) is integrable in [0,∞), using the Lebesgue dominated convergence theorem, it
follows that limr→∞

∫∞
0 (Φr(s)/(1 + |μ|sα)) ds = 0. The proof is now completed.

Let h : R → [1,∞) be a continuous function such that h(t) → ∞ as |t| → ∞. We
consider the space Ch(X) = {u ∈ C(R, X) : lim|t|→∞(u(t)/h(t)) = 0} endowed with the norm
‖u‖h = supt∈R‖u(t)‖/h(t).

Lemma 2.15 (see [66]). A subset K ⊆ Ch(X) is a relatively compact set if it verifies the following
conditions.

(c-1) The set K(t) = {u(t) : u ∈ K} is relatively compact in X for each t ∈ R.

(c-2) The set K is equicontinuous.

(c-3) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ K and all |t| > L.

Let h∗ : [0,∞) → [1,∞) be a continuous function such that h∗(t) → ∞ as t → ∞.
Consider the space Ch∗(X) = {u ∈ C([0,∞), X) : limt→∞(u(t)/h∗(t)) = 0} endowed with the norm
‖u‖h∗ = supt≥0(‖u(t)‖/h∗(t)).

Lemma 2.16 (see [67]). A subset K ⊆ Ch∗(X) is a relatively compact set if it verifies the following
conditions.

(c-1) The set Kb = {u|[0,b] : u ∈ K} is relatively compact in C([0, b];X) for all b ≥ 0.

(c-2) limt→∞(‖u(t)‖)/(h∗(t)) = 0 uniformly for all u ∈ K.

Definition 2.17. A continuous function f : R → X is called almost automorphic if for
every sequence of real numbers (sm)m∈N there exists a subsequence (sn)n∈N such that g(t) =
limn→∞f(t + sn) is well defined for each t ∈ R, and f(t) = limn→∞g(t − sn) for each t ∈ R.
Denote by AA(R, X) the set of all such functions; it constitutes a Banach space when it is
endowed with the sup norm.

Almost automorphic functions were introduced by Bochner [68] as a natural
generalization of the concept of almost periodic function. A complete description of the
properties and further applications to evolution equations can be found in the monographs
[69] and [70] by N’Guérékata.

Definition 2.18. Let X and Y be two Banach spaces. A continuous function f : R × Y → X is
called almost automorphic in t uniformly for x in compact subsets of Y if for every compact
subset K of Y and every real sequence (sm)m∈N there exists a subsequence (sn)n∈N such that
g̃(t, x) = limn→∞f(t + sn, x) is well defined for each t ∈ R, x ∈ K, and limn→∞g̃(t − sn, x) =
f(t, x) for each t ∈ R, x ∈ K. Denote by AA(R × Y,X) the set of all such functions.

Lemma 2.19 (see [34]). Assume that A is sectorial of type μ < 0. If g : R → X is an almost
automorphic function and Γg is given by (2.5), then Γg ∈ AA(R, X).

In 1980s, N’Guérékata [71] defined asymptotically almost automorphic functions as
perturbation of almost automorphic functions by functions vanishing at infinite. Since then,
those functions have generated lots of developments and applications; we refer the reader to
[69, 72–74] and the references therein.
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Definition 2.20 (see [75]). A continuous function f : [0,∞) → X (resp., [0,∞) × Y →
X) is called asymptotically almost automorphic (asymptotically almost automorphic in t
uniformly for x in compact subsets of Y ) if it admits a decomposition f = g + Φ, t ≥ 0, where
g ∈ AA(R, X) (resp., AA(R × Y,X)) and Φ ∈ C0([0,∞), X) (resp., C0([0,∞) × Y,X)). Denote
by AAA([0,∞), X) (resp., AAA([0,∞) × Y,X)) the set of all such functions. AAA([0,∞), X)
is a Banach space with the sup norm (see [75, Lemma 1.8]). We note that the range of an
asymptotically almost automorphic function is relatively compact [75].

Lemma 2.21. Assume that A is sectorial of type μ < 0. If f : [0,∞) → X is an asymptotically
almost automorphic function and Γ∗f is given by (2.7), then Γ∗f ∈ AAA([0,∞), X).

Proof. f = g + Φ, where g ∈ AA(R, X) and Φ ∈ C0([0,∞), X). We have that Γ∗f = G∗ + H∗,
where G∗ and H∗ are the functions given by (2.8) and (2.9), respectively. By previous lemma
G∗ ∈ AA(R, X) and by the proof of Lemma 2.13H∗ ∈ C0([0,∞), X). This ends the proof.

Lemma 2.22 (see [75]). Let f ∈ AAA([0,∞) × Y,X) and let f(t, y) be uniformly continuous on
bounded sets uniformly for t ≥ 0. If u ∈ AAA([0,∞), Y ), then f(·, u(·)) ∈ AAA([0,∞), X).

3. Pseudo-Almost Periodic Mild Solutions

We recall the following definition that will be essential for us.

Definition 3.1 (see [34]). Suppose that A generates an integrable solution operator Sα(t). A
continuous function u : R → X satisfying the integral equation

u(t) =
∫ t

−∞
Sα(t − s)f(s, u(s))ds, ∀t ∈ R (3.1)

is called a mild solution to the equation (1.1).

The following are the main results of this section.

Theorem 3.2. Assume that A is sectorial of type μ < 0. Let f : R × X → X be a function pseudo-
almost periodic in t ∈ R, uniformly in x ∈ X, and assume that there exists an integrable bounded
function Lf : R → [0,∞) satisfying

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ Lf(t)
∥∥x − y

∥∥, ∀x, y ∈ X, ∀t ∈ R. (3.2)

Then equation (1.1) has a unique pseudo-almost periodic mild solution.

Proof. We define the operator F : PAP(X) → PAP(X) by

(FΦ)(t) =
∫ t

−∞
Sα(t − s)f(s,Φ(s))ds, t ∈ R. (3.3)

Given v ∈ PAP(X), in view of Lemma 2.11, we have that s → f(s, v(s)) is a pseudo-almost
periodic function, and hence bounded in R. Since the function t → 1/(1 + |μ|tα) is integrable
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on [0,∞) (1 < α < 2), we get that Fv exists. Now, by Lemma 2.14, we obtain that Fv ∈
PAP(X), and hence F is well defined. It suffices to show that the operator F has a unique
fixed point in PAP(X). For this, consider u, v ∈ PAP(X). We can deduce that

‖(Fnu)(t) − (Fnv)(t)‖ ≤ Cn
α

n!

(∫ t

−∞
Lf(τ)dτ

)n

‖u − v‖∞ ≤

(
Cα

∥∥Lf

∥∥
1

)n

n!
‖u − v‖∞, (3.4)

where Cα := supt≥0‖Sα(t)‖L(X). Since ((Cα‖Lf‖1)n/n!) < 1 for n sufficiently large, by the
contraction principle, F has a unique fixed point u ∈ PAP(X). This completes the proof.

We can establish the following existence result.

Proposition 3.3. Assume that A is sectorial of type μ < 0. Let f : R × X → X be a function
pseudo-almost periodic in t ∈ R uniformly in x ∈ X that satisfies the Lipschitz condition (3.2) with
Lf ∈ BC. Let ‖Lf‖ = supt∈R

∫ t+1
t Lf(s)ds. If CM|μ|−1/απ‖Lf‖ < α sin(π/α), where C and M are

the constants in (2.1), then equation (1.1) has a unique pseudo-almost periodic mild solution.

Proof. Let F be the map defined in the previous theorem. For u, v ∈ PAP(X)we can estimate
that

‖Fu(t) − Fv(t)‖ ≤ CM

∫ t

−∞

Lf(s)

1 +
∣∣μ∣∣(t − s)α

‖u(s) − v(s)‖ds

≤ CM

( ∞∑
m=0

∫ t−m

t−(m+1)

Lf(s)

1 +
∣∣μ∣∣(t − s)α

ds

)
‖u − v‖∞

≤ CM

( ∞∑
m=0

1
1 +

∣∣μ∣∣mα

∫ t−m

t−(m+1)
Lf(s)ds

)
‖u − v‖∞

≤ CM

( ∞∑
m=0

1
1 +

∣∣μ∣∣mα

)∥∥Lf

∥∥‖u − v‖∞,

(3.5)

which finishes the proof.

Corollary 3.4. Assume that A is sectorial of type μ < 0. Let f : R × X → X be a function pseudo-
almost periodic in t ∈ R uniformlies in x ∈ X that satisfy the Lipschitz condition

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ L
∥∥x − y

∥∥, ∀x, y ∈ X, ∀t ∈ R. (3.6)

If CM|μ|−1/απL < α sin(π/α), where C andM are the constants given in (2.1), then equation (1.1)
has a unique pseudo-almost periodic mild solution.

To establish our next result we consider perturbations f of (1.1) that satisfy the
following boundedness condition.

(H1) There exists a continuous nondecreasing function W : [0,∞) → [0,∞) such that
‖f(t, x)‖ ≤ W(‖x‖) for all t ∈ R and x ∈ X.

We have the following result.
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Theorem 3.5. Assume that A is sectorial of type μ < 0. Let f : R × X → X be a function
pseudo-almost periodic in t ∈ R uniformly in x ∈ X that satisfies assumption (H1) and the following
conditions.

(H2) f(t, x) is uniformly continuous on bounded subset of X uniformly in t ∈ R.
(H3) For each ν ≥ 0, lim|t|→∞1/h(t)

∫ t
−∞(W(νh(s))/(1 + |μ|(t − s)α))ds = 0, where h is

given by Lemma 2.15. Set

β(ν) := CM

∥∥∥∥∥
∫ ·

−∞

W(νh(s))
1 +

∣∣μ∣∣(· − s)α
ds

∥∥∥∥∥
h

, (3.7)

where C and M are constants given in (2.1).
(H4) For each ε > 0 there is δ > 0 such that, for every u, v ∈ Ch(X), ‖u−v‖h ≤ δ implies that

∫ t

−∞

∥∥f(s, v(s)) − f(s, u(s))
∥∥

1 +
∣∣μ∣∣(t − s)α

ds ≤ ε, (3.8)

for all t ∈ R.
(H5) For all a, b ∈ R, a < b, and r > 0, the set {f(s, h(s)x) : a ≤ s ≤ b, x ∈ X, ‖x‖ ≤ r} is

relatively compact in X.
(H6) lim infξ→∞ξ/β(ξ) > 1.
Then equation (1.1) has a pseudo-almost periodic mild solution.

Proof. We define the operator F on Ch(X) as in (3.3). We show that F has a fixed point in
PAP(X).

(i) For u ∈ Ch(X), we have that

lim
t→∞

‖Fu(t)‖
h(t)

≤ lim
t→∞

CM

h(t)

∫ t

−∞

W(‖u‖hh(s))
1 +

∣∣μ∣∣(t − s)α
ds. (3.9)

It follows from condition (H3) that F : Ch(X) → Ch(X). From condition (H4) it follows that
F is a continuous map.

(ii) We next show that F is completely continuous. The argument comes from
Lemma 2.15. In fact, let V = F(Br(Ch(X))) and v = F(u) for u ∈ Br(Ch(X)).
Initially, we will prove that V (t) is a relatively compact subset of X for each t ∈ R.
It follows from condition (H3) that the function s → W(rh(t − s))/(1 + |μ|sα)
is integrable on [0,∞). Hence, for ε > 0, we can choose a ≥ 0 such that
CM

∫∞
a (W(rh(t − s))/(1 + |μ|sα))ds ≤ ε. Hence v(t) ∈ ac0({Sα(s)f(ξ, h(ξ)x) : 0 ≤

s ≤ a, t − a ≤ ξ ≤ t, ‖x‖ ≤ r}) + Bε(X), where c0(K) denotes the convex hull of
K. Using that Sα(·) is strongly continuous and the property (H5), we infer that
K = {Sα(s)f(ξ, h(ξ)x) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ‖x‖ ≤ r} is relatively compact set,
and V (t) ⊂ ac0(K) + Bε(X), which establishes our assertion.
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We next show that the set V is equicontinuous. In fact, we can decompose

v(t + s) − v(t) =
∫s

0
Sα(ξ)f(t + s − ξ, u(t + s − ξ))dξ

+
∫a

0
(Sα(ξ + s) − Sα(ξ))f(t − ξ, u(t − ξ))dξ

+
∫∞

a

(Sα(ξ + s) − Sα(ξ))f(t − ξ, u(t − ξ))dξ.

(3.10)

For each ε > 0, we can choose a > 0 and δ1 > 0 such that

∥∥∥∥
∫s

0
Sα(ξ)f(t + s − ξ, u(t + s − ξ))dξ +

∫∞

a

(Sα(ξ + s) − Sα(ξ))f(t − ξ, u(t − ξ))dξ
∥∥∥∥

≤ CM

(∫ s

0

W(rh(t + s − ξ))
1 +

∣∣μ∣∣ξα dξ + 2
∫∞

a

W(rh(t − ξ))
1 +

∣∣μ∣∣ξα dξ

)
≤ ε/2 ,

(3.11)

for s ≤ δ1. Moreover, since {f(t − ξ, u(t − ξ)) : 0 ≤ ξ ≤ a, u ∈ Br(Ch(X))} is relatively compact
set and Sα(·) is strongly continuous, we can choose δ2 > 0 such that ‖(Sα(ξ + s) − Sα(s))f(t −
ξ, u(t − ξ))‖ < ε/2a for s ≤ δ2. Combining these estimates, we get ‖v(t + s) − v(t)‖ ≤ ε for s
small enough and independent of u ∈ Br(Ch(X)).

Finally, applying condition (H3), we can show that

v(t)
h(t)

≤ CM

h(t)

∫ t

−∞

W(rh(s))
1 +

∣∣μ∣∣(t − s)α
ds −→ 0, |t| −→ ∞, (3.12)

and this convergence is independent of u ∈ Br(Ch(X)). Taking into account Lemma 2.15, V is
a relatively compact set in Ch(X).

(iii) If uλ(·) is a solution of equation uλ = λF(uλ) for some 0 < λ < 1, then we can check
that ‖uλ‖h ≤ β(‖uλ‖h) and, combining with condition (H6), we conclude that the set
K̃ := {uλ : uλ = λF(uλ), λ ∈ (0, 1)} is bounded.

(iv) It follows, from Lemmas 2.11 and 2.14, that F(PAP(X)) ⊂ PAP(X) and, conse-
quently, F : PAP(X) → PAP(X) is completely continuous. Since K̃ is bounded
and using Leray-Schauder alternative theorem, we infer that F has a fixed point
u ∈ PAP(X). Let (un)n be a sequence in PAP(X) that converges to u. We see that
(Fun)n converges to Fu = u uniformly in R. This implies that u ∈ PAP(X) and
completes the proof.

It is particularly interesting to note that the next result is not covered by the results by
Cuevas and Lizama [34].

Corollary 3.6. Assume that conditions (H1)–(H6) hold and that A is sectorial of type μ < 0. If
f : R × X → X is almost periodic in t ∈ R uniformly for x ∈ X, then equation (1.1) has an almost
periodic mild solution.

Proof. It is a consequence of Lemmas 2.6 and 2.12.
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4. Asymptotically Almost Periodic Mild Solutions

We recall the following definition.

Definition 4.1 (see [50]). Suppose that A generates an integrable solution operator Sα(t). A
function u : [0,∞) → X satisfying

u(t) = Sα(t)u0 +
∫ t

0
Sα(t − s)f(s, u(s))ds, ∀t ≥ 0 (4.1)

is called a mild solution of the problem (1.2)-(1.3).

Theorem 4.2. Assume that A is sectorial of type μ < 0. Let f : [0,∞) × X → X be a function
asymptotically almost periodic in t uniformly in x ∈ X and assume that there exists an integrable
bounded function Lf : [0,∞) → [0,∞) satisfying

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ Lf(t)
∥∥x − y

∥∥, ∀x, y ∈ X, ∀t ≥ 0. (4.2)

Then the problem (1.2)-(1.3) has a unique asymptotically almost periodic mild solution.

Proof. We define the operator Γα on the space AAP(X) by

(Γαu)(t) = Sα(t)u0 +
∫ t

0
Sα(t − s)f(s, u(s))ds := Sα(t)u0 + vα(t). (4.3)

We show initially that Γαu ∈ AAP(X). In fact, we observe that the estimate (2.1) implies
that Sα(·)u0 ∈ AAP(X). It follows from Lemma 2.9 that the function s → f(s, u(s)) is
asymptotically almost periodic; then by Lemma 2.13, vα ∈ AAP(X), and hence Γα is well
defined. Let u, v be in AAP(X) and define Cα := supt≥0‖Sα(t)‖L(X). We have the following
estimate:

‖Γnαu − Γnαv‖∞ ≤

(
Cα

∥∥Lf

∥∥
1

)n

n!
‖u − v‖∞, (4.4)

which is responsible for the fact that Γα has a unique fixed point in AAP(X).

Corollary 4.3. Assume that A is sectorial of type μ < 0. Let f : [0,∞) × X → X be a function
asymptotically almost periodic in t uniformly in x ∈ X that satisfies the Lipschitz condition (4.2) with
Lf(·) ≡ L. If CM|μ|−1/απL < α sinπ/α, where C and M are the constants given in (2.1), then the
problem (1.2)-(1.3) has a unique asymptotically almost periodic mild solution.

TakingA = −ραI with ρ > 0 andX = C in (1.2), the above result produces the following
corollary.

Corollary 4.4. Let f : [0,∞) × C → C be a function asymptotically almost periodic in t uniformly
in z ∈ C that satisfies the Lipschitz condition (4.2) with Lf(·) ≡ L. Then problem (1.2)-(1.3) has a
unique asymptotically almost periodic solution whenever L < (α sinπ/α)/ρπ .
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Remark 4.5. A similar result as that of the previous corollary was obtained by Cuevas and de
Souza [50] for obtaining an S-asymptoticallyω-periodic mild solution for problem (1.2)-(1.3)
(see [50, Remark 3.6] for complementary comments).

Next, we establish a version of Theorem 4.2 which enable us to consider locally
Lipschitz perturbations for equation (1.2). We have the following result.

Theorem 4.6. Assume that A is sectorial of type μ < 0. Let f : [0,∞) × X → X be a function
asymptotically almost periodic in t uniformly in x ∈ X and assume that there is a continuous and
nondecreasing function L : [0,∞) → [0,∞) such that for each positive number R, and x, y ∈ X,
‖x‖ ≤ R, ‖y‖ ≤ R, one has

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ L(R)
∥∥x − y

∥∥, ∀t ≥ 0, (4.5)

where L(0) = 0 and f(t, 0) = 0 for t ≥ 0; then there is ε > 0 such that for each u0 with ‖u0‖ ≤ ε there
exists a unique asymptotically almost periodic mild solution of (1.2)-(1.3).

Proof. Let R > 0 and 0 < λ < 1 be such that CM(λ + |μ|−1/απL(R)/α sin(π/α)) < 1. We affirm
that the assertion holds for ε = λR. In fact, we consider u0 such that ‖u0‖ ≤ ε. We set

Du0 = {u ∈ AAP(X) : u(0) = u0, ‖u‖∞ ≤ R}, (4.6)

endowed with the metric d(u, v) = ‖u − v‖∞. We define the operator Γα on the space Du0 by
(4.3). Let u ∈ Du0 ; we next show that Γαu ∈ Du0 . We have the estimate ‖Γαu(t)‖ ≤ CM(λ +
|μ|−1/απL(R)/α sin(π/α))R ≤ R, that is, Γα(Du0) ⊂ Du0 .

On the other hand, for u1, u2 ∈ Du0 we obtain

‖Γαu1(t) − Γαu2(t)‖ ≤ CM

∫ t

0

L(R)‖u1(s) − u2(s)‖
1 +

∣∣μ∣∣(t − s)α
ds

≤ CM
∣∣μ∣∣−1/απL(R)
α sin(π/α)

‖u1 − u2‖∞

≤ (1 − CMλ)‖u1 − u2‖∞.

(4.7)

To conclude, we note that 1−CMλ < 1, which means that Γα is a (1−CMλ)-contraction. This
completes the proof.

Theorem 4.7. Assume thatA is sectorial of type μ < 0. Let f : [0,∞)×X → X be an asymptotically
almost periodic in t uniformly in x ∈ X that satisfies the following conditions.

(H∗1) There is a continuous nondecreasing function W : [0,∞) → [0,∞) such that
‖f(t, x)‖ ≤ W(‖x‖) for all t ≥ 0 and x ∈ X.

(H∗2) f(t, x) is uniformly continuous on bounded sets of X uniformly in t ≥ 0.
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(H∗3) For each ν ≥ 0, limt→∞(1/(h∗(t)))
∫ t
0(W(νh∗(s))/(1 + |μ|(t − s)α))ds = 0, where h∗

is given by Lemma 2.16. Set

β∗(ν) := sup
t≥0

1
h∗(t)

(
‖Sα(t)u0‖ + CM

∫ t

0

W(νh∗(s))
1 +

∣∣μ∣∣(t − s)α
ds

)
, (4.8)

where C and M are constants given in (2.1).
(H∗4) For each ε > 0 there is δ > 0 such that, for every u, v ∈ Ch∗(X), ‖u − v‖h∗ ≤ δ implies

that

sup
t≥0

∫ t

0

∥∥f(s, v(s)) − f(s, u(s))
∥∥

1 +
∣∣μ∣∣(t − s)α

ds ≤ ε, (4.9)

for all t ∈ R.
(H∗5) For all 0 ≤ a < b, and r > 0, the set {f(s, h∗(s)x) : a ≤ s ≤ b, x ∈ X, ‖x‖ ≤ r} is

relatively compact in X.
(H∗6) lim infξ→∞ξ/(β∗(ξ)) > 1.
Then problem (1.2)-(1.3) has an asymptotically almost periodic mild solution.

Proof. We define the operator Γα on Ch∗(X) as in (4.3). We show that Γα has a fixed point in
AAP(X).

(i) For u ∈ Ch∗(X), we have that

‖Γαu(t)‖
h∗(t)

≤ CM‖u0‖
h∗(t)

+
CM

h∗(t)

∫ t

0

W(‖u‖h∗h∗(s))
1 +

∣∣μ∣∣(t − s)α
ds. (4.10)

It follows from (H∗3) that Γα : Ch∗(X) → Ch∗(X). From condition (H∗4) it follows
that Γα is a continuous map.

(ii) We next show that Γα is completely continuous. Let V = Γα(Br(Ch∗(X))) and
v = Γα(u) for u ∈ Br(Ch∗(X)). Initially, we can infer that Vb(t) is a relatively
compact subset of X for each t ∈ [0, b]. In fact, using condition (H∗5) we get that
K = {Sα(s)f(ξ, h(ξ)x) : 0 ≤ s ≤ t, 0 ≤ ξ ≤ t, ‖x‖ ≤ r} is relatively compact. It
is easy to see that Vb(t) ⊂ Sα(t)u0 + tC(K), which establishes our assertion. From
the decomposition of v(t + s) − v(t) given by (Sα(t + s) − Sα(t))u0 +

∫ t+s
t Sα(t + s −

ξ)f(ξ, u(ξ))dξ +
∫ t
0(Sα(ξ + s) − Sα(ξ))f(t − ξ, u(t − ξ))dξ, it follows that the set Vb

is equicontinuous. We can show that limt→∞‖v(t)‖/h∗(t) = 0 uniformly for all
u ∈ Br(Ch∗(X)). From Lemma 2.16, we deduce that V is relatively compact set in
Ch∗(X).

We note that the set {uλ : uλ = λΓα(uλ), λ ∈ (0, 1)} is bounded. In fact, it follows
from condition (H∗6) and the estimate ‖uλ‖h∗ ≤ β∗(‖uλ‖h∗). It follows, from Lemmas 2.9 and
2.13, that Γα(AAP(X)) ⊂ AAP(X). The remaining of proof makes use of a similar argument
already done in the proof of Theorem 3.5.
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5. Asymptotically Almost Automorphic Solutions of Fractional Integro
Differential Neutral Equations

This section is mainly concerned with the existence and uniqueness of an asymptotically
almost automorphic mild solution to the fractional integro differential neutral equation

d

dt

(
u(t) + g(t, u(t))

)
=
∫ t

0

(t − s)α−2

Γ(α − 1)
A
(
u(s) + g(s, u(s))ds + f(t, u(t))

)
, t ≥ 0,

u(0) = u0 ∈ X,

(5.1)

where 1 < α < 2,A is a linear densely defined operator of sectorial type, and f, g are functions
subject to some additional conditions.

Definition 5.1. Suppose that A generates an integrable solution operator Sα(t). A function
u : [0,∞) → X satisfying the integral equation

u(t) = Sα(t)
(
u0 + g(0, u0)

) − g(t, u(t)) +
∫ t

0
Sα(t − s)f(s, u(s))ds, t ≥ 0 (5.2)

is called a mild solution of problem (5.1).

We have the following result.

Theorem 5.2. Assume that A is sectorial of type μ < 0. Let f, g : [0,∞) ×X → X be two functions
asymptotically almost automorphic in t uniformly for x in compact subsets of X such that

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ Lf

∥∥x − y
∥∥, ∀x, y ∈ X, ∀t ≥ 0,

∥∥g(t, x) − g
(
t, y

)∥∥ ≤ Lg

∥∥x − y
∥∥, ∀x, y ∈ X, ∀t ≥ 0.

(5.3)

If Lg + ((CM|μ|−1/α πLf)/α sin(π/α)) < 1, where C and M are the constants given in (2.1), then
problem (5.1) has a unique asymptotically almost automorphic mild solution.

Proof. We define the operator Υα on the space AAA([0,∞), X) by

Υαu(t) = Sα(t)
(
u0 + g(0, u0)

) − g(t, u(t)) +
∫ t

0
Sα(t − s)f(s, u(s))ds. (5.4)

Applying Lemma 2.22, we infer that g(·, u(·)) and f(·, u(·)) belong to AAA([0,∞), X). By
Lemma 2.21, we obtain that Υα isAAA([0,∞), X)-valued. Furthermore, we have the estimate

‖Υαu(t) − Υαv(t)‖ ≤ Lg‖u(t) − v(t)‖ + CMLf

∫ t

0

‖u(s) − v(s)‖
1 +

∣∣μ∣∣(t − s)α
ds

≤
⎛
⎝Lg +

CMLf

∣∣μ∣∣−1/απ
α sin(π/α)

⎞
⎠‖u − v‖∞,

(5.5)
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which proves that Υα is a contraction we conclude that Υα has a unique fixed point in
AAA([0,∞), X). This completes the proof.

Next, we establish a local version of the previous result.

Theorem 5.3. Assume that A is sectorial of type μ < 0. Let f, g : [0,∞) ×X → X be two functions
asymptotically almost automorphic in t uniformly for x in compact subsets ofX and assume that there
are continuous and nondecreasing functions Lf , Lg : [0,∞) → [0,∞) such that for each positive
number R, and x, y ∈ X, ‖x‖ ≤ R, ‖y‖ ≤ R, one has

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ Lf(R)
∥∥x − y

∥∥, ∥∥g(t, x) − g
(
t, y

)∥∥ ≤ Lg(R)
∥∥x − y

∥∥, (5.6)

for all t ≥ 0, where Lf(0) = Lg(0) = 0 and f(t, 0) = g(t, 0) = 0 for every t ≥ 0. Then there is ε > 0
such that u0 satisfies ‖u0‖ ≤ ε; then there is a unique asymptotically almost automorphic mild solution
of (5.1).

Proof. Let R > 0 and λ ∈ (0, 1) be such that

H := CM
(
1 + Lg(λR)

)
λ + Lg(R) +

CMLf(R)
∣∣μ∣∣−1/απ

α sin(π/α)
< 1, (5.7)

where C and M are the constants given in (2.1). We consider u0 such that ‖u0‖ ≤ ε, with
ε = λR; we define the space Du0 = {u ∈ AAA([0,∞), X) : u(0) = u0, ‖u‖∞ ≤ R} endowed with
the metric d(u, v) = ‖u − v‖∞. We also define the operator Υα on the space Du0 by (5.4). Let u
be inDu0 in a similar way as that of proof of Theorem 5.2; we have thatΥαu ∈ AAA([0,∞), X).
Moreover, we obtain the estimate

‖Υαu(t)‖ ≤ CM
(
1 + Lg(λR)

)
λR + Lg(R)R +

CMLf(R)R
∣∣μ∣∣−1/απ

α sin(π/α)
= HR < R. (5.8)

Therefore Υα(Du0) ⊂ Du0 . On the other hand, for u, v ∈ Du0 , we see that

‖Υαu − Υαv‖∞ ≤
⎛
⎝Lg(R) +

CMLf(R)
∣∣μ∣∣−1/απ

α sin(π/α)

⎞
⎠‖u − v‖∞, (5.9)

which shows that Υα is a contraction from Du0 into Du0 . The assertion is now a consequence
of the contraction mapping principle.

Remark 5.4. A similar result was obtained by Diagana et al. [76] for the existence of asymp-
totically almost automorphic solutions to some abstract partial neutral integrodifferential
equations.

Theorem 5.5. Assume that A is sectorial of type μ < 0 and that conditions (H∗1),(H∗3), (H∗4) and
(H∗5) hold. In addition, suppose that the following properties hold.
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(A1) The functions f, g : [0,∞) × X → X are asymptotically almost automorphic in t and
uniformly for x in compact subsets of X and uniformly continuous on bounded sets of X uniformly in
t ≥ 0.

(A2) There is a constant Lg > 0 such that ‖g(t, h∗(t)x) − g(t, h∗(t)y)‖ ≤ Lg‖x − y‖ for all
t ≥ 0 and x, y ∈ X (here h∗ is given in Lemma 2.16). Set

Ω(ν) = sup
t≥0

CM

h∗(t)

∫ t

0

W(νh∗(s))
1 +

∣∣μ∣∣(t − s)α
ds, (5.10)

where C and M are the constants given in (2.1).
(A3) Lg + lim infr→∞(Ω(r))/r < 1.
Then problem (5.1) has an asymptotically almost automorphic mild solution.

Proof. We define the operator Υα on Ch∗(X) as in (5.4); we consider the decomposition Υα =
Υ1
α + Υ2

α, where

Υ1
αu(t) = Sα(t)

(
u0 + g(0, u0)

) − g(t, u(t)), t ≥ 0,

Υ2
αu(t) =

∫ t

0
Sα(t − s)f(s, u(s))ds, t ≥ 0.

(5.11)

For u ∈ Ch∗(X), we have that

∥∥Υ1
αu(t)

∥∥
h∗(t)

≤ 1
h∗(t)

[
CM

(‖u0‖ +
∥∥g(0, u0)

∥∥) + Lg‖u‖h∗ +
∥∥g(·, 0)∥∥∞

]
. (5.12)

Hence Υ1
α is Ch∗(X)-valued. On the other hand, Υ1

α is an Lg-contraction. It follows from the
proof of the Theorem 4.7 that Υ2

α is completely continuous. From Lemmas 2.21 and 2.22, we
have that

Υi
α(AAA([0,∞), X)) ⊂ AAA([0,∞), X), i = 1, 2. (5.13)

Hence Υα(AAA([0,∞), X)) ⊂ AAA([0,∞), X) and Υ2
α : AAA([0,∞), X) → AAA([0,∞), X)

is completely continuous. Putting Br := Br(AAA([0,∞), X)),we claim that there is r > 0 such
that Υα(Br) ⊂ Br . In fact, if we assume that this assertion is false, then for all r > 0 we can
choose ur ∈ Br and tr ≥ 0 such that ‖Υα ur (tr)‖/h∗(tr) > r. We observe that

‖Υαu
r(tr)‖ ≤ CM

(‖u0‖ +
∥∥g(0, u0)

∥∥) + ∥∥g(·, 0)∥∥∞ + Lgr + CM

∫ tr

0

W(rh∗(s))
1 +

∣∣μ∣∣(tr − s)α
ds. (5.14)

Thus 1 ≤ Lg + lim infr→∞(Ω(r)/r), which is contrary to assumption (A3). We have that Υ1
α is

a contraction on Br and Υ2
α(Br) is a compact set. It follows from [77, Corollary 4.3.2] that Υα

has a fixed point u ∈ AAA([0,∞), X). More precisely, u ∈ AAA([0,∞), X), and this finishes
the proof.
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6. Applications

To illustrate our results, initially we examine sufficient conditions for the existence and
uniqueness of pseudo-almost periodic mild solutions to the fractional relaxation-oscillation
equation given by

∂αt u(t, x) = ∂2xu(t, x) − νu(t, x) + β∂α−1t

((
sin(t) +

1
1 + t2

)
sin(u(t, x))

)
, t ∈ R, x ∈ [0, π],

(6.1)

u(t, 0) = u(t, π) = 0, t ∈ R, (6.2)

where ν, β > 0. To study this system in the abstract form (1.1), we choose the space X =
L2[0, π] and the operator A defined by Au = u′′ − νu, with domain D(A) = {u ∈ L2[0, π] :
u′′ ∈ L2[0, π], u(0) = u(π) = 0}. It is well known that Δu = u′′ is generator of an analytic
semigroup on L2[0, π]. Hence, A is sectorial of type μ = −ν < 0. (6.1) can be formulated by
the inhomogeneous problem (1.1), where u(t)(x) = u(t, x). Let us consider the nonlinearity
f(t, φ)(s) = βb(t) sinφ(s) for all φ ∈ X and s ∈ [0, π], t ∈ R with b(t) = sin(t) + (1/1 + t2),
β ∈ R. We observe that limr→∞(1/2r)

∫ r
−r(1/1) + t2 dt = limr→∞(1/r) arctan(r) = 0. Hence

b ∈ PAP(R). We observe that f : R×X → X is pseudo-almost periodic in t ∈ R, uniformly in
x ∈ X such that (3.6) holds for L = 2|β|. If we assume that |β| < α sin(π/α)/(2CM|ν|−1/α π),
then by Corollary 3.4, the fractional relaxation-oscillation equation (6.1) has a unique pseudo-
almost periodic mild solution.

Taking β ∈ (0, 1) and λ, ν > 0, we define the function F as

F(t, u)(x) = e−λ|t|

∣∣∣∣∣∣∣
∫x

0
sin

⎛
⎜⎝ u(t, τ)(∫π

0 |u(t, ξ)|2dξ
)1/2

+ 1

⎞
⎟⎠dτ

∣∣∣∣∣∣∣

β

sin(x). (6.3)

We consider the following fractional relaxation-oscillation equation given by

∂αt u(t, x) = ∂2xu(t, x) − νu(t, x) + ∂α−1t F(t, u)(x), t ∈ R, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R.
(6.4)

Equation (6.4) can be expressed as an abstract equation of the form (1.1), where

f
(
t, φ

)
(ξ) = e−λ|t|

∣∣∣∣∣
∫ ξ

0
sin

(
φ(τ)∥∥φ∥∥L2 + 1

)
dτ

∣∣∣∣∣
β

sin(ξ). (6.5)

Proposition 6.1. Problem (6.4) has a pseudo-almost periodic mild solution.
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Proof. Let us briefly discuss the proof of this proposition. We get without difficulties the
following two estimates:

∥∥f(t, φ)∥∥L2 ≤ e−λ|t|π(1+β)/2, t ∈ R, φ ∈ X,

∥∥f(t, φ1
) − f

(
t, φ2

)∥∥
L2 ≤ e−λ|t|3βπ(1+β)/2∥∥φ1 − φ2

∥∥β

L2 , t ∈ R, φ1, φ2 ∈ X,
(6.6)

which are responsible for the fact that f ∈ PAP0(R×X,X) and that f is uniformly continuous
on bounded sets of X uniformly in t ∈ R.

It is straightforward to verify that

∥∥f(t, φ)∥∥L2 ≤ e−λ|t|π(1+β)/2

( ∥∥φ∥∥L2∥∥φ∥∥L2 + 1

)β

≤ π(1+β)/2

( ∥∥φ∥∥L2∥∥φ∥∥L2 + 1

)β

, (6.7)

and φ ∈ X. Hence, we can defineW in (H1) byW(ξ) = π(1+β)/2(ξ/(ξ + 1))β. Taking h(t) = eλ|t|,
t ∈ R; u, v ∈ Ch(X). From the discussion above, we see that

1
h(t)

∫ t

−∞

W(νh(s))
1 +

∣∣μ∣∣(t − s)α
ds ≤ νβπ(3+β)/2

∣∣μ∣∣−1/α
α sin(π/α)

1
h(t)

−→ 0, as |t| −→ ∞,

sup
t∈R

∫ t

−∞

∥∥f(s, u(s)) − f(s, v(s))
∥∥
L2

1 +
∣∣μ∣∣(t − s)α

ds ≤ 3βπ(3+β)/2
∣∣μ∣∣−1/α

α sin(π/α)
‖u − v‖βh,

(6.8)

which means that conditions (H3) and (H4) of Theorem 3.5 are satisfied. An easy
computation leads to lim infξ→∞(ξ/β(ξ)) > 1. An argument involving Simon’s theorem
(see [78, Theorem 1, pages 71–74]) proves that the set K = {f(s, eλ|s|φ) : a ≤ s ≤
b, φ ∈ L2[0, π], ‖φ‖L2 ≤ r} is relatively compact in L2[0, π]. In fact, we can verify that
‖f(s, eλ|s|φ)‖L2 ≤ π(1+β)/2, φ ∈ L2[0, π]. Hence, for a1 < a2,

∫a2
a1
f(s, eλ|s|φ)(ξ)dξ is bounded

uniformly in s and φ. On the other hand, we can infer the following estimate:

∣∣∣f(s, eλ|s|φ)(ξ) − f
(
s, eλ|s|φ

)(
ξ′
)∣∣∣ ≤ ∣∣ξ − ξ′

∣∣β + πβ
∣∣ξ − ξ′

∣∣. (6.9)

Therefore,

∫π−h

0

∣∣∣f(s, eλ|s|φ)(ξ + h) − f
(
s, eλ|s|φ

)
(ξ)

∣∣∣2dξ −→ 0 as h −→ 0, (6.10)

uniformly in s and φ. Finally, Simon’s theorem leads to the conclusion that K is relatively
compact. Using Theorem 3.5, equation (6.4) has a pseudo-almost periodic mild solution.
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Next, we examine the existence and uniqueness of an asymptotically almost auto-
morphic mild solution to the fractional differential equation

∂

∂t
u(t, ξ) = Jα−1t

(
∂2

∂ξ2
− ν

)
u(t, ξ) + a(t)f(u(t, ξ)), t ≥ 0, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(0, ξ) = u0(ξ), ξ ∈ [0, π],

(6.11)

where u0 ∈ L2[0, π], a, f are appropriate functions, and Jα−1t g(t) =
∫ t
0((t − s)α−2/Γ(α −

1))g(s)ds. From Corollary 4.3, we can deduce the following result.

Proposition 6.2. Assume that a(·) is an asymptotically almost periodic function and that there
exists a constant Lf > 0 such that |f(x) − f(y)| ≤ Lf |x − y| for all x, y ∈ R. If ‖a‖∞ ≤
(α sin(π/α)/CM|ν|−1/α πLf), then (6.11) has a unique asymptotically almost periodic mild
solution.

We consider the fractional differential equation

∂

∂t
u(t, ξ) = Jα−1t

(
∂2

∂ξ2
− ν

)
u(t, ξ) + a(t)

(∫ ξ

0
u(t, τ)dτ

)2

, t ≥ 0, ξ ∈ [0, π], (6.12)

u(t, 0) = u(t, π) = 0, t ≥ 0, (6.13)

u(0, ξ) = u0(ξ), ξ ∈ [0, π]. (6.14)

From Theorem 4.6, we deduce the following result.

Proposition 6.3. Assume that a(·) is an asymptotically almost periodic function, then there is ε > 0
such that for each u0 with ‖u0‖L2 ≤ ε there exists a unique asymptotically almost periodic mild solution
of (6.12)–(6.14).

Proof. The proof is straightforward. Indeed, (6.12) can be expressed as an abstract equation of

form (1.2), where f(t, φ)(ξ) = a(t)(
∫ ξ
0φ(τ)dτ)

2
, t ≥ 0, φ ∈ L2[0, π]. We observe that ‖f(t, φ1) −

f(t, φ2)‖L2 ≤ ‖a‖∞π3/2(‖φ1‖L2 + ‖φ2‖L2)‖φ1 − φ2‖L2 , for all t ≥ 0 and φ1, φ2 ∈ L2[0, π]. Hence
the perturbation is locally Lipschitz. We remark that f is asymptotically almost periodic in t
uniformly in φ ∈ L2[0, π], as we mentioned before, by using Theorem 4.6.

Take β ∈ (0, 1) and λ, ν > 0. We define the function F by

F(t, u)(x) = e−λt
∣∣∣∣
∫x

0
u(t, τ)dτ

∣∣∣∣
β

sin(x). (6.15)
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We examine asymptotically almost periodic mild solution to the fractional relaxation-
oscillation equation given by

∂αt u(t, x) = ∂2t u(t, x) − νu(t, x) + ∂α−1t F(t, u)(x), t ≥ 0, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(t, ξ) = u0(ξ), ξ ∈ [0, π],

(6.16)

where u0 ∈ L2[0, π].

Proposition 6.4. Problem (6.16) has an asymptotically almost periodic mild solution.

Proof. We briefly recall some argument of the proof. Problem (6.16) can be written as an
abstract problem of the form (1.2)-(1.3) in X = L2[0, π], where the perturbation associated
is

f
(
t, φ

)
(ξ) = e−λt

∣∣∣∣∣
∫ ξ

0
φ(τ)dτ

∣∣∣∣∣
β

sin(ξ), ξ ∈ [0, π]. (6.17)

We can choose the function W in (H∗1) byW(ξ) = π(1+β)/2ξβ. From the estimate

∥∥f(t, φ1
) − f

(
t, φ2

)∥∥
L2 ≤ e−λtπ(1+β)/2∥∥φ1 − φ2

∥∥β

L2 , t ≥ 0, φ ∈ L2[0, π], (6.18)

we get conditions (H∗2) and (H∗4), the latter being considered with h∗(t) = eλt, t ≥ 0.
We can infer that

1
eλt

∫ t

0

W
(
νeλs

)
1 +

∣∣μ∣∣(t − s)α
ds ≤ 1

eλ(1−β)t
νβπ(3+β)/2

∣∣μ∣∣−1/α
α sin(π/α)

−→ 0, as t −→ ∞. (6.19)

Hence condition (H∗3) is fulfilled. By looking at the estimates

∥∥∥f(s, eλsφ)
∥∥∥
L2

≤ π(1+β)/2rβ, φ ∈ L2[0, π],
∥∥φ∥∥L2 ≤ r,

∥∥∥f(s, eλsφ)(ξ) − f
(
s, eλsφ

)(
ξ′
)∥∥∥ ≤ rβ

∣∣ξ − ξ′
∣∣β/2 + πβ/2rβ

∣∣ξ − ξ′
∣∣ (6.20)

and using Simon’s theorem, we conclude that condition (H∗5) holds. Consequently, by
Theorem 4.7 we can assert that problem (6.16) has an asymptotically almost periodic mild
solution. This completes the proof of Proposition 6.4.

Remark 6.5. It is easy to check that results in Section 5 are applicable to similar fractional
differential equations as those treated in this section. For the sake of shortness, the details are
left to the reader.
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