
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 149075, 20 pages
doi:10.1155/2010/149075

Research Article

W-NINE: A Two-Stage Emulation Platform forMobile and
Wireless Systems

Emmanuel Conchon,1 Tanguy Pérennou,2, 3 Johan Garcia,4 andMichel Diaz2, 3

1Université de Toulouse, IRIT/IRT-Champollion/ISIS-ISAE, 81100 Castres, France
2CNRS, LAAS, 7 Avenue du colonel Roche, 31077 Toulouse, France
3Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, 31077 Toulouse, France
4Department of Computer Science, University of Karlstad, SE-651 88 Karlstad, Sweden

Correspondence should be addressed to Emmanuel Conchon, emmanuel.conchon@irit.fr

Received 31 May 2009; Accepted 9 November 2009

Academic Editor: Nikos Passas

Copyright © 2010 Emmanuel Conchon et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

More and more applications and protocols are now running on wireless networks. Testing the implementation of such applications
and protocols is a real challenge as the position of the mobile terminals and environmental effects strongly affect the overall
performance. Network emulation is often perceived as a good trade-off between experiments on operational wireless networks
and discrete-event simulations on Opnet or ns-2. However, ensuring repeatability and realism in network emulation while taking
into account mobility in a wireless environment is very difficult. This paper proposes a network emulation platform, called W-
NINE, based on off-line computations preceding online pattern-based traffic shaping. The underlying concepts of repeatability,
dynamicity, accuracy, and realism are defined in the emulation context. Two different simple case studies illustrate the validity of
our approach with respect to these concepts.

1. Introduction

Testing and evaluating a transport protocol or a distributed
application is a challenging task for researchers. Indeed,
when a new protocol/application is proposed, its behavior
has to be compared to the behavior of existing proto-
cols/application. The testing stage is also important for fine
tuning the different mechanisms involved in new proto-
cols/applications. In networking and in wireless networking
in particular, several difficult points have to be considered
to make such an evaluation. In this work, we have chosen
to consider three main points: accuracy, dynamicity, and
repeatability and also a fourth point which can be viewed as
a composition of the others: realism.

For this purpose, several solutions can be used. First
of them is the use of actual tests, where real applications
or communication stacks under test are deployed on the
real operational machines. The accuracy of this method
is high, but there is a lack of control of environmental
parameters. For instance, there is no possibility to control

the weather conditions when testing a protocol/application
in a satellite environment. Furthermore, the experiment
cannot be repeated with identical parameters as many times
as needed, which is problematic to tune the parameters of
the new proposition under test. Such repeatability is highly
useful for providing reliable statistical results or to find an
optimal operating conditions.

The second solution which is widely used by researchers
is simulation, which provides a fully controllable environ-
ment ensuring repeatability. A majoronly need bandwidth
delays drawback of simulation is the need for many models:
application models, protocol models, and traffic models.
While some of these may be available, some others can
be hard or even impossible to develop (closed source
applications). Obtaining the traffic model can also be very
difficult especially for multimedia or distributed applications
evaluation. Finally, even if the models used for testing are
validated, correct behavior of the final implementation has
to be verified. For example, it has been shown by [1] that
the TCP stack implementation in FreeBSD 6 does not behave

2 EURASIP Journal on Wireless Communications and Networking

Presentation

Application

Session

Transport

Network

Data link

Physical

Emulator service

Level 3 emulation system
(aka network emulation)

Link layer (or above)
protocols to evaluate

Network layers (or above)
protocols to evaluate

Level 3 emulation system
(aka network emulation)

Level 2 emulation system

Level 1 emulation system

Transport protocols and/
or applications to evaluate

Figure 1: Levels of Emulation.

as expected when losses are inserted at specific position in
the real traffic, even though the TCP stack model had been
previously validated by simulation.

Network emulation is a compromise between real test
and simulation that allows the testing of real applications
or transport protocols on an adequate experimentation net-
work while in real time mimicking the behavior of another
network. A key interest of network emulation (also called IP-
level or level 3 emulation in this paper) is that only a few
parameters need to be manipulated (typically bandwidth,
delays, and losses). The major challenge is to use accurate
models to provide accurate emulation parameters while
respecting real-time constraints. Some traffic shapers such as
Dummynet [2] allow the manipulation of bandwidth, delays,
and losses. These traffic shapers do not compute network
emulation parameters in real time in order to have a very
light performance overhead and manage a large amount of
packets. Rather, network emulation parameters are provided
manually by the end user or automatically by an external
source; in the better case, a traffic shaper can be used as
basic tools for an emulation platform. Indeed, it must be
noted that most of these traffic shapers do not allow the exact
repetition of an experiment, especially for the placement of
losses.

In this paper, we propose a solution called W-NINE
which deals with accuracy by the addition of a simulation
stage before emulation time in order to be able to use
accurate models to produce the emulation parameters
(bandwidth, delays, and losses). These simulated parameters
will then be used during emulation to evaluate the final
protocol implementation under test. Based on accurate
models, the proposed simulator generates an emulation
scenario that synthesizes all the simulated emulation param-
eters, providing a dynamic behavior of the network to
emulate. Moreover, this emulation scenario can be played
several times ensuring part of the repeatability. To further
enhance repeatability, a traffic shaper supporting precise loss
positioning as well as bit-error insertion can be used to

reproduce losses and bit-errors. W-NINE emulation relies on
a fully centralized architecture that can be viewed as a “black-
box” approach.

The paper is organized as follows. Section 2 provides
a brief overview of related work. Section 3 discusses the
importance of accuracy, dynamicity, repeatability, and real-
ism in network emulation. Section 4 provides an overview
of the proposed architecture, and Section 5 illustrates the
usefulness of this emulation solution with two different case
studies. Finally, Section 7 provides the conclusions.

2. RelatedWork

Emulation systems largely differ depending on the kind of
protocol/application to be tested. For example, the properties
of the emulation system must differ between the evaluation
of a routing protocol and the evaluation of a streaming
application. A routing protocol needs a reproduction of the
target network topology while most streaming applications
only need information about bandwidth, delays or losses
and do not care about the network architecture at the link
layer. To deal with this specificity, several levels of emulation,
depicted on Figure 1, have been defined.

In Level 1 emulation (Physical Level Emulation), only the
physical layer is modified in order to be able to mimic the
behavior of the target network. For wireless emulation, most
physical-level emulators are based on a wireless infrastruc-
ture and use signal attenuators to reproduce signal condi-
tions that can be observed in the wireless network to emulate.
With these attenuators, it is then possible to reproduce the
target wireless network topology on an experimentation
grid. ORBIT [3] is an emulation platform based on this
architecture. The main drawbacks of this solution are that
the experiment is not fully controllable. Indeed, due to the
use of a real wireless infrastructure, Ganu et al. have shown
in [4] that the propagation conditions in the platform can
be affected reducing the quality of the provided emulation.

EURASIP Journal on Wireless Communications and Networking 3

To avoid this lack of control caused by interferences, JEmu
[5] has proposed the use of a configurable network stack
hosting a real implementation of the DSR [6] ad hoc routing
protocol and of the 802.11 b MAC layer. JEmu can be
seen as a client/server application where the client role is
played by a virtual radio layer. This layer is inserted in
the configurable protocol stack below the MAC layer and
therefore intercepts every packet emitted on the network.
These packets are then relayed to a central application that
can be viewed as the server. This application then, in real
time, simulates node mobility as well as propagation effects
to determine if a communication is possible or if collisions
might have occurred. If there is no collision, packets are
delivered to the destination node; otherwise they can be lost
or corrupted according to user configuration. Node mobility
can be computed before the experiment so that the amount
of computation done in real time is reduced. Nevertheless,
the communication support in JEmu is quite simplistic and
is only viewed as a communication range. The propagation is
limited to the attenuation of the signal based on the distance
between the sender and the receiver.

Level 2 emulation (MAC level emulation) is widely used
to evaluate real implementations of routing protocols and
aims at the simulation in real time of the physical and
data link layers. Most of existing solutions are based on a
distributed architecture where a virtual MAC layer is embed-
ded on each terminal. This virtual layer needs to provide
the same services as a regular data link layer so that the
routing protocol under test does not need any modifications.
EMWin [7] is a fully distributed wireless emulator focusing
on the impact of mobility. For this purpose, an emulated
MAC layer has been developed to mimic the medium access
CSMA/CA on an ethernet experimentation testbed. Based
on neighbor tables, conditions and paths can evolve over
time, thus reproducing the dynamic topology of a wireless
network. This solution is quite accurate for the mobility
purpose, but due to the real-time MAC emulation and the
distributed aspect, repeatability is not fully ensured.

Level 3 emulation (Network Emulation or IP-Level Emu-
lation) allows the evaluation of transport protocols or dis-
tributed applications. Typically, only three parameters need
to be manipulated to mimic specific network conditions:
bandwidth, delays, and packet losses. By diminishing the
bandwidth, inserting delays, and packet losses, it is possible
to reproduce the same conditions as those encountered at the
IP level in the network where the experimentation will take
place. Traffic shapers such as Dummynet [2] or NISTNet [8]
can be used as basic tools to constrain the experimentation
traffic according to user specified rules. These rules are
expressed in terms of bandwidth restriction, delays, and
losses insertions. Seawind [9] is another traffic shaper that
has been designed to emulate wireless networks focusing on
GPRS networks. It provides a more accurate delay support by
specifying allocation, transmission, and propagation delays.
By using many instances of traffic shapers it is possible to
build large emulation testbeds, for example, Netbed/Emulab
[10]. In these large testbeds, various approaches are used to
allow the dynamic configuration of a traffic shaper during
emulation.

The solution presented in [11] proposed a trace-based
emulation system. This emulator mimics a real network on
an experimentation one according to previously captured
traces. Those traces are then processed to produce an
emulation model (i.e., a model made of bandwidth, delays
and losses) that will be interpreted by the traffic shaping part
of the emulator. This process is known as the ”distillation”
process. It results in an accurate and repeatable emulation
of what happened in the real network. However, capturing
traces can be difficult and expensive in time, for instance,
in large-scale networks. Moreover, traces are a snapshot of
specific network conditions at some moment in time. For
a user, it is nearly impossible to set up any unforeseen
conditions.

Several network emulators such as Mobinet [12] have
chosen not to rely on an existing traffic shaper but to
develop a specific one from scratch. Mobinet is a wireless
extension of ModelNet [13] and is composed of two kinds
of nodes: the border nodes that will host the virtual nodes
where the application and protocols under test are installed
and core nodes that will be in charge of the emulation.
Mobinet is therefore considered as a centralized emulation
solution. To emulate a wireless network, several modules
have been implemented: a virtual MAC layer that uses
a finite state machine to reproduce the 802.11 b medium
access mechanism and a virtual routing layer which uses
an implementation of the DSR [6] routing protocol. This
solution is similar to the one proposed by JEmu but in
Mobinet every module can be replaced if necessary. For
example, it would be possible to switch from DSR to AODV
[14] if an implementation were available. It has also to
be noted that the available bandwidth in this emulator
is very impressive and can support up to 49 concurrent
traffics of 49 Mbit/s. Nevertheless, node mobility is not
supported and the propagation support is very limited
only allowing the computation of propagation effects as a
distance function. Moreover, DSR is a very light routing
algorithm in terms of computation time. Using a more
complex routing protocol such as OLSR [15] may have a
severe impact on the real-time constraints encountered in
emulation.

Finally, some level-3 network emulators are based on
real-time discrete event simulation such as NSE [16] (the
emulation extension of NS-2) or NCTUns [17]. In those
solutions, the real traffic is intercepted by the simulator
which computes in real-time the impact of the wireless
network on each packet. The main drawback of this
solution is the difficulty to respect real time constraints
because the more complex the models are, the more
computation time is needed. Even with recent optimiza-
tions such as those proposed, in [18], NSE is still not
scalable and can only support a small set of wireless
emulated nodes. For instance in [18], only six wireless
nodes, grouped in three pairs, are supported. To further
increase performances, the authors investigate the possibility
of distributing the real-time simulation process but at
the time of writing these solutions have not been evalu-
ated.

The remainder of this paper focuses on level 3 emulation.

4 EURASIP Journal on Wireless Communications and Networking

3. Problem Statement

This section highlights four identified aspects that are chal-
lenging for emulators.

3.1. Accuracy. When performing emulation, the accuracy of
the emulated conditions should always be considered. The
emulated conditions are often meant to reflect actual con-
ditions in a network. The transition from actual conditions
to emulated conditions is typically made either by the use of
analytical models, simulation or based on traces captured in
real networks.

In wireless networks the environment and the behavior
of the end user have a strong impact on the observed QoS
at the IP level: the current location of the communicating
entities and the propagation of the radio signal directly affect
delays, losses, and the available throughput that IP packets
experience. To emulate wireless networks it is necessary to
reproduce these effects as accurately as possible. Dealing
with movements of terminal nodes may lead to the use of
rather complex models to provide a realistic behavior. For
example, [19] proposes the use of a database to predict the
next position of a terminal according to its previous location,
the time, and its social relations. People do not act the same
way during week end or working days. Their movements
have to be affected accordingly.

Similarly, the propagation model often needs to be
complex in order to provide results that are sufficiently
accurate. If the propagation model is too simple, the behavior
is not realistic and this can in turn lead to misinterpretation
of experimental results. For instance, relying on a uniform
independent packet loss model often leads to false results
as shown in [20]. The use of accurate propagation models
such as those based on Ray Tracing or on Rayleigh or
Ricean random distributions [21] helps to reduce this kind
of misinterpretations, but at the expense of large amounts of
computation time.

The fact that the most accurate models are typically
also the most computationally intensive leads to a trade-
off between accuracy and scalability when the models are
used in a real-time emulation setting. To avoid this trade-
off problem, we developed the use of off-line precomputation
of emulation scenarios, which allows the use of accurate but
resource demanding analytical and simulation models.

3.2. Dynamicity. There are several sources that contribute
to the evolution of network conditions between a pair of
nodes in a wireless network: fast and slow fading of the
radio signal, node movement, and varying cross traffic. The
timescale of dynamicity is different among these sources, and
so is the nature and complexity of the underlying process.
The handling of dynamicity in an emulated environment
needs to consider both the need for realistic models and the
constraints of emulation.

In the previous section, we have proposed the utilization
of an off-line precomputation to use realistic but com-
putationally intensive models. This solution is suitable for
the accuracy problem but leads to new challenges on a

dynamicity standpoint. First of all is the time granularity
challenge. An off-line simulator can produce a dynamic
scenario of emulation commands describing the evolution
of the wireless network topology. This dynamic scenario
can then be played in real time by a traffic shaper on an
emulation testbed but the time granularity used between two
updates is critical. Indeed, even if accurate models have been
used for mobility and propagation, updating the emulation
conditions only every second will decrease their impact on
the realism of the emulation. The used time step results
from a compromise: the time step has to be small enough
to keep the realism of the used models but also has to be big
enough so that the traffic shaper is able to apply emulation
commands before the next time step.

The second challenge of dynamicity that has to be faced is
directly linked to the emulation purpose. A main advantage
of emulation is that no traffic model is needed to provide
results and evaluate an application. As a matter of fact, it
is not always possible to have a traffic model even for a
simulator like NS-2: for instance, it is nearly impossible to
model the end user behavior of an interactive application; so
the resulting traffic model is hardly ever available. To keep
the advantage of not being dependent on a traffic model, it is
necessary to avoid the use of a traffic model during the off-
line precomputation although, in wireless networks, specific
problems such as hidden or exposed terminals are related to
the traffic. Dealing with these traffic-based problems has to
be done in real-time. Two solutions can be considered. First,
the simulation process can be done partially in real time as in
the EMWin [7] solution. Every node in the experiment can
embed a small part of the simulator that will react in real time
according to the traffic. The main limitation of this solution
is that every node has to be tightly synchronized with the
others to ensure the overall consistency of an experiment.
Moreover, a dedicated communication protocol has to be set
up in order to allow communications among simulator parts.
This protocol is used to coordinate the emulation of specific
traffic behaviors that involve several nodes simultaneously
such as hidden terminals. The second solution to deal with
traffic in real-time is to simulate off-line several traffic pos-
sibilities and then, on-line, to observe the traffic during the
experimentation and to react accordingly. We have chosen
this solution because it is less intrusive than the previous
one and does not need any time synchronisation between
end nodes nor dedicated communication protocol. A more
comprehensive description of this solution is provided in
Section 4.2.

In both cases, the resulting emulation solution has to be
over-provisioned to cope with the real-time constraints and
must use a time step small enough between two emulation
conditions updates in order to keep the dynamic aspect and
the realism of those conditions.

3.3. Repeatability. The third issue that is highlighted in
this paper is repeatability. Repeatability can be considered
from multiple viewpoints. On the highest abstraction level
repeatability is the ability to identically reproduce any given
experiment setup in order to validate the results of an

EURASIP Journal on Wireless Communications and Networking 5

Experimentation network
Administration

network

Emulation manager KauNet

NINE

XMLSWINEXML

Emulation
scenario

High level
description

W-NINE

Emulated wireless
network

Mobile node

Experimentation
node

Figure 2: W-NINE Architecture.

experiment performed earlier. Factors that may cause dif-
ferences between different runs of an identical experimental
setup should be minimized. On a lower abstraction level this
translates to the amount of control over the experimental
environment that is possible to achieve. From a repeatability
standpoint, the maximum possible amount of control of
the emulated network is desirable. An analysis of the cause
for indeterminism in current network emulators gives at
hand that one major contributor is the stochastic insertion
of packet losses. When an experimental setup contains
a noncongestion-related packet loss element, the random
positions of these losses will vary between runs and this
variance can have considerable impact on the individual
experimental results as is shown in [1]. For instance, if a
user wants to compare two error control mechanisms such
as FEC or hybrid ARQ, it is necessary to ensure that packet
losses will be exactly the same in both cases. If losses do not
occur on the same packets, it is hard to examine the behavior
of the two error control mechanisms in a fully repeatable
fashion and it is also harder to conclude which one has the
best performance. Similar arguments hold for bit-errors, for
instance, in the context of audio/video codec development.
To ensure a maximum amount of control over losses and bit
errors, deterministic error positioning is needed.

3.4. Realism. Realism depends on the three previous points.
For example, a high level of realism in a wireless emulation
experiment can only be achieved if the emulation is accurate
enough to produce highly dynamic conditions and if the
emulator is able to reproduce these dynamic conditions in
real time. The repeatability also impacts the realism and
is highly tied to the design of the emulator. As previously
discussed, if an experiment is not fully repeatable, then the
accuracy is no longer ensured. To sum up, realism is the goal
to strive for but not to the detriment of the controllability of
the experiment.

4. W-NINE Architecture

This section describes W-NINE, an emulation platform that
addresses the issues of Section 3. As depicted in Figure 2,

W-NINE integrates and enhances various existing tools.
This integration work was done within the framework of
the FP6-IST European Network of Excellence in Wireless
Communications (NEWCOM).

W-NINE was designed to address the challenges
described previously in Section 3. W-NINE is based on
an off-line simulator called SWINE and an emulation
platform called NINE. Doing the simulation off-line gives
the possibility to use accurate and even realistic models,
which are generally time-consuming and cannot be used
in real time. To test a protocol or an application, the end
user first writes a high-level description of the experiment
which is processed by SWINE to produce an emulation
scenario that ensures dynamicity. Then the experiment can
be repeatedly run in real time on the NINE platform:
the applications and protocols under test are deployed on
NINE terminals, while the emulation scenario is played
in real time by the emulation manager. The emulation
manager periodically sends emulation commands on the
administration network to KauNet [22], a Dummynet
extension, used in the central router of NINE. KauNet
purpose is to, in real-time, constrain all the IP traffic
issued by the terminals on the experimentation network
thus mimicking the wireless network where applications
and protocols under test will be deployed. KauNet was
chosen due to its enhancements in terms of repeatability
and accuracy as compared to Dummynet. The behavior of
these tools is detailed throughout the remainder of this
section.

4.1. SWINE: Simulator for Wireless Network. The Simulator
for Wireless Network Emulation [23, 24], presented in
Figure 3, is an object-oriented Java simulator that produces
off-line an emulation scenario based on a high-level descrip-
tion. Doing this off-line gives the possibility to use accurate
and/or realistic models that cannot be used in real time.
The emulation scenario will be used in the second stage by
KauNet.

The emulation scenario and high-level description are
both XML files that must be validated against schemas.
In this section, the high-level description file format and
SWINE’s architecture are presented.

6 EURASIP Journal on Wireless Communications and Networking

Pl
ri, j = Ptj − PLi, j(d)

Ps
ri; j ∼R(σ)

where σ =

√
√
√
√

4Z0Pl
ri, j

π t
Loss

Pr

11 Mb/s

SWINE

High
level

Mobility Propagation Communication
Emulation
scenario

Trace Trace

patt gen KauNet
pattern

ReferenceLoss seq(t)

bw(t)Pr(t)Di, j(t)

Figure 3: SWINE Architecture.

4.1.1. High Level Description File. The High-Level Descrip-
tion (HLD) file describes the experiment to emulate includ-
ing obstacles and nodes as well as models used to represent,
for instance, the propagation conditions or the mobility.
This file is written in XML due to its simplicity and
to the validation possibilities that are available with this
formalism. For this validation purpose, the RELAX-NG
compact schema (RNC) formalism [25] defined by OASIS
has been selected because it is easier to manipulate than
regular XSD schemas due to a structure that is close to the
Backus-Naur formalism.

As depicted in Figure 4, an emulation experiment starts
with the definition of the kind of network that have to be
emulated: an 802.11 Ad Hoc network or a Managed network
representing an 802.11 infrastructure network.

Based on the network type, the world where the exper-
imentation takes place is described. The World is composed
of three main elements: concrete elements (such as obstacles,
areas, and nodes), the time information, and the world
dimensions. An obstacle is defined by its shape, its position,
and possibly its signal absorption capability. An Area allows
the introduction of a constant PLR in a geographical area
and then is defined by its position and its size. Finally, a
Node, presented in Figure 5, is mainly composed of the IP
information such as its IP address and its gateway but also
of its transmission power, its antenna gain, the mobility
model that will be used during the simulation to describe
its movement and possibly an energy model. Based on the
type of network, two kinds of nodes can be considered:
mobile nodes and access points which can be viewed as
static mobile nodes. This distinction is needed to simulate
infrastructure networks. The IP information is provided for
the real-time emulation step and is not used directly by
SWINE.

The models section describes every model used for the
computation of the traffic conditions in the wireless network.
These models, such as the propagation model (determines
the radio signal level received by a mobile node) or the MAC
level model (determines the IP throughput available for the
end user), are used by every node in the network. Models

used to build cells in an infrastructure network or to find
potential hidden terminals situations (see Section 4.1.2) are
also described in this section. In Figure 6, an example of
Pathloss Exponent propagation model [21] description is
presented. First, the end user must specify the exponent that
will change according to the location of the wireless network
and he must also give the reference distance value d0 and
possibly the frequency used by the wireless network and the
pathloss value at d0.

4.1.2. SWINE’s Architecture. The main difference between
SWINE and classical network simulators such as NS-2,
Opnet, or GloMoSim is that SWINE has been designed
for an emulation purpose. SWINE does not evaluate a
protocol nor an application but it provides the conditions
that the traffic will encounter in the target network. Most
of classical network simulators use a layered architecture and
simulated packets that go through this layered architecture to
provide results. In an emulation approach no traffic model
is provided in order to evaluate protocols and applications.
This specificity has been kept in SWINE’s design. Therefore,
SWINE computes the best conditions that a node might
encountered on a communication link, that is, when it is the
only emitting node.

SWINE is a discrete event simulator split in three main
steps: Mobility,Propagation, and Communication, each
step hosting a number of models with an open architecture
that allows the easy addition of new and/or more realistic
models.

The Mobility step computes all positions of all nodes
at every time step of an experiment, using models ranging
from the classical random waypoint mobility model to group
mobility models such as the Pursue model. All these models
can take into account obstacles of the world. Although they
are not integrated in SWINE, more complex models such
as those which are using social information databases [19]
could also be used even though they are time-consuming
since there is no time constraint in the off-line preliminary
simulation.

EURASIP Journal on Wireless Communications and Networking 7

start = Experiment

Experiment = element experiment {
element type_of_network {

attribute id {"Ad-Hoc" | "Managed"}
}?,
World,
element models { NetModel+ }

}

World = element world {
element time {

element duration {duration_unit? & real} &
element step {duration_unit? & real}

} &
element origin {distance_unit? & tuple3d} &
element dimensions {distance_unit? & tuple3d} &
element obstacles {Obstacle*} &
element areas {Area+}? &
element nodes {Mobile+ & AccessPoint*}

}

(a) RNC schema

<experiment type="Ad-Hoc">
<world>

<time>
<duration unit="s">179.5</duration>
<step unit="s">0.5</step>

</time>
<origin unit="m">

<x>-2</x>
<y>0</y>
<z>-2</z>

</origin>
<dimensions unit="m">

<x>44</x>
<y>0</y>
<z>44</z>

</dimensions>
<obstacles> ... </obstacles>
<nodes> ... </nodes>

</world>
<models> ... </models>

</experiment>

(b) Associated XML example file

Figure 4: High-Level Description File schema.

Mobile = element mobile {
attribute id {xsd:ID} &
element models {MobilityModel&EnergyModel?} &
element gain {power_unit? & real} &
element tx_power {power_unit? & real} &
element ip_address {text} &
element ip_mask {text} &
element gateway {text} &
element member_of {text} &
element mapped_on {text}

}

(a) RNC schema

<mobile id="M1">
<models> ... </models>
<gain unit="dB">0</gain>
<tx_power unit="dB">-13</tx_power>
<ip_address>192.168.106.1</ip_address>
<ip_mask>255.255.255.0</ip_mask>
<gateway>192.168.106.100</gateway>
<member_of>Emulated WiFi Network</member_of>
<mapped_on>wnine1</mapped_on>

</mobile>

(b) Associated XML example file

Figure 5: An excerpt of the HLD file for nodes.

8 EURASIP Journal on Wireless Communications and Networking

PathLossExponentModel = element stage {
attribute id {text} &
attribute class {"swine.models.propagation.PathlossExponentModel"} &
element exponent {real} &
element d0 {distance_unit? & real} &
element frequency {frequency_unit? & real}? &
element pathloss_d0 {power_unit? & real}?

}

(a) RNC schema

<stage id="pathloss" class="swine.models.propagation.PathlossExponentModel">
<exponent>4.6</exponent>
<d0 unit="m">1</d0>
<frequency unit="GHz">2.457</frequency>

</stage>

(b) Associated XML example file

Figure 6: An excerpt of the HLD file for Pathloss Exponent.

The Propagation step uses the positions provided by the
mobility step to compute the power of the radio signal
received by each node from every other node at every time
step of the experiment. Classical propagation models are
implemented, including Rayleigh and Rice fading as well as
Pathloss Exponent models. Three levels of propagation have
been investigated to be as close to reality as possible: large-
scale effects that are mainly based on the distance between
the sender and the receiver, medium-scale effects resulting
of the signal attenuation caused by obstacles between the
sender and the receiver, and finally-small scale effects which
are caused by the multiple paths that the radio signal takes
to reach its destination. By combining these three kinds of
effects, it is possible to model propagation in a somewhat
realistic way. However, the obtained realism cannot be better
than the realism of the combined models. As in the mobility
step, more complex and time-consuming models such as
ray tracing models [26] could be integrated to enhance the
realism of the emulation.

The Communication step uses the propagation infor-
mation to compute the QoS parameters on every link at
every time step of the experiment. These QoS parameters
form an emulation scenario that can be played by KauNet
(see Section 4.3.1). The Communication step computes the
maximum available bandwidth on a link with a time step
of typically 100 ms as well as KauNet loss patterns with a
granularity of 1 milisecond. Based on the IP information,
the Communication step is also in charge of partially
dealing with traffic based effects such as hidden or exposed
terminals, as further discussed in Section 4.2. In future
work, the communication step is planned to be extended
to more accurately take into account the ad hoc routing
by introducing some delays (caused by route error, route
discovery, and control messages) on each link according to
the routing protocol used.

On a technical standpoint, SWINE relies on two kinds of
objects: domain objects and model objects. Domain objects
represent the physical elements of the emulated network
(wireless nodes, access points, obstacles, etc.) as well as
the wireless links. Model objects represent the equations
used to compute the network conditions using domain
objects. These two kinds of objects are initialized with the

provided high-level description file and are then used by the
simulation core to fill a link matrix.

The Link Matrix, presented in the UML class diagram
in Figure 7, is the key structure in SWINE. In this matrix,
the wireless conditions are stored for every unidirectional
communications between two nodes at every time step
of the experiment. These conditions are composed of the
IP Level conditions such as the IP available throughput,
delays, and losses but also the propagation informations
such as the received signal strength on the receiver side,
the signal-to-noise ratio (SNR), the fading, shadowing, and
path loss effects. These conditions can also take into account
any communication conditions such as a potential hidden
terminal on the specified communication link.

To fill this link matrix, several models have been imple-
mented. Figure 8 depicts the model hierarchy that has been
used to provide conditions to emulate on the emulation
platform. From a generic Model class, four kinds of models
have been described. The Mobility model, Propagation model,
and the Communication model correspond to the three main
steps previously presented and work, respectively at the node
level, the link level, and the link matrix level.

In addition to these three main models a fourth one
is provided allowing, for example, the simultaneous com-
putation of link level informations and of informations
that are related to the whole matrix. Hidden terminals
[27] are a good example of such a use. In a hidden
terminal situation it is necessary to have a look at the full
matrix to find the potential three nodes where a hidden
terminal can occurs. For example, in Figure 9, the node
M2 is in the transmission range of nodes M1 and M3.
Nodes M1 and M3 are out of range of each other; they
cannot sense each other’s transmissions. They are said to
be mutually hidden. In this case, M3 can start sending
its packets to M2 while M2 is still receiving packets from
M1, which may lead to severe interferences and therefore
in losses at the IP level on links M1 → M2 and
M3 → M2. Both communication links have then to be
updated in the communication matrix so that the hidden
terminals situation is reproduced during the emulation
stage. This traffic-based behavior emulation is detailed in
Section 4.2.

EURASIP Journal on Wireless Communications and Networking 9

Link matrix

+ getLink (n1: node, n2: node): link

Link- List

0 · ·∗ 1 · ·∗
+ getConditions (instants: int): conditions

- Conditions list Conditions

Pathloss : double
rx power: double
Shadowing: double
Fading: double
SNR: double
Instant: double
IP throughput: double
Delay: double
PLR:double
Packet loss file: string
Hidden terminal name: string

tx power: double
Gain: double

Node

- Sender node 1 1 - Receiver node

Figure 7: An excerpt of class diagram focusing on the link matrix.

Generic model

+ Update (node: mobile node, instant: integer)
+ Update (link: Link, instant: integer)
+ Update (linkMatrix: LinkMatrix, instant: integer)

Mobility model

+ Update (node: mobile node, instant: integer)

Propagation model

Communication model

+ Update (linkMatrix: LinkMatrix, instant: integer)

+ Update (link: Link, instant: integer)

Cross stages model

+ Update (node: mobile node, instant: integer)
+ Update (link: Link, instant: integer)
+ Update (linkMatrix: LinkMatrix, instant: integer)

Figure 8: An excerpt of the class diagram focusing on models.

4.1.3. Adding New Models. As previously presented, SWINE
is an open architecture that mainly relies on model objects.
To insert new models in an easy way, the Java class loader
is used, allowing the end user to focus on his own model
and not on the simulator itself. Inheriting from a predefined
model object class, it is possible to write a new model
which will then be usable without any recompilation of
the simulator core. As there is a validation of the HLD
file provided by the end user before simulation, it is also
necessary to extend the provided HLD schema so that the
new model can be used.

4.2. Emulation of Traffic-Based Behaviors. In wireless net-
works, instantaneous network traffic has a direct impact
on the QoS at the IP level which is far more important
than in wired networks. For instance, in Ethernet networks
the bandwidth is shared without side effects among nodes
which means that if two competing nodes try to send

their packets at 10 Mb/s and 2 Mb/s on a 10 Mb/s Ethernet
link, the first node will only get around 8 Mb/s. IEEE
802.11 wireless networks do not behave on the same way.
In the 802.11 b infrastructure mode, [28] has shown that
the maximum available IP data throughput for one node
depends on the slowest emitting node. For instance, if
a node with a theoretical transmission rate of 11 Mb/s
(which corresponds to a maximum IP data throughput of
7.74 Mb/s) wants to emit at its maximum rate while another
node belonging to the same cell emits with a 2 Mb/s rate
(i.e., an IP data throughput of 1.4 Mb/s), it will be slowed
down until it observes an IP data throughput smaller than
1.4 Mb/s. This specificity is directly caused by the CSMA/CA
MAC protocol used in 802.11 networks. Other specificities
of wireless network are the potential hidden terminals
situations previously presented and exposed terminals. As
presented in Figure 9, exposed terminals situation occurs
when node M1 starts a communication with node M2
while there is a communication between M3 and M4.

10 EURASIP Journal on Wireless Communications and Networking

M1 M2 M3 M4

Figure 9: Hidden and exposed terminals situation.

As node M3 communicates with M4 and is in range of M2’s
communication, its communication will cause interferences
on M2 leading to packet losses at the IP level.

Due to the architecture of W-NINE, the emulation
process of these wireless network behaviors is split in
two stages. The SWINE simulation stage computes the
different network traffic possibilities and their impact on
wireless communications. SWINE looks for every potential
traffic occurrences and generates a specific choice in the
emulation scenario for each occurrence. According to the
3-step architecture, the complete network topology and
available communication links among nodes at each time
step are known after the mobility and the propagation
steps. During the communication step, SWINE computes
the IP parameters that will be reproduced at the emulation
stage. First, SWINE’s communication step uses the power
received computed by the propagation step to determine the
corresponding available IP maximum throughput. Second,
SWINE investigates the topology to search all potential
traffic-based problems. For example in Ad Hoc networks,
it looks for every group of at least two nodes that can be
hidden from each other. If no potential hidden terminal
situation occurs, an emulation scenario with a single choice
at each time step is produced. But, if there are potential
hidden terminals, SWINE produces an emulation scenario
with several choices at each time step. The first choice
represents the regular situation when no interference occurs,
and the other choices represent situations when at least
two hidden nodes try to send packets simultaneously to the
same node. These other choices are computed according to
the user-specified hidden terminals model in the high-level
description file (e.g., a 100% packet loss rate). All of these
choices provide a multibranch scenario framework.

During the emulation stage, it is then necessary to
observe in real time the network traffic on NINE and to
react according to the precomputed choice of the emulation
scenario which corresponds to the observed traffic behavior.
This mechanism of observation/reaction during an emula-
tion is detailed in Section 4.3.2.

4.3. NINE: Nine Is a Network Emulator. NINE is a fully
centralized network emulation platform composed of two
dedicated networks: the administration network and the
experimentation network. This distinction between net-
works ensures that the administration traffic does not

interact with the experimentation traffic and therefore does
not impact the experimentation results. On the adminis-
tration network, the emulation manager is in charge of
the configuration of the whole platform whereas the end
user nodes are on the experimentation network. The router
emulator is on both networks with one Ethernet network
interface on the administration network and several Ethernet
network interfaces on the experimentation network. The
router emulator is the platform core which means that all
packets exchanged during an emulation go through it. This
central node hosts the KauNet [22] traffic shaper, responsible
of the wireless conditions emulation during an experimenta-
tion according to emulation manager instructions.

KauNet addresses fine-grained aspects of dynamicity,
repeatability, and accuracy while the emulation manager
addresses the dynamicity issue on a larger time scale as well as
a part of repeatability with regards to the emulation scenario.
Those different aspects will be discussed later on.

Throughout the remainder of this section, all compo-
nents of NINE are presented: KauNet, the traffic observers
and the emulation manager.

4.3.1. KauNet. KauNet [22] is an extension of Dummynet,
developed by the Karlstad University, that provides the ability
to accurately place both packet losses and bit-errors at
specific locations in a data transfer to examine transport layer
protocol implementations and also application layer effects.
These loss positions are gathered in specific pattern files that
cover only a small period of the experimentation time. Each
pattern can be further reused thus ensuring repeatability for
the covered period. The losses and errors can be placed either
as a function of the amount of packet transferred (data-
driven mode) or as a function of time passing (time-driven
mode). These two modes are depicted on Figure 10.

When performing evaluation of implementation cor-
rectness it is important to be able to have a large degree
of repeatability to recreate experimental runs that produce
anomalous effects, so that these can be studied in greater
detail and then hopefully corrected. As mentioned earlier,
the placement of packet losses can have a large impact
on the behavior of both transport layer protocols and also
application behavior. While the basic protocol mechanisms
can be studied by injecting losses in a controlled way using a
simulator, this does not help to verify the behavior of actual
implementations. KauNet was developed to provide a tight

EURASIP Journal on Wireless Communications and Networking 11

IP packet IP packet IP packet IP packet IP packet

Time
t t + 1 t + 2

O1O1

(a) Data driven mode

IP packet IP packet IP packet IP packet IP packet IP packet IP packet

Time
t t + 1 t + 2 t + 3

O1O1

(b) Time driven mode

Figure 10: KauNet loss insertion.

control over the accurate placement of losses during a live
experiment involving real implementations and real traffic.
More technical details can be found in [22].

4.3.2. Traffic Observers. The traffic observer (TO) module has
been developed to observe in real time the network traffic
crossing the NINE experimentation network. The TO is a
C++ module hosted on the router-emulator, using a CORBA
connection to interact with the emulation manager during
the emulation stage. A traffic observer takes no decision;
its purpose is to inform the emulation manager when a
specific traffic condition occurs on a communication link.
Note that if several traffic conditions have to be investigated
(e.g., several hidden terminals situations), several TOs are
needed.

At the beginning of the experiment, TOs are config-
ured by the emulation manager to observe specific nodes.
Then, using feedback mechanisms, a TO sends information
relative to the observed traffic to the emulation manager
which selects the corresponding precomputed choice of the
multibranch emulation scenario at the current time step. For
example, if a TO has a couple of nodes under observation
in order to determine if they are hidden from each other
at time t, it observes the traffic emitted by both nodes and
informs the emulation manager when both traffic flows reach
the router-emulator during the same time step. The size of
this time step and the sets of nodes that must be observed
are set by the emulation manager at the beginning of the
experiment.

The decision process is centralized in the emulation
manager because it is the only node of the administration
network that has a complete view of the experiment and
of different scenarios. For an administration purpose, this
centralized solution is far simpler than distributing the
decision process between the emulation manager and TOs.

With this centralized solution, KauNet receives update
commands only from the emulation manager whereas in a
distributed solution a priority scheme between the emulation
manager and traffic observers should be set up. The overall
deployment process is presented in Figure 11.

A limitation of this solution is that the detection of
a situation by traffic observers and the reaction of the
emulation manager are not simultaneous. The emulation
manager sends KauNet update commands according to the
time granularity of the precomputed emulation scenario.
That means that in the worst case, KauNet reacts a full-time
step after the traffic observers’ detection.

4.3.3. Emulation Manager. The emulation manager is a
stand-alone Java application in charge of the emulator
configuration and of playing the precomputed emulation
scenario. The scenario is a natural way to repeat an
experiment as often as needed. During an experiment, the
emulation manager periodically sends update commands
to the emulator in order to make the emulated conditions
evolve dynamically.

During NINE configuration, the emulation manager
builds every communication link that might be used dur-
ing the experiment. Communication links are represented
by Dummynet pipes in the emulator. According to the
precomputed multibranch emulation scenario, the update
commands are periodically sent during an experiment by
the emulation manager through the administration network
to KauNet. These update commands lead to the evolu-
tion of communication links’ characteristics in terms of
bandwidth, delays, and losses over the whole experiment
duration. Between two update commands, KauNet is in
charge of reproducing the simulated wireless conditions, on
a finer time scale which improves accuracy and dynamic-
ity.

12 EURASIP Journal on Wireless Communications and Networking

Emulation manager

Manager

Client
1 1

Server

CORBA

UDP

Router-emulator

Traffic observer

KAUnet

1 0 · ·∗

1

Figure 11: W-NINE deployment diagram.

5

1

2

4

6

7

8

3

M1
F1

z

y x

Figure 12: A dynamic experiment.

5. Use Cases

In this section, we highlight with two examples the effec-
tiveness of the methodology and discuss about potential
enhancements. First, a simple example presents the KauNet
loss pattern generation with SWINE; in this example we
compare the emulation result with SWINE simulation results
and with the measurements made during a similar real
experiment. A second example presents the use of traffic
observers to deal in real time with traffic-based behaviors
during emulation.

5.1. A Simple Indoor Wireless Communications Experiment

5.1.1. Description of the Experiment. In the experiment
illustrated by Figure 12, a mobile user receives a multicast
UDP data flow while going through different areas of our
offices in Toulouse. At the beginning of the experiment, the
user starts close to a stationary sender (F1). Then, he follows
the path 1 → 2 → 3 → 4 → 3 → 5 → 6 → 5 → 7 → 8
with a speed of 1 m/s. At t = 0 the user starts its movement
from his office at position (1); then he enters the corridor
(2) and turns to the lecture room (3) which he reaches at t =
21.3(4); he leaves the lecture room and reaches the secretary’s
office (6) at t = 35.8; finally he leaves the secretary’s office to
go to the exit (8).

While the user is moving, the sender generates a multicast
UDP flow with 1472-byte long packets in CBR (constant bit
rate) mode. The CBR throughput is 4.19 Mb/s which is the
theoretical maximum throughput for a physical transmission
rate of 5.5 Mb/s in multicast mode. This 4.19 Mb/s through-
put was used so that packet losses can only result from the
emulation of wireless losses and not from buffer overflow on

the emulation node. Since multicast is used, the link layer will
not perform retransmissions.

5.1.2. Live Test Measures. A live test measurement campaign
has been performed in our labs, trying to reproduce as
close as possible the previous parameters, that is, the mobile
trajectory and CBR traffic. Results are depicted on Figure 13
with a granularity of 500 milliseconds.

It can be observed that the PLR increases as the distance
increases. This curve will be used as a basis of comparison to
evaluate the emulation results provided by W-NINE.

5.1.3. Modeling Packet Losses on a Wireless Link. A key
point in wireless networks emulation is the modeling of the
environment. We use a propagation model to compute the
evolution of the PLR over time. A number of propagation
models that match many different environments and radio
technologies [21] have been developed. We use a combina-
tion of a pathloss exponent model and a Rayleigh fading
model to provide a reasonably realistic model for an indoor
environment (i.e., such a model accounts for both large-
scale and small-scale variations of the radio signal). The
following experiment shows that a combination of mobility
and propagation models can be used to provide more realism
when emulating a mobile wireless LAN. Moderately complex
models are used here, but much more complex ones could be
used to further enhance realism without compromising real-
time constraints, since computations based on these models
are entirely done off-line before emulation time.

The radio signal propagation conditions are described
by a combination of pathloss exponent, shadowing, and
Rayleigh fading models. The parameters of the pathloss

EURASIP Journal on Wireless Communications and Networking 13

0

20

40

60

80

100

P
LR

(%
)

5

10

15

20

25

30

35

40

D
is

ta
n

ce
(m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

21.3 35.8

Waypoint passing time (s)

Measured PLR on F1 →M1
F1 →M1 distance

Figure 13: Live test PLR measure.

0

20

40

60

80

100

P
LR

(%
)

5

10

15

20

25

30

35

40

D
is

ta
n

ce
(m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

21.3 35.8

Waypoint passing time (s)

SWINE simulated PLR
F1 →M1 distance

Figure 14: Simulated losses with SWINE.

exponent model are n = 3.11, d0 = 1 m and PL(d0) =
37.28 dB. The shadowing model is configured with standard
deviation σ = 4.25 dB. Those parameters were estimated
using linear regression on the measures of received signal
strength (RSS) presented in Section 5.1.2.

5.1.4. Simulation Results. During the simulation stage,
SWINE computes the positions of M1 as well as the
propagation informations. this propagation informations is
used to generate small-sized 100 millisecond-long KauNet
packet loss patterns with a 1 millisecond granularity. As
the experiment is 60 seconds long, 600 KauNet packet loss
patterns have been generated. At emulation time, the
emulation manager updates the pattern to be played every
100 millisecond. All patterns are used in a data driven way so
that the same packet is lost from one run to another.

0

20

40

60

80

100

P
LR

(%
)

5

10

15

20

25

30

35

40

D
is

ta
n

ce
(m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

21.3 35.8

Waypoint passing time (s)

Measured PLR on F1 →M1
F1 →M1 distance

Figure 15: Measured losses on NINE.

Figure 14 shows the evolution of the PLR during the
experiment. The PLR curve is averaged with a 500 mil-
lisecond interval to improve readability. It can be observed
that the losses increase as the distance increase. The small
variations that can be observed on the PLR curve are due to
the fading model effects.

The results are obviously very different between simula-
tion (and therefore emulation) and real measurements. We
nevertheless consider that these differences should not be
considered as a problem: they simply show that the models
used during the simulation stage were not realistic enough.
The platform proposed here allows to reproduce with a
good fidelity the output of the simulation stage. Realistic
emulation therefore depends on the availability of realistic
propagation and mobility models as well as MAC and PHY
layer models. This topic is extensively discussed in [29].

In the example developed in this section, the propagation
model does not take into account the building materials,
nor even the number of walls between the sender and the
receiver. With such a model, the variations of the simulated
signal strength are pessimistic when there are no walls
and optimistic otherwise. The litterature proposes more
sophisticated models, like the Motley-Keenan model or the
COST 231 Multi-Wall Model which will be integrated to
the SWINE simulator in future work. On another level, the
mobility model used at simulation time supposes a constant
speed. The real trajectory of the walking operator during the
live tests was not captured, because we did not have accurate
indoors positioning tools, which also introduces differences
in the results.

5.1.5. Emulation Results. During the emulation stage, the
MGEN [30] traffic generator is used to send the desired CBR
traffic (4.19 Mb/s) and to collect the packets received by the
user. The TRPR tool is then used to generate the PLR curve
based on MGEN traces with a 500 millisecond granularity.

14 EURASIP Journal on Wireless Communications and Networking

3

2 1

Potential hidden terminals area M1

F1

F2

Figure 16: Example of hidden terminal experiment.

<date id="t8.4" start="8400" unit="ms">
<!-- no hidden terminal -->

<link_update hidden="0" hidden_id="F1-M1-F2">
<on_link id="F1 to M1" />
<bandwidth unit="b/s">6870000.0</bandwidth>
<plr unit="percent">0.0</plr>
<delay>0</delay>
<queue_size>8</queue_size>

</link_update>
<!-- hidden terminals situation: 100% PLR -->

<link_update hidden="1" hidden_id="F1-M1-F2">
<on_link id="F1 to M1" />
<bandwidth unit="b/s">6870000.0</bandwidth>
<plr unit="percent">100.0</plr>
<delay>0</delay>
<queue_size>8</queue_size>

</link_update>
...

</date>

Figure 17: Excerpt of the emulation scenario: two choices for hidden/not hidden traffic conditions.

As presented in Figure 15, losses increase with the
distance as expected. The PLR observed during emulation
is quite similar to the one observed during simulation but
shows stronger variations. These variations are due to the
packetization by MGEN, which cannot guarantee that the
exact same number of packets is sent during each 500
millisecond slot. In these conditions, we consider that the
measured PLR is consistent with the simulated one. The
performance of KauNet on its own is further examined in
Section 6.

5.2. Example of Traffic-Based Emulation. In this use case, we
will highlight the usefulness of traffic observers to detect a
hidden terminals situation and present the selection process
that is made by the emulation manager in order to apply the
corresponding emulation command.

5.2.1. A Classical Hidden Terminals Situation. In this exam-
ple, a mobile node M1 and two stationary nodes F1 and
F2 are used. As shown in Figure 16, M1 goes through the
corridor starting from position 1, located close to F1, and

stops at position 3 located at the end of the corridors with
a speed of 1.5 m/s. The chosen mobility model is simple in
order to make the emulation results more readable. F2 is
located between waypoints 2 and 3.

In this topology, nodes F1 and F2 are not within range of
each other and they are not aware of a potential transmission
from the other: this is a typical case where a hidden terminals
situation can occur. The propagation of the signal has also
to be considered in order to have a reasonably realistic
experiment. To deal with propagation a Rayleigh fading
model and a Pathloss Exponent model have been used.
The parameters of the pathloss exponent model are n =
5.68, d0 = 1 m and PL(d0) = 19.97 dB. They are slightly
different from the previous experiment because there is no
shadowing model explicitly used in this experiment. As in
the previous experiment, a multicast UDP flow with 1472-
byte long packets in CBR (constant bit rate) mode is used.

The hidden terminals model used during simulation to
generate the different choices in the emulation scenario is
an ON/OFF model. With this model, when two concurrent
signals are received at the same time by the same node, all
packets are lost for a time slot duration (100 millisecond).

EURASIP Journal on Wireless Communications and Networking 15

0

1000

2000

3000

4000

5000

6000

7000

T
h

ro
u

gh
pu

t
(K

b/
s)

0 5 10 15 20 25 30 35 40

Time (s)

F1 →M1 communication

(a) F1 to M1 throughput without hidden terminals

0

1000

2000

3000

4000

5000

6000

7000

T
h

ro
u

gh
pu

t
(K

b/
s)

0 5 10 15 20 25 30 35 40

Time (s)

F2 →M1 communication

(b) F2 to M1 throughput without hidden terminals

0

1000

2000

3000

4000

5000

6000

7000

T
h

ro
u

gh
pu

t
(K

b/
s)

0 5 10 15 20 25 30 35 40

Time (s)

F1 →M1 communication

(c) F1 to M1 throughput with hidden terminals

0

1000

2000

3000

4000

5000

6000

7000

T
h

ro
u

gh
pu

t
(K

b/
s)

0 5 10 15 20 25 30 35 40

Time (s)

F2 →M1 communication

(d) F2 to M1 throughput with hidden terminals

Figure 18: Two simulated possibilities of a hidden terminal scenario.

5.2.2. Simulation Results. The simulation stage generates sev-
eral choices in the emulation scenario for every potential hid-
den terminals situation. The generated scenario, presented
in Figure 17, details these different choices. The emulation
manager is aware that several emulation commands might
be sent at a specific moment for a specific communication
link and therefore that it has to check for traffic information
in order to choose the correct one. A TO called F1−M1−F2
is then configured to observe the traffic transmitted by nodes
F1 and F2 in order to detect their communication to M1.

As presented in Section 4.2, SWINE checks the wireless
network topology at every time step of the experiment in
order to find a topology with potential hidden terminals
and generates two choices when an occurrence of hidden
terminals is possible: at t = 8400 millisecond if the TO
detects only one sender, the hidden terminals situation does
not happen and so the first choice is applied (PLR = 0%);

if the TO detects several senders at the same time, then the
second choice is applied and all packets are lost (PLR =
100%). More precisely, this last choice means that if nodes F1
and F2 simultaneously send packets to the same node M1, all
of these packets are lost.

Figures 18(a) and 18(b) present the simulation results
in terms of IP throughput for communications F1 →
M1 and F2 → M1 when only one sender is active. For
F1 → M1, the maximum IP throughput gradually decreases
until the communication is lost at t = 26.2 seconds. The
communication F2 → M1 is possible only after t = 6.6 s
and the observed IP throughput increases progressively as the
node M1 is coming closer to F2.

Figures 18(c) and 18(d) present the other possible
conditions when both senders are active at the same time.
We can see that the node M1 no longer receives new packets
between t = 15 s and t = 20 s. More generally, both

16 EURASIP Journal on Wireless Communications and Networking

0

1000

2000

3000

4000

5000

6000

7000

T
h

ro
u

gh
pu

t
(K

b/
s)

0 5 10 15 20 25 30 35 40

Time (s)

F1 →M1 communication

(a) F1 to M1 measured throughput

0

1000

2000

3000

4000

5000

6000

7000

T
h

ro
u

gh
pu

t
(K

b/
s)

0 5 10 15 20 25 30 35 40

Time (s)

F2 →M1 communication

(b) F2 to M1 measured throughput

Figure 19: Emulation results with a hidden terminal occurrence.

communications are highly degraded with regards to the
previous possible conditions.

5.2.3. Emulation Results. To highlight the emulation results,
the communications from the senders are started at different
moments. Communication F1 → M1 starts at the beginning
of the experiment and stops at t = 20 s. The other
communication F2 → M1 begins at t = 5 s and stops at
the end of the experiment. With this pattern, the hidden
terminals situations can be encountered only after t = 5 s
and so the first choice (no hidden terminals) of the scenario
is applied at each time step before this time. After 5 s, the
TO running on the emulator detects concurrent traffics from
F1 and F2 on the experimentation network. It informs
the emulation manager of the detected hidden terminal
situation. The emulation manager then applies the 100%
PLR choice at each time step. At t = 20 s, as transmission
F1 → M1 stops, there are no more hidden terminals, so
the first choice of the scenario is applied to the transmission
F2 → M1 at each time step.

As presented in Figure 19, the obtained results are
consistent with our expectations. Until t = 5 s, the F1 →
M1 communication has no perturbation and the measured
throughput is the same as the simulated one. After t =
5 s, the decrease of the IP throughput is considerably larger
than for the simulation without hidden terminal. The
hidden terminals situation has been detected by the TO and
the emulation manager has applied the 100% loss choice
between t = 5 s and t = 20 s. After t = 20 s, the IP throughput
variations are smaller and are consistent with the simulation
of the communication F2 → M1 without hidden terminals.
The TO has detected that the communication F1 → M1 is
over and that the node F2 is the only remaining sender. With
this detection, the emulation manager has switched from a
hidden terminals situation to the regular one where there is
no interference.

6. Performance Evaluation

In this section, we measure how accurately KauNet loses
packets and we evaluate its performance from the CPU usage,
and memory footprint standpoints.

6.1. Setup. The evaluation of accuracy, CPU usage and
memory footprint were performed using the same setup. A
sender, a receiver, and a KauNet 1.0.0 box were connected
to a gigabit Ethernet switch. The three machines used were
simple IBM R50e laptops with 768 MB memory, 1.4 GHz
processor, and a gigabit Ethernet interface. The sender and
receiver run the Linux Ubuntu 8.04 OS, while the KauNet
box runs a FreeBSD 7 OS compiled with KauNet support.
The unique gigabit Ethernet interface of the KauNet box is
configured with two virtual interfaces, one connected to the
sender and the other one to the receiver.

6.2. Accuracy of Packet Losses in Time-Driven Mode. To
measure how accurately KauNet loses packets in the time-
driven mode, we have generated a number of loss patterns
and used the iperf [31] traffic generator to measure how
many packets were effectively lost by KauNet. The loss
patterns were manually generated with different packet loss
rates: 1%, 5%, 10%, 25%, 50%, 75% and 99%, and with
different durations: 100, 500, and 5000 ms. For each of these
24 packet loss patterns, iperf was used to transmit different
constant bitrate (CBR) traffics from the sender to the receiver
through the KauNet box, loaded with the pattern under
test in time-driven mode. The tested bitrates were 100 kbps,
1 Mbps, and 10 Mbps. For each bitrate, different packet sizes
were used: 64, 512, 1024, and 1472-byte long UDP PDUs.
Once the bitrate and the packet size were fixed, the sending
time is computed so that a significant number of packets goes
through KauNet. This significant number is set with a rule
of thumb stating that 100 packets are needed to test 100%
of the 1-milisecond timeslots for packet loss or no loss, and

EURASIP Journal on Wireless Communications and Networking 17

−100

−50
0

50

100

0 25 50 75 100

Abs. PLR (%)

25

0.1 Mb/s, 1472 bytes

A
bs

.e
rr

or
(%

)

−100
−50

0

50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

0.1 Mb/s, 1024 bytes

−100
−50

0
50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

0.1 Mb/s, 512 bytes

−100
−50

0
50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

0.1 Mb/s, 64 bytes

100 ms

500 ms
5000 ms

−100

−50
0

50

100

0 25 50 75 100

Abs. PLR (%)

25

1 Mb/s, 1472 bytes

A
bs

.e
rr

or
(%

)

−100
−50

0

50

100
A

bs
.e

rr
or

(%
)

0 25 50 75 100

Abs. PLR (%)

1 Mb/s, 1024 bytes

−100
−50

0
50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

1 Mb/s, 512 bytes

−100
−50

0
50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

1 Mb/s, 64 bytes

100 ms

500 ms
5000 ms

−100

−50
0

50

100

0 25 50 75 100

Abs. PLR (%)

25

10 Mb/s, 1472 bytes

A
bs

.e
rr

or
(%

)

−100
−50

0

50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

10 Mb/s, 1024 bytes

−100
−50

0
50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

10 Mb/s, 512 bytes

−100
−50

0
50

100

A
bs

.e
rr

or
(%

)

0 25 50 75 100

Abs. PLR (%)

10 Mb/s, 64 bytes

100 ms

500 ms
5000 ms

Figure 20: Absolute packet loss accuracy error.

that this must be done several times (here 30 times) to gain
statistical significance. Hence the sending time is set so that
at least 3000 packets are sent and there is traffic during the
whole longest 5-second pattern.

To sum up, there are 24 patterns to test, each with 12
different iperf CBR setups. For each pattern generated with
PLRg, iperf provides the observed packet loss rate PLRo and
we measure the absolute error accuracy Eabs = PLRg − PLRo.
A negative error indicates that there were more losses than
expected.

Figure 20 displays all the absolute accuracy error Eabs

results. Each subplot has fixed iperf traffic conditions and
contains three curves, one for each pattern duration; each
curve shows the absolute error Eabs observed as a function
of the corresponding PLRg .

The results are very good since in more than 90% of
the cases the absolute error is less than 5%. The only case
where the relative error gets very high is for the 10 Mbps
traffic made of tiny 64-byte packets: in that case, instead
of, for example, a 1% PLR we observe a 43% PLR, that
is, 43 times more or a 4300% relative error. Under these
traffic conditions however, even without any KauNet pattern
loaded, iperf observes an erroneous 6% PLR. This is due to
the hardware used, which is not powerful enough to correctly
manage the 13 packets seen during each millisecond. Future

works include running the same tests on a more powerful
KauNet box.

To get a more precise idea of the performance of KauNet
we also measured the relative accuracy errors Erel = (PLRg −
PLRo)/PLRg . Figure 21 displays all the corresponding results.

These results are good too: in most cases, the curves
are close to 0, which means a negligible relative error. For
small values of PLRg , relative errors of 5% or less are often
observed: these error are still acceptable. For instance, a 2%
relative error on a 5% PLR gives a 5.1% observed PLR.
These small differences are due to the fact that a packet
may not exactly fall into the appropriate loss timeslot. More
importantly, larger errors of typically 40% are often observed
for PLRg = 1%. This is currently under investigation.

6.3. CPU Usage and Memory Footprint. Running all the
above tests takes approximatively 6 hours, taking into
account systematic resynchronisation of the 3 machines,
pattern loading, and processes starts/stops. During these 6
hours, we measured the CPU and memory usage on the
KauNet box using the vmstat system command. The results
are illustrated by Figure 22. Most of the time, the CPU load
is lower than 5%. Periodic peaks observed correspond to
independent periodic tasks that we did not remove. The final

18 EURASIP Journal on Wireless Communications and Networking

−100

−50
0

50
100

0 25 50 75 100

Req. PLR (%)

0.1 Mb/s, 1472 bytes

R
el

.e
rr

or
(%

)

−100

−50
0

50

100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

0.1 Mb/s, 1024 bytes

−100

−50
0

50
100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

0.1 Mb/s, 512 bytes

−100
−50

0
50

100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

0.1 Mb/s, 64 bytes

100 ms

500 ms
5000 ms

−100

−50
0

50
100

0 25 50 75 100

Req. PLR (%)

1 Mb/s, 1472 bytes

R
el

.e
rr

or
(%

)

−100

−50
0

50

100
R

el
.e

rr
or

(%
)

0 25 50 75 100

Req. PLR (%)

1 Mb/s, 1024 bytes

−100

−50
0

50
100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

1 Mb/s, 512 bytes

−100
−50

0
50

100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

1 Mb/s, 64 bytes

100 ms

500 ms
5000 ms

−100

−50
0

50
100

0 25 50 75 100

Req. PLR (%)

10 Mb/s, 1472 bytes

R
el

.e
rr

or
(%

)

−100

−50
0

50

100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

10 Mb/s, 1024 bytes

−100

−50
0

50
100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

10 Mb/s, 512 bytes

−100
−50

0
50

100

R
el

.e
rr

or
(%

)

0 25 50 75 100

Req. PLR (%)

10 Mb/s, 64 bytes

100 ms

500 ms
5000 ms

Figure 21: Relative packet loss accuracy error.

0

20

40

60

80

100

C
P

U
lo

ad
(%

)

0

10

20

30

40

×104

Pa
ge

s
(K

by
te

s)

0 5000 10000 15000 20000 25000

Time (s)

vmstat output

CPU load
Free memory

Figure 22: CPU and memory usage.

CPU load peak corresponds to the experiments where iperf
generates a lot of packets and corresponds to the anomalies
described above. Here again, turning to a more powerful
KauNet machine can improve the results.

Figure 22 also shows that the amount of free memory
is rather stable and that the repeated loading of patterns
during the execution of the tests does not cause any large
fluctuations in the amount of allocated memory.

7. Conclusion

In this paper we have presented an emulation platform called
W-NINE that improves accuracy, dynamicity, and repeatabil-
ity of the emulated network conditions of a given experiment
in order to increase the realism of the experiment. For
this purpose, W-NINE is split in two stages. First is the
simulation stage based on SWINE, a wireless discrete event
simulator which does not need a traffic model to provide
results contrary to classical simulators like NS-2. The main
purpose of SWINE is not to provide results directly usable
by the experimenter but to generate an emulation scenario
describing the evolution of conditions (expressed in terms
of bandwidth, delays, and losses) in the network to emulate.
After the simulation stage is the emulation stage relying
on NINE, a fully centralized emulation platform composed
of three elements: the emulation manager in charge of the
management of the experiment, the KauNet traffic shaper in
charge of reproducing the emulated conditions according to
emulation commands sent by the emulation manager, and

EURASIP Journal on Wireless Communications and Networking 19

finally traffic observers that check the traffic going through
the central node in order to provide feedback to the emula-
tion manager when needed. This traffic observation has been
made in order to detect any traffic-related conditions such as
hidden terminals for ad hoc networks.

The usability of W-NINE has then been highlighted
with two simple case studies: accurate reproduction of
simulated conditions over time (case study #1) and traffic-
based handling of hidden terminals situations (case study
#2). The W-NINE approach allows the designer to test real
protocols, applications, and traffic in a real-time environ-
ment without sacrificing model accuracy. This provides a
unique opportunity to test “black-box” applications and/or
protocols under both realistic conditions and limit condi-
tions. Such black-box implementations are at least hard or
even impossible (e.g., for copyright reasons) to model using
classical simulation platforms.

In future work we plan to integrate the traffic shaping
part and the traffic observers in a single module. For this
purpose, we work on a new emulator based on finite state
machines. With this solution, the medium access protocol
can be modeled in a more accurate way.

References

[1] P. Hurtig, J. Garcia, and A. Brunstrom, “Loss recovery in
short TCP/SCTP flows,” Karlstad University Studies 2006:71,
Karlstad University, Karlstad, Sweden, 2006.

[2] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,” Computer Communication Review, vol. 27,
no. 1, pp. 31–41, 1997.

[3] D. Raychaudhuri, I. Seskar, M. Ott, et al., “Overview of the
ORBIT radio grid testbed for evaluation of next-generation
wireless network protocols,” in Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC ’05), vol.
3, pp. 1664–1669, IEEE, New Orleans, La, USA, 2005.

[4] S. Ganu, H. Kremo, R. E. Howard, and I. Seskar, “Addressing
repeatability in wireless experiments using ORBIT testbed,”
in Proceedings of the 1st International Conference on Testbeds
and Research Infrastructures for the Development of Networks
and Communities (Tridentcom ’05), pp. 153–160, IEEE, Trento,
Italy, 2005.

[5] J. Flynn, H. Tewari, and D. O’Mahony, “JEmu: a real time
emulation system for mobile ad hoc networks,” in Proceedings
of the 1st Joint IEI/IEE Symposium on Telecommunications
Systems Research, Dublin, Ireland, 2001.

[6] D. B. Johnson, D. A. Maltz, and J. Broch, “The dynamic source
routing protocol (dsr) for mobile ad hoc networks for ipv4,”
Internet Request for Comments RFC 4728, IETF, 2007.

[7] P. Zheng and L. M. Ni, “EMWIN: emulating a mobile wireless
network using a wired network,” in Proceedings of the 5th
ACM International Workshop on Wireless Mobile Multimedia
(WoWMoM ’02), pp. 64–71, ACM, Atlanta, Ga, USA, 2002.

[8] M. Carson and D. Santay, “NIST net: a linux-based network
emulation tool,” Computer Communication Review, vol. 33,
no. 3, pp. 111–126, 2003.

[9] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and
K. Raatikainen, “Seawind: a wireless network emulator,” in
Proceedings of the 11th GI/ITG Conference on Measuring,
Modelling and Evaluation of Computer and Communication
Systems (MMB ’01), pp. 151–166, VDE, Aachen, Germany,
2001.

[10] B. White, J. Lepreau, L. Stoller, et al., “An integrated experi-
mental environment for distributed systems and networks,” in
Proceedings of 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02), pp. 255–270, ACM Press, Boston,
Mass, USA, 2002.

[11] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H.
Katz, “Trace-based mobile network emulation,” Computer
Communication Review, vol. 27, no. 4, pp. 51–61, 1997.

[12] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat,
“MobiNet: a scalable emulation infrastructure for ad-hoc and
wireless,” Tech. Rep., UCSD, San Diego, Calif, USA, 2004.

[13] A. Vahdat, K. Yocum, K. Walsh, et al., “Scalability and accuracy
in a large-scale network emulator,” in Proceedings of 5th
Symposium on Operating Systems Design and Implementation
(OSDI ’02), pp. 271–284, ACM, Boston, Mass, USA, 2002.

[14] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad hoc on
demand distance vector (AODV) routing,” Internet Request
for Comments RFC 3561, IETF, 2002.

[15] T. Clausen and P. Jacquet, “Optimized link state routing
protocol (OLSR),” Internet Request for Comments RFC 3626,
IETF, 2003.

[16] Q. Ke, D. Maltz, and D. Johnson, “Emulation of multi-hop
wireless ad hoc networks,” in Proceedings of the 7th Inter-
national Workshop on Mobile Multimedia Communications
(MoMuC ’00), Tokyo, Japan, 2000.

[17] S.-Y. Wang and Y.-B. Lin, “NCTUns network simulation
and emulation for wireless resource management,” Wireless
Communications andMobile Computing, vol. 5, no. 8, pp. 899–
916, 2005.

[18] D. Mahrenholz and S. Ivanov, “Real-time network emulation
with ns-2,” in Proceedings of the 8th IEEE International Sym-
posium on Distributed Simulation and Real Time Applications
(DS-RT ’04), pp. 29–36, Budapest, Hungary, 2004.

[19] M. Musolesi, S. Hailes, and C. Mascolo, “An ad hoc mobility
model founded on social network theory,” in Proceedings of
the 7th International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’04), pp.
20–24, ACM, Venice, Italy, 2004.

[20] J. Lacan and T. Pérennou, “Evaluation of error control
mechanisms for 802.11b multicast transmissions,” in Proceed-
ings of the 2nd International Workshop on Wireless Network
Measurement (WINMee ’06), IEEE, Boston, Mass, USA, 2006.

[21] T. Rappaport, Wireless Communications Principles and Prac-
tice, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition,
2002.

[22] J. Garcia, E. Conchon, T. Pérennou, and A. Brunstrom,
“KauNet: improving reproducibility for wireless and mobile
research,” in Proceedings of the 1st International Workshop on
System Evaluation for Mobile Platforms (MobiEval ’07), pp. 21–
26, San Juan, Puerto Rico, USA, 2007.

[23] T. Pérennou, E. Conchon, L. Dairaine, and M. Diaz, “Two-
stage wireless network emulation,” in Proceedings of the
Workshop on Challenges of Mobility Jointly with the 18th IFIP
World Computer Congress (WCM ’04), pp. 181–190, Toulouse,
France, 2004.

[24] E. Conchon, T. Pérennou, and M. Diaz, “Feedback based
solutions to emulate hidden terminals in wireless networks,”
in Proceedings of the International Conference on Software,
Telecommunications and Computer Networks (SoftCOM ’05),
Split, Croatia, 2005.

[25] J. Clark, J. Cowan, and M. Murata, “RELAX NG Compact
Syntax Tutorial,” 2003, http://www.relaxng.org/.

20 EURASIP Journal on Wireless Communications and Networking

[26] A. Schoonen, “Designing wireless indoor radio systems with
ray tracing simulators,” Tech. Rep., Eindhoven University of
Technology, December 2003.

[27] F. A. Tobagi and L. Kleinrock, “Packet switching in radio
channels—part II: the hidden terminal problem in carrier
sense multiple-access modes and the busy-tone solution,”
IEEE Transactions on Communications, vol. 23, no. 12, pp.
1417–1433, 1975.

[28] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda,
“Performance anomaly of 802.11b,” in Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’03), vol. 2, pp. 836–
843, San Francisco, Calif, USA, 2003.

[29] E. Ben Hamida, G. Chelius, and J. Gorce, “On the complexity
of an accurate and precise performance evaluation of wireless
networks using simulations,” in Proceedings of the 11th Inter-
national Symposium on Modeling, Analysis and Simulation of
Wireless andMobile Systems (MSWiM ’08), pp. 395–402, ACM,
Vancouver, British Columbia, Canada, 2008.

[30] NRL/PROTEAN, “MGEN: The Multi-Generator Toolset,”
http://cs.itd.nrl.navy.mil/work/mgen/index.php.

[31] NLANR/DAST, “IPERF Project,” http://sourceforge.net/pro-
jects/iperf/.

	1. Introduction
	2. Related Work
	3. Problem Statement
	4.W-NINE Architecture
	5. Use Cases
	6. Performance Evaluation
	7. Conclusion
	References

