
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 107946, 19 pages
doi:10.1155/2010/107946

Research Article

Simulating Real-Time Aspects ofWireless Sensor Networks

Paolo Pagano,1 Mangesh Chitnis,1 Giuseppe Lipari,1 Christian Nastasi,1 and Yao Liang2

1 Real-Time Systems Laboratory (RETIS Lab), Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
2 Department of Computer and Information Science, Indiana University-Purdue University Indianapolis,
723 W. Michigan Street SL 280, Indianapolis, IN 46202-5132, USA

Correspondence should be addressed to Paolo Pagano, p.pagano@sssup.it

Received 10 June 2009; Accepted 10 November 2009

Academic Editor: Arnd-Ragnar Rhiemeier

Copyright © 2010 Paolo Pagano et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless Sensor Networks (WSNs) technology has been mainly used in the applications with low-frequency sampling and little
computational complexity. Recently, new classes of WSN-based applications with different characteristics are being considered,
including process control, industrial automation and visual surveillance. Such new applications usually involve relatively heavy
computations and also present real-time requirements as bounded end-to- end delay and guaranteed Quality of Service. It
becomes then necessary to employ proper resource management policies, not only for communication resources but also jointly
for computing resources, in the design and development of such WSN-based applications. In this context, simulation can play a
critical role, together with analytical models, for validating a system design against the parameters of Quality of Service demanded
for. In this paper, we present RTNS, a publicly available free simulation tool which includes Operating System aspects in wireless
distributed applications. RTNS extends the well-known NS-2 simulator with models of the CPU, the Real-Time Operating System
and the application tasks, to take into account delays due to the computation in addition to the communication. We demonstrate
the benefits of RTNS by presenting our simulation study for a complex WSN-based multi-view vision system for real-time event
detection.

1. Introduction

Wireless Sensor Networks (WSNs) were initially proposed
in domains where ordinary networks (not necessarily wired)
are not convenient, either because of the missing infrastruc-
tures, or when numerous nodes (in the order of hundreds)
are needed to achieve the assigned task. Examples of such
domains are military applications (like quickly monitoring
a large un-known area) and environmental monitoring.

The main stream of the research on these early WSN
systems has focused on MAC and routing protocol opti-
mization to minimize the communication delay and the
energy consumption to improve on the lifetime of the devices
between battery replacements. In fact, in these systems
energy consumption is generally dominated by communi-
cation tasks. On the other hand, research topics related to
computing resource management and CPU scheduling have
been marginally discussed, as these systems do not present
tight real-time requirements and the computational load

is usually negligible compared with typical communication
delays.

Today, “second generation WSNs” are being considered
for industrial automation (e.g., process control in assembly
areas), multimedia (e.g., telemedicine, intrusion detection
systems), health care (e.g., emergency protocols, disaster
response, and stroke patient rehabilitation), and so forth. As
these new WSN-based applications usually involve relatively
heavier computations, they can be characterized as WSN-
based distributed computing systems and take the advantage
of the fact that richer devices embedding 16 and 32-bits
CPUs and larger sets of programmable and dynamic mem-
ories to support more complex applications are available
today on the market. Some notable on-going projects in this
category are listed below:

(i) SENSE [1]—Smart Embedded Network of Sensing
Entities;

(ii) CoBIs [2]—Collaborative Business Items;

2 EURASIP Journal on Wireless Communications and Networking

Sampling
τ1

C1 = 1

4 8

Actuation
τ2

C2 = 3

0 6 12
Deadline miss

Networking Cn = 3

0 2 4 6 8 10 12

Response time

Figure 1: Activities, like sampling and actuation, are triggered
periodically and executed within bounded delays. An event-
triggered activity may delay them causing a system malfunction.

(iii) WINSOC [3]—Wireless Sensor Network with Self-
Organization Capabilities for critical and emergency
applications;

(iv) SCIER [4]—A technological simulation platform to
managing natural hazards;

(v) SensAction-AAL [5]—SENSing and ACTION to sup-
port mobility in Ambient Assisted Living.

The profile of these WSN-based distributed systems
is substantially different from those in other domains of
WSNs: in addition to requirements for increased robustness
and fault tolerance, each node is expected to perform a
substantial amount of computation such that related to data
filtering, actuation, diagnostic, logging, communication,
and so forth. In practice, the computational load on each
node (in terms of amount of processing time needed by
the application tasks) may become relevant. In addition,
such applications exhibit real-time constraints: late sensor
messages may not be considered acceptable. Many activities,
like sampling and actuation, must be triggered periodically
and executed within bounded delays, otherwise the system
may not work properly (see Figure 1). Typically, a robust
Real-Time Operating System (RTOS) providing customiz-
able scheduling policies (for multitasking operation) and
reliable services, ranging from networking to peripheral
management, is needed in such applications.

While an off-line schedulability analysis should be
performed to guarantee that all timing constraints will be
respected and that the system will work properly even under
worst-case load conditions, simulation plays a crucial role in
this regard, especially for large and complex systems with
hundreds or thousands of nodes, where off-line analysis
might be impractical. In addition, simulation can help to
assess the behavior of the system under average-case condi-
tions.

One unique feature is that in these new WSN systems,
it is not always possible to separately assess the behavior of
the application messages sent over the network, and of the
application tasks scheduled by the RTOS at individual sensor
nodes. In other words, both the communication aspect and
the computing aspect of such a WSN system usually are
tightly coupled. In most cases, the behavior of the network

can have a strong impact on the tasks, and vice versa. To the
best of our knowledge, there are very few simulation tools
that can support a joint modeling of the node (including
the Operating System mechanisms) and of the network. An
example is given in [6] although especially customized to
model control applications.

The IEEE 802.15.4 [7] standard specifying the physical
layer and media access control for low-rate Wireless Personal
Area Networks (LR-WPANs) seems to fit the requirements of
this “second generation WSNs” concerning inter-node R/F
communication.

Thus, it is desirable to have a general simulation software
package that can jointly simulate the network protocols
(e.g., supporting the IEEE 802.15.4 standard) and the RTOS
scheduling mechanisms, permitting an early performance
assessment and a rapid prototyping of distributed sensor
systems [8].

1.1. Contribution of This Work. Aimed to address this new
challenge, we have proposed and developed a simulation tool
called as Real Time Network Simulator (RTNS) which allows
WSN designers to jointly explore the two dimensional design
space with respect to computation and communication. This
paper systematically presents our work on the RTNS [9–
11]. The RTNS is a simulation suite to model operating
system mechanisms for distributed networked applications,
built by integrating the popular NS-2 (Network Simulator
[12]) and RTSim (Real-Time operating system SIMulator
[13]) packages. This tool facilitates designers to work in
the two dimensions of communication (packet priority)
and computation (task priority) in a systematic manner
to achieve a more accurate and realistic WSN system’s
performance evaluation.

In particular, we demonstrate the benefits of the RTNS by
presenting a complex WSN-based multi-view vision system
for event detection in real time [14–16]. This application
concentrates on WSN imaging applications where the effi-
ciency and reliability of the information depends on the real-
time support provided by both the kernel and the network
stack. Thus a Multi-View Vision application suffers delays
and jitters not only due to wireless communication related
phenomena but also due to the way the software tasks are
scheduled on each sensor node. This WSN-based multi-
view vision problem is used as a vehicle to illustrate how
the interplays between node computations and network
communications can have a significant impact on system
performance, and how the better design can be achieved with
the help of simulation using the RTNS.

The rest of the paper is organized as follows. Section 2
overviews the state of art in simulation tools. Section 3
presents the architecture of the RTNS. Section 4 details the
multihop solution in the RTNS. In Section 5, the RTNS’
software performance is discussed in general. In Section 6,
modeling WSN in the RTNS is described in detail. Section 7
presents a challenging multi-view vision problem based
on WSN, which is used as a vehicle to demonstrate the
advantages of the RTNS in the following two sections. Finally,
Section 10 gives conclusions and our future work.

EURASIP Journal on Wireless Communications and Networking 3

2. State of the Art

In discrete event simulation, the operation of a system is
represented as a chronological sequence of events. Each event
occurs at an instant in time and marks a change of state in the
system.

Discrete event simulators are usually implemented mak-
ing use of a re-sizeable event queue where to post and
pop events for appropriate processing. For instance, time-
triggered activities regularly post expiration events into the
queue to produce a periodic sequence of actions. The queue
is reordered at every post to always keep the closest event
in front; the physical notion of time is discretized and
incrementally elapses by the interval between the two latest
expiration events at every pop.

The type of simulation we are concerned with is discrete
and event-driven. We are interested in simulating distributed
systems, with particular concern on MANETs (Mobile Ad-
hoc Networks) and WSN (Wireless Sensor Networks).

In what follows we briefly report the main features
of the most popular simulators available for the scientific
community and designed to reliably simulate MANETs and
WSNs; for a complete survey see [17].

OPNET (Optimized Network Engineering Tools) [18]
is a commercial tool from OPNET Technologies Inc. for
modeling and simulation of communications networks,
devices, and protocols. Although OPNET is rather intended
for companies to diagnose or reorganize their network, it
is possible to implement customized protocols by reusing
existing components.

Global Mobile Information Systems Simulation Library
(GloMoSim) [19] is a scalable simulation library designed
at UCLA Computing Laboratory to support studies of large-
scale purely wireless network models. GloMoSim is a library
for the C-based parallel discrete-event simulation language
PARSEC (Parallel Simulation Environment for Complex
Systems) [20]. One of the important distinguishing features
of PARSEC is its ability to execute a discrete-event simulation
model using several different asynchronous parallel simula-
tion protocols on a variety of parallel architectures. However,
the documentation shipped with GloMoSim is quite poor as
well as the set of standard tools for scenario generation and
post-simulation accessories.

QualNet [21] is a commercial product from Scalable
Network Technologies (which is derived from GloMoSim)
trying to alleviate most of the GloMoSim’s flaws, coming
with an extensive suite of faithful implementations of models
and protocols for both wired and wireless networks as well as
extensive documentation and technical support.

New platforms written modularly and using object
oriented techniques are OMNeT++ [22] (written in C++)
and J-Sim [23] (written in Java). Both have strong GUI
support and flexible architecture and are rapidly becoming
popular simulation platforms in the scientific community as
well as in industrial settings.

In the world of control systems, TrueTime [6] is a pop-
ular Matlab/Simulink-based simulator; it facilitates co-
simulation of controller task execution in real-time kernels,
network transmissions, and continuous plant dynamics.

The tool shares some of the issues addressed by RTNS but
it is featured for control systems and has a naive model of the
network.

A different role is played by the TOSSIM simulator,
coming along with the TinyOS [24] operating system. It
compiles directly from TinyOS code using a special target
in the Makefile. The simulation runs natively on a desktop
or laptop. The simulator is capable to simulate thousands
of nodes simultaneously. Every mote in a simulation runs
the same TinyOS image. TOSSIM provides run-time con-
figurable debugging output, allowing a user to examine
the execution of an application from different perspectives
without needing to recompile. TinyViz is a Java-based GUI
that allows the user to visualize and control the simulation as
it runs, inspecting debug messages, radio and UART packets,
and so forth. The simulation provides several mechanisms
for interacting with the network; packet traffic can be
monitored and packets can be statically or dynamically
injected into the network. The transmission is simulated at
the bit level.

The TOSSIM and TinyViz simulation capabilities are
anyhow constrained to TinyOS based applications (protocols
and modules already implemented in TinyOS); moreover
they can be seen more as debuggers or emulators, rather than
simulators.

The validity of these packages as well as of others not even
mentioned in this paper is doubtless; anyhow a share ranging
from 40% to 70% [25] (depending on the network layer) of
the existing simulations in the world are run through the NS-
2 package which plays the role of a “de facto” standard. The
back-end (i.e., the skeleton classes) of the package is written
in C++, whereas the OTcl scripting language plays the role
of front-end to ease the generation of network scenarios and
activities. The transmission is simulated at the packet level
and the propagation models are built in the package.

Popular simulators like OPNET, NS-2, and TrueTime
support most of the features of the IEEE 802.15.4 standard
for WPANs especially those related to the MAC layer
mechanisms for network formation and management and
contention-based transmissions (via the CSMA/CA schedul-
ing algorithm). The support for Guaranteed Time Slots
(GTSs) is absent in TrueTime whereas is provided by external
contributions to OPNET [26] and NS-2 (through RTNS).

The authors of [26] motivates the selection of OPNET
criticizing the (not native) support of NS-2 for wireless
communications. Actually numerical comparisons of the
two packages in consistent conditions are rare in literature.
Those who tried to perform this comparative analysis
sometimes ruled out both of them [27]. Recently [28],
many arguments supporting the wireless model of NS-2 have
been proposed justifying the unreliable results (sometimes
obtained in simulation runs) as driven by a bad setting
in some parameters of the wireless modules. The authors
show that tuning these parameters permits a strict adherence
between real world and simulated data.

Furthermore the remarkable strict adherence to the IEEE
802.15.4 standard of the NS-2 WPAN module [29] and
the long debugging stage (from the release 2.26 to 2.31)
which has patched the module to fix imprecise behaviors

4 EURASIP Journal on Wireless Communications and Networking

A real-time system is a hardware/software suite that must
perform a set of actions within a certain time interval;

• In a real-time Operating System (RTOS) a set of
activities (tasks) are released periodically and must
be generally completed within their deadlines;
• Stimuli coming from the environment usually trigger

aperiodic activities which must be processed concurrently
with the periodic tasks;
• The way the RTOS manages the concurrent programming

is called scheduling policy and might be based on priorities
assigned to each of the activities;
• The criticality of the application determines how

flexible a real-time system can operate with respect
to the assigned deadlines.

Criticality

QoS management High performance Safety critical

Soft Firm Hard

Timing constraints

Courtesy of prof. Giorgio Buttazzo

Figure 2: Some concepts related to Real-Time.

Table 1: Comparison among simulation packages. N=Native, A=
Absent, EC = External Contribution.

Kernel 802.15.4 802.15.4

imitation CSMA/CA GTS

TrueTime N N A

NS-2 (RTNS) EC N EC

Opnet A N EC

(see, e.g., Chapter “Changes made to the IEEE 802.15.4
Implementation in NS-2.31” in the reference manual [30])
legitimate the use of NS-2 as simulator in the WSN context.

In the Operating System area, there is not such a widely
used simulation package as NS-2. Rather, it looks like every
research group uses its own simulator. Many operating
systems simulators are available for didactic purposes. Here,
we cite MOSS (Modern Operating Systems Simulators)
[31], a collection of Java-based simulation programs that
is used to illustrate key concepts of operating systems in
university courses. Generally, such packages are difficult to
re-use in different contexts. In particular, MOSS does not
support real-time scheduling policies and interaction with
the network.

RTSim [13] is a software package written in C++ for
the simulation of real-time operating systems, available as
open source [32]. It includes support for many real-time
scheduling policies and typical real-time task models (i.e.,
periodic and event-driven tasks, and interrupt handlers). In
this paper, we propose to combine RTSim with NS-2 for the
simulation of real-time distributed systems.

The imitation of kernel mechanisms is natively included
in TrueTime (by means of a Kernel block), added by COTS
to NS-2 (using the RTNS extension) and totally absent in
OPNET. In Table 1 a simple comparison of the simulators
shows that RTNS represents the only software solution (yet
the only open source), to the best of authors knowledge,
for modeling distributed WSN applications with real-time
constraints acting both at node and network levels.

5 5 11 51

0 1 3 3 5 11 51

RTSim queue

NS-2 queue

NS-2 events
RTSim events

Co-simulator engine

Empty Empty Empty

Figure 3: Synchronization of the NS-2 and RTSim schedulers.
In the RTSim scheduler there are events at time 5,11,15; the co-
simulator engine pushes into the NS-2 scheduler “synchro” events
at these time instants to process all corresponding RTSim events at
appropriate NS-2 time.

3. RTNS Architecture

In designing our simulator, we decided to reuse existing
simulation tools as much as it is possible. We chose [9]
the well-known NS-2 simulator for modeling networking
protocols and messages, and the RTSim simulator for
modeling the RTOS and application tasks (see Figure 2).
By reusing existing open-source code, we take advantage
of existing contributions of two research communities.
Moreover, we can rapidly include future enhancements into
our framework. In this section we sketch the structure of
both simulation engines and we present the technique we
used for the integration.

Both NS-2 and RTSim are discrete event simulators, thus
they use their own queues to ensure a chronological sequence
of events. We decided to keep the NS-2 event scheduler as the
main engine, and make the RTSim engine as its sub-engine.

EURASIP Journal on Wireless Communications and Networking 5

$ns node-config\
- adhocRouting AODV \
- llType LL\
- ifqType Queue/DropTail/PriQueue \
- ifqLen 50 \
- macType Mac/802 15 4 \
- phyType Phy/WirelessPhy/802 15 4 \
- antType Antenna/OmniAntenna \
- channel [new Channel/WirelessChannel]\
- propType Propagation/TwoRayGround
set station [$ns node]

Network

Link layer

Interface queue

MAC
Physical

Channel
access

Radio
propagation

model

Figure 4: An example for the configuration of a wireless sensor node compliant to the IEEE 802.15.4 standard. The parameters of the NS-2
API (in TCL scripting language) follow the color scheme of the figure on the right: in Orange the Radio Propagation Model, Channel, and
Antenna specifications, in Blue the Physical layer, in Green the MAC layer, in Purple the ifQ type and dimensioning, in Red the Routing
protocol.

We defined a special event in NS-2 called the “synchro” event,
that takes care of processing all events of RTSim that happen
at a single point in time as shown in Figure 3.

This design solution

(i) allows to consume time for the “intra-node” activities
not related to the network stack operations and
ignored by the standalone NS-2 package,

(ii) makes RTNS be seen by the end users as an extension
of the NS-2 platform, allowing full compatibility with
existing functionalities.

ROOT [33] is a framework for data processing, born at
CERN, organized in a collection of C++ classes permitting
to save, access, and process data for off-line analysis.

From the code perspective RTNS is obtained linking
together NS-2, RTSim, and ROOT at configure time. The
data produced on the fly in the simulation are organized in a
Tree structure (eased by the on-line availability of the ROOT
classes) and saved on disk during the RTNS simulation
runs. This structure is then accessed off-line by means of an
analysis toolkit for post-processing.

In Figure 4, an example for the usage of the NS-2 API
to configure a wireless sensor node is shown, remarking
the correspondance with the ISO/OSI model of the network
stack.

To enrich the simulation with all the mechanisms
induced by the OS, in RTNS the node is equipped by a
scheduler that, following a (real-time) policy, interleaves the
tasks related to computation (“intranode” activities) with
those related to networking (“extranode” activities).

NS-2 front-end (the TCL scripting) has been extended by
providing a set of APIs permitting to set the CPU clock, the
number of running tasks, and the utilization factor; the tasks
execute a customizable instruction set reserving the CPU for
a fixed or random (statistically distributed) number of clock
ticks.

In NS-2, protocols are implemented as Agents: any class
that implements a protocol has to extend the Agent class.
Instances of an agent class are the endpoints of wired and
wireless connections. They are identified by INET address
and port and are the lowest layer able to pack and inject
messages into the network. Application code is modeled by

the Application class. Applications use agents to send and
receive messages.

To simulate the behavior of the Operating System run-
ning on a node we construct an NS-2 Application called RT-
App abstracting all the features of a Real-Time Kernel (see
Figure 5). Statically, through the TCL front-end, a certain
number of tasks are instantiated on the node RAM memory.
These tasks can assume a certain semantics (i.e., modeling
definite activities of the wireless node like the services offered
by the network stack, notably “Send” and “Receive”) or
blindly consume CPU time (i.e., dummy tasks). RT-App
makes use of RT-Agent to inject and retrieve packets to and
from the network.

The Operating System puts the tasks into the “running”
state following the adopted scheduling policy selected along
with the kernel.

The examples discussed in the remaining part of the
present and in the forthcoming sections will naively make
use of the native NS-2 support for the IEEE 802.15.4
protocol suite. A detailed discussion on the protocol and its
implementation in the NS-2 and RTNS simulators will be the
subject of Section 6.

3.1. Effect of CPU Load in Transmission End-to-End Delay. In
a distributed real-time networked application, the messages
exchanged by wireless nodes are in general valid within a
certain time window because a late transmission may share
wrong readings and a late elaboration may trigger reactions
out of time.

RTNS keeps trace of the time overhead spent at each layer
of the network stack. For instance in case of periodic single
hop transmissions (like CBR traffic), messages are regularly
delivered to the Physical layer of the sink node.

To show the impact of the scheduling policy, suppose the
sink node is running a task τ as a periodic activity (e.g., like
Sampling), and another task wrapping the receive function of
the network stack. The arrival of a data frame at the Physical
layer activates the receive, but the task goes to the running
state whenever τ finishes thus delaying the reading of the
packet (see Figure 6).

Having set the CBR interval to 70 ms (slightly more than
75 ms, period of the load task), the packet arrival intersects

6 EURASIP Journal on Wireless Communications and Networking

Node

Port
classifier

Addr
classifier

Node entry

entry

classifier

dmux
Networking

tasks
Computational

tasks

RT-Agent

RTSIM

RTApp

Scheduler

set rtsim [new RTSimInit]
$rtsim resolution [expr 125E-09]
set agt [new Agent/UDP/RTAgent]
$ns attach-agent station agt
set app [new Application/Traffic/CBR/RTApp FCFS]
$app attach-agent agt
$app createLoadTask 0.2 10 50 10

Figure 5: An example for setting up a 8 MHz CPU running an OS with FCFS scheduling policy and a task set generating a computational
load of 0.2. The parameters of the RTNS API (in TCL scripting language) follow the color scheme of the figure on the left: in Green the
RTSim scheduler instance accustomed for the CPU speed, in Purple the NS-2 networking protocol, in Blue the OS abstraction with the
scheduler in Red , in Orange the Task Set generating the load.

Sampling
τ

C1 = 1

Delay

Receive

0 2 4 6 8 10 12

Figure 6: Concurrent activities in the recipient node.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
im

e
de

la
y

(s
)

0 5 10 15 20

Message ID

Figure 7: The saw-teeth-like pattern generated by the FCFS
scheduling policy adopted for the sink kernel. The plot refers to UF
= 0.8.

the load task later and later thus being delayed less and less. In
Figure 7, adopting a non-preemptive scheduling policy, the
packet reception delay is plotted against a progressive id.

If the data packets are valid say for 50 ms, as it
may happen for object localization purposes, video frame
transmissions and so on, RTNS shows how this setup
is not conform with the QoS the network must respect;

the designer is aware that the computational profile assigned
to the sink is incompatible with the role it has in networking.

The mapping of functionalities into tasks can eventually
be re-evaluated to look for a solution improving on the QoS.

4. Multihop Solution

As explained in the previous section the NS-2 RT-App class
is in charge of abstracting the operations performed by the
Operating System. The NS-2 RT-App class introduces delays
in the packet transmission by scheduling them along with
other events of the Operating System. An intermediate NS-
2 node which acts as a router in a multihop communication
does not forward an incoming packet to the nodes NS-2 RT-
App class. Instead, the NS-2 node forwards the packet on
an outgoing wireless path after determining the next hop
neighbor. In this process, the NS-2 node neglects any delay
induced by other tasks running simultaneously on the node.

In this section we will address the problem of scheduling
delays in wireless routers. We propose a modification to
the NS-2 architecture to solve the problem. The solution
described in this paper will help to correctly simulate a
wireless multihop scenario, and provide an accurate measure
of packets delay.

A unicast node in NS-2 is shown in Figure 8. A node has
a unique network address and contains an entry point, an
address classifier and a port classifier, a set of agents, and a
Routing Module.

On receiving a packet, the node examines the destination
address field in its header and takes action on its basis.

The possible values of the destination address are
mapped to an outgoing interface object to reach the next
downstream recipient of the packet. In NS-2, this task is
performed by a simple classifier object. A classifier provides
a way to match a packet against some logical criteria and
retrieves a reference to another simulation object based

EURASIP Journal on Wireless Communications and Networking 7

Node
RTModule/Base
Hash Classifier

AODV Routing Agent

Node entry
Hash Classifier

Wireless link

Port 255

Port 0

Agent

AODV
Router Agent

Port classifier

Figure 8: Architecture of a wireless node in NS-2.

on the matched results. Each classifier contains a table of
simulation objects indexed by slot number. The job of a
classifier is to determine the slot number associated with
a received packet and forward that packet to the object
referenced by that particular slot.

Every implementation of the Routing Module contained
in a wireless node consists of a Routing Agent, in charge of
exchanging routing packets with neighbors, and a collection
of rules, often called Routing Logic, used to calculate the
actual routes from the information gathered by the agent.
To perform packet forwarding the node makes use of the
Routing Tables.

The default setting for a wireless node adopts the Base
Routing Module provided by the NS-2 package and uses a
Hash Classifier to decide on packet forwarding within the
node. Here we describe the working of the wireless node
using Hash Classifier and highlight the problem of multi-hop
described earlier.

Because of this behavior the simulator is unable to
include the delay induced by the processing load present
in the Node. This delay is quite significant and models the
actual processing behavior of a Wireless Sensor Node.

We propose a new classifier which will handle forwarding
of packets in a way that will recognize the presence of RT-
App. The latter will schedule the routing of an incoming
packet along with other tasks running simultaneously on the
node, thus delaying the packet transmission depending both
on the instantaneous load and the kernel scheduling policy.

As shown in Figure 9 we introduce a new Module called
WSN-RoutingModule. This Module is used to incorpo-
rate the classifier (RTMobile) which handles the flow of
Routing and Data Packets exchanged between the NS-2
agents. RTMobile Classifier extends the functionality of Hash
Classifier.

Whenever the classifier of a node receives a packet, it
checks if it is an intermediate hop along the path, and
examines the type of packet (e.g., it might be AODV or some
kind of data packets like “UDP”).

If the received packet is of type AODV, the classifier
changes the port in the packet header to that of RT-Agent for
a first “default” classification. In this way the routing packets

Node
WSN-RoutingModule
RT-Mobile Classifier

AODV Routing Agent

Node entry

RTMobile Classifier

Wireless link

Port 255

Port 0

RT-Agent

RT-App

AODV
Router Agent

Port classifier

Figure 9: Modified architecture of Wireless Node in NS-2.

are examined (following the scheduling policy decided for
the node) by the RT-App which notifies the RT-Agent on job
done.

Whenever RT-Agent gets this notification it will forward
the packet back to the classifier (which in turn will let the
packet follow the normal iteration), thus introducing delay
in packet transmission.

The introduction of RTMobile Classifier makes the
simulator aware of the presence of RT-App in each node
even for those types of packets (as the routing ones) which
are not explicitly addressed to that port. The appropriate
task running in the node performs the job of examining
the packets and retransmitting them to the next downstream
recipient. This introduces some delay depending on the load
present in the node as opposed to the default implementation
of NS-2 in which receive and forward of routing messages is
instantaneously performed by the Routing Agent.

4.1. Effect of CPU Load in Multi-Hop Scenarios. The simu-
lations run through RTNS eases a possible co-design of the
kernel structure and the network protocols [34] for specific
applications.

The real-world microcontrollers adopted for WSNs
are very simplified in hardware (not equipped with co-
processors devoted to networking) and MAC layer is purely
coded in software. In ad-hoc multi-hop networks, since
the “routing” activity is scheduled concurrently with all the
others, it is of paramount importance to evaluate the impact
of the computational load on the transmissions.

A realistic statistical analysis should start from the model
of the load assigning to nodes a certain probability of CPU
usage (Utilization Factor, UF). In the simple case of a WSN
where the nodes are running the same executable, the nodes
may have a constant uniform UF related to the complexity
(Execution Time) and the period of the executable (as in
Figure 10(a)); another scenario is that of Figure 10(b) where
the UF might vary as a function of the space following a
Gaussian distribution.

Having modeled the distribution of the load, it’s possible
to simulate a multi-hop transmission retrieving the network
delay as a function of the cumulative load along the
routing path. The sink feels the delay in message delivery as

8 EURASIP Journal on Wireless Communications and Networking

Constant uniform load

(a)

Load probability distribution

(b)

Figure 10: CPU load models for a tree-like topology: (a) uniform
and (b) gaussian distributed.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D
el

ay
(a

rb
it

ra
ry

u
n

it
s)

0.2 0.4 0.6 0.8 1

Load

Mean transmission delay versus network load

FCFS Mean Rec Net
FP Mean Rec Net

Figure 11: Time delay to read data packets induced by concurrent
activities using a FCFS scheduling policy.

a congestion occurrence in the network as it happens when
the packets arrive late at destination.

If the network follows a congestion avoidance protocol,
the sink may decide to wrongly re-set some of the communi-
cation parameters. A reliable simulation permits to filter the
effects coming from network congestion from those related
to CPU load, permitting an accurate setup of networking
protocols.

As a matter of example, in Figure 11, the End-to-End
mean transmission time is plotted against the CPU load in
the nodes having adopted a model like that of Figure 10(a).

If the load probability distribution is static, it might be
preferable to adopt a static routing table (at design time)
minimizing the cumulative load on the routing path. If the
designer has concerns about the faulty nature of the nodes
(which is incompatible with static routing), or if the load
distribution happens to change in time, popular on-demand
routing protocols can be extended paying some price in

N
rows

N
columns

Routing path

Comm range

Figure 12: Lattice like scenario with the two opposite nodes on
the diagonal willing to exchange data. The total number of nodes,
figure relevant for the scalability of the package is a parameter in the
simulation.

terms of over-head but gaining effective predictability in
communication.

5. Simulator Performance

The usage of RTNS requires more resources concerning disk
space, memory, and time overhead with respect to NS-2. The
tarball size is of the order of 150 MBytes and includes the
components required by the tool: ROOT [33] and RTSim
[32] are external packages (free sources) which must be
linked at compile time.

The overhead induced by the Operating System simula-
tion on one hand enlarges the time needed to simulate the
network operations, on the other hand may limit in number
the nodes composing the network.

Referring to the scenario in Figure 12, where the two
farthest nodes along the diagonal in a rectangular lattice
are exchanging data, we measured the simulation time
supposing a uniform CPU occupancy in the nodes equal
to 50%. The network is operated in “non-beacon” mode
as defined in the IEEE802.15.4 standard for a peer-to-peer
communication paradigm.

As shown in Figure 13, NS-2 and RTNS show a similar
trend in the simulation time as a function of the total number
of nodes in the lattice, the two curves being displaced along
Y by a fixed amount.

The RAM footprint increases linearly as a function of the
number of nodes, as it is expected from the linear increase in
the number of RTNS objects (kernels, schedulers, tasks, etc.).
The plot in Figure 14 demonstrates this linear dependence,
showing that the difference with standalone NS-2 resides
only in the slope of the two lines.

EURASIP Journal on Wireless Communications and Networking 9

1

10

102

E
xe

cu
ti

on
ti

m
e

(s
)

0 50 100 150 200 250 300 350 400 450

Number of nodes

RTNS
Standalone NS-2

Figure 13: Execution time as a function of the total number of
nodes for standalone NS-2 and RTNS.

6. ModelingWSN in RTNS

6.1. The IEEE 802.15.4 Standard. The IEEE 802.15.4 pro-
tocol specifies the Medium Access Control (MAC) sub-
layer and the Physical Layer of Low-Rate Wireless Personal
Area Networks (LR-WPANs). The SSCS (Service Specific
Convergence Sublayer) abstracts the Access Point of some
services offered by the MAC to upper layers.

The IEEE 802.15.4 Physical Layer uses a 16-ary encoding
alphabet (4 bits/symbol) in Direct Sequence Spread Spec-
trum (DSSS) modulation over three operational frequency
bands: 2.4 GHz (16 channels); 915 MHz (10 channels);
868 MHz (1 channel). The IEEE 802.15.4 MAC layer sup-
ports two operational modes: (1) the non beacon-enabled
mode, in which the MAC is simply ruled by non-slotted
CSMA/CA; (2) the beacon-enabled mode, ruled by slotted
CSMA/CA, in which beacons are periodically sent by a
special node (called network coordinator) to synchronize
(in time) nodes that are associated with it, and to carry
additional information about the transmission structure.
In beacon-enabled mode, the Coordinator defines a Super-
Frame structure (Figure 15) which is constructed based
on (1) the Beacon Interval (BI), which defines the time
between two consecutive beacon frames; (2) the SuperFrame
Duration (SD), which defines the active portion in the BI,
and is divided into 16 equally-sized time slots, during which
frame transmissions are allowed. Optionally, an inactive
period is defined if BI > SD. During the inactive period (if it
exists), all nodes may enter in a sleep mode (to save energy).

BI and SD are determined by two parameters—the
Beacon Order (BO) and the SuperFrame Order (SO):

BI = aBaseSuperFrameDuration · 2BO

SD = aBaseSuperFrameDuration · 2SO
(1)

assuming 0 ≤ SO ≤ BO ≤ 14, aBaseSuperFrameDuration
= 15.36 ms (operating at 250 kbps in the 2.4 GHz band),

10

20

30

40

50

60

70

80

90

M
em

or
y

u
ti

liz
at

io
n

(%
)

0 500 1000 1500 2000 2500

Number of nodes

RTNS
Standalone NS-2

Figure 14: RAM maximum usage of NS-2 and RTNS as a function
of the total number of nodes.

Contention
access
period
(CAP)

Contention
free
period
(CFP)

Active period

Beacon interval (BI)

Beacon
GTS1 GTS2

Inactive
period

Figure 15: SuperFrame Structure in the IEEE 802.15.4 standard. In
beacon enabled mode, the beacon interval can be subdivided into a
Contention Access Period (CAP) and eventually into a Contention
Free Period (CFP) and Inactive Period.

corresponding to the minimum SuperFrame duration at
SO = 0. During the SuperFrame Duration, nodes compete
for medium access using slotted CSMA/CA, in the Con-
tention Access Period (CAP). IEEE 802.15.4 also supports
a Contention-Free Period (CFP) within the SD, by the
allocation of Guaranteed Time Slots (GTS). It can be easily
observed in Figure 1 that low duty-cycles can be configured
by setting small SO values as compared to BO, resulting in
longer sleep (inactive) periods. The standard supports three
network topologies: Star, Mesh and Cluster-Tree, illustrated
in Figure 16.

In the Star topology (Figure 16(a)) communications
must always be relayed through the coordinator; Star net-
works can operate in both beacon-enabled and non beacon-
enabled modes. In the Mesh topology (Figure 16(b)), each
node can directly communicate with any other node within
its radio range or through multi-hop; Mesh networks must
operate in the non beacon-enabled mode. The Cluster-Tree
topology (Figure 16(c)) is a special case of a Mesh network
where there is a single routing path between any pair of nodes

10 EURASIP Journal on Wireless Communications and Networking

ED

ED
ED

ED

ED

PC

(a) STAR

ED

ED

ED

ED ED

ED

ED
R

R

R

PC
R

R

(b) MESH

ED: End device
R: Router
PC: Pan coordinator

ED

ED

ED

ED

ED
R

R

PC

R

R

R

(c) CLUSTER-TREE

Figure 16: WPAN star, mesh, and cluster-tree network topologies.

and a distributed synchronization mechanism (operates in
beacon-enabled mode).

6.2. The WPAN Module in RTNS. In Figure 17 the network
stack standardized in the IEEE 802.15.4 suite is shown.
In the superimposed call-outs, the corresponding services
implemented in the native WPAN module in NS-2 (release
2.33) and the modifications introduced by this research
project are specified: we namely refer to the GTS mechanism
and the link with the RTNS framework.

The scarce documentation about the WPAN package
in NS-2 refers to the mechanisms exported to the final
user interface in some TCL scripting examples [35]: these
mechanisms refer for instance to network start-up, node
association, network topology and beacon order selection,
and so forth.

Following a strict adherence to the standard, the
MLME-GTS.request, MLME-GTS.confirm, and MLME-
GTS.indication MAC primitives have been implemented for
the GTS allocation as shown in Figure 18.

When an (associated) node wants to transmit (or receive)
data in real-time, it makes use of the GTSs. A MLME-
GTS.request is generated at Network layer; afterwards the
node sends a Command frame to the coordinator. The
device waits for the coordinator acknowledges receipt and
then parses the list of GTS descriptors in the forthcoming
beacon to identify the starting slot assigned to it. After the
transmission of the ACK frame to the device, the MAC
layer of the coordinator calls the MLME-GTS.indication

notification procedure to its agent. At the reception of the
beacon, the MAC layer of the device notifies the success to its
agent by calling the MLME-GTS.confirm procedure.

A GTS can be deallocated whenever the device node
formulates an explicit request as shown in the collaboration
diagram of Figure 19(a) with a sequence of function calls
very similar to the previous case.

Moreover the coordinator can deallocate a GTS (see
Figure 19(b)) inserting that GTS descriptor into the list of
“removed” GTS in the forthcoming beacon packets whenever
one of these conditions happen:

(i) the upper layers of the coordinator require the
deallocation;

(ii) the device did not make use of the GTS (in reception/
transmission) for 2n SuperFrames where n = 28−BO if
0 ≤ BO ≤ 8 and n = 1 if 9 ≤ BO ≤ 14.

To fulfill these functionalities, a GTS DataBase structure
has been created. By means of appropriate classes the
database is instantiated in both the coordinator and devices
memories allowing for

(i) preparing the list of the GTS descriptors to be at-
tached to the beacon frame periodically broadcasted
by the coordinator;

(ii) activating the hardware timers for transmitting
(receiving) data within the CFP of the MAC Super-
Frame;

(iii) enabling the GTS re-location and extending the CAP
time interval when GTSs are deallocated.

7. TheMulti-View Vision Problem
Based onWSN

Hereby we want to discuss the feasibility of image recon-
struction making use of wireless sensor devices equipped
by photo cameras capturing complementary portions (i.e.,
views) of a scene pictorially shown in Figure 20: a network
controller is building up an event record collecting the data
frames coming from device nodes in a definite time window
(Protocol Timeout or Detection Window).

7.1. Problem Statement. Due to the resource limitations in
Wireless Sensor Networks (WSN), the transmission of the
original flat images over the air, in a video streaming fashion,
is not simple or feasible at all. Hereby without any desire of
completeness we discuss some of them:

(i) the limitation in the network bandwidth (e.g.,
250 Kbps maximum in the IEEE 802.15.4 standard)
causes long transmission (even with compression)
with respect to other wireless protocols like WiFi
(a.k.a. IEEE 802.11 b/g, 11/54 Mbps maximum band-
width), which implies long latency at the network
controller and possibly reactions out of time;

(ii) the tiny dimension of the packet frame (e.g., 114
bytes maximum payload at the MAC layer in

EURASIP Journal on Wireless Communications and Networking 11

• ED
• CCA
• LQD
• Filtering
•Multiple channel

• CSMA-CA
• Beacon and sync.
• Assoc and disassoc.
• Tree formation
• Direct and indirect Tx
• Filtering
• Error models
• Enhanced nam anima.
• GTS mechanism

Wireless
scenario definition

Upper layers

Routing

802.2 LLC

SSCS

802.15.4 MAC

802.15.4 PHY

NS-2/RTNS Functional
extensions

Figure 17: The networking stack as standardized in the IEEE 802.15.4 protocol for WPAN. In the call-outs the services implemented in the
NS-2 WPAN module and the functional extensions added within this work.

Device next
higher layer Device MLME

Pan coodinator
MLME

Pan coodinator
next higher layer

MLME-GTS.request

MLME-GTS.confirm

GTS request

Acknowledgement

Beacon
(with GTS descriptor)

MLME-GTS.indication

Figure 18: Sequence diagram for a GTS allocation request by a device node.

the 802.15.4 standard) forces the data sources to mul-
tiple transmissions; if retransmissions are permitted
and/ or data flows are routed through multi-hop
paths of different length, mechanisms for packet re-
ordering at the sink/control node are needed for data
coherence;

(iii) retransmissions do not fit the power-aware policy of
WSNs whose protocols are designed to maximize the
lifetime of the batteries and a fortiori to minimize
the total number of transmitted symbols. Also,
retransmissions result in extra delays which might
violate the time constraints for reactions;

(iv) Multi-View Vision systems are definitely real-time
distributed systems; local activities at the node level
must be supported by real-time kernel and real-time
communication techniques must be implemented in
the network stack.

Other arguments, hardware dependent, like the resource
set reduction in Micro-Controller Unit (MCU) (namely,

computing power and memory) complicate even more the
envisioning of a video streaming service based on WSNs.

The other option is to consider the microcam nothing
else than a sensor providing (not scalar) information to the
main unit. Adopting this model, we can deploy a Real-Time
Multi-View Vision system by means of WSN technology
provided some logic resides at the node level where the
images must be (quickly) processed.

The vision operations can be described as 2-tier (hier-
archical) process where the local decisions are taken at the
device node sending out a report towards the sink which is
in charge of combining the information coming from all the
sources to eventually react. Of course the controller cannot
make use of the genuine information and relies on devices
although the preprocessing stage generates information loss
in any case.

All in all this 2-tier process in the end is displacing
the complexity towards the device nodes, profiting of the
enhanced computing power of modern MCUs recently
embedded in some Sensor Boards [36, 37] of the new
generation like those provided by Microchip [38], Intel

12 EURASIP Journal on Wireless Communications and Networking

Device next
higher layer

Device MLME
Pan coodinator

MLME
Pan coodinator

next higher layer

MLME-GTS.request

MLME-GTS.confirm

MLME-GTS.indication

GTS request

Acknowledgement

Beacon
(with GTS descriptor)

MLME-GTS.indication

MLME-GTS.indication

(b)

(a)

Figure 19: Sequence diagram for a GTS deallocation request by a device node (a); explicit removal by the coordinator (b).

1

2 3

4
5

6

View 1

Event appearance

Protocol timeout

View 2

C

Msg 0

Msg 1

Msg 2 Msg 3

Figure 20: A WSN is detecting the appearance of an event from the
integration of 2 not-overlapping views.

[39], and others reaching the speed of tens or hundreds of
MIPS.

In the following we will first analyze how to achieve reli-
able communication in Wireless Sensor Networks to further
discuss several options for node and network configuration.

7.2. Reliable Event Detection. To build up a reliable system,
the network architecture and the transmission protocol must
be robust with respect to transmission errors including
packet corruption and collisions.

In the following we discuss a strategy to implement
reliable communication acting at different levels.

The 802.15.4 standards indirectly discourages long trans-
missions forcing data fragmentation into tiny (127 bytes long
physical payload) packets. The packet length is motivated
by the envisioning to deploy WSNs in noisy environments
where the Bit Error Rate (BER) is high.

Bursty model

1 C

1 C

Random model

Good packets

Corrupted packets

Noise

Figure 21: Noise is affecting packet integrity. Interference can occur
randomly or burstily.

Transmission Errors can occur randomly in time (ran-
dom noise) or be localized in specific intervals (bursty noise)
as depicted in Figure 21.

Both for Bursty and Random error models long trans-
missions are discouraged. Moreover, in case of random noise,
the shortest the packet the lowest the Packet Error Rate (PER)
being

PER = 1− (1− BER)n (2)

with n being the dimension of the packet in number of bits.
Adopting a random error model, if we send m multiple

copies of the same report, the combined probability of
loosing all packets is PERm. The actual choice of m, which is
ultimately a configuration parameter of the protocol, can be
done once we measure the BER figure and we set a threshold
in the probability of successful delivery PERthr such that

m : PERm < PERthr. (3)

To overcome random errors, multiple copies of the report
can be sent back to back reaching a confidence level equal to

EURASIP Journal on Wireless Communications and Networking 13

Loop

IPTask IPApp SendTask IPAgent

1: detectedImage:=elaborateImage()

3: activateSend()

5: activate()

8: sendDone()

[detectedImage> 0]

Task
scheduling +

execution

Packet creation
+ packet send

detectedImage- -

(a)

Loop

CoordAgent CoordApp ReceiveDataTask

9: elaborateReport()

callrecv() 2: recv()

4: activate()

6: recvData() Task
scheduling +

execution

Elaboration
of packets

stored for each
protocol
timeout

7: recvDone()

(b)

Figure 22: The UML sequence diagrams for sending (a) and receiving (b) reports.

(1−PERm) for at least one packet reaching destination with-
out corruption. This can be further enhanced to consider
adding redundant sensor nodes for each view to overcome
bursty errors.

7.3. The MAC Level. Within the framework of a Multi-
View Vision system, retransmissions should be avoided: the
evident motivation coming from the need of reducing the
total duration of network transactions.

In general the software packages implementing the
Network stack for WSNs do not include Transport Layer
mechanisms like packet flow reordering and data retrans-
missions although the latter is optionally provided as a MAC
service in the IEEE 802.15.4 standard.

Other mechanisms must be adopted to guarantee suc-
cessful report deliveries.

Following the multiple transmission techniques here
proposed we can be rather confident that the needed infor-
mation are in the end carried through the medium without
corruption. Anyhow packet losses may occur because of
collisions, and late data transfers can be caused by missed
bandwidth (awaiting for the medium being idle in case of
high volume of injected traffic from different sources).

A MAC module implementing the transmission algo-
rithm like CSMA/CA (used for data transmission in every
commercial stack for Sensor Boards) does not respond
to the requirements of bounding the communication
delay (which is in principle infinite) and avoiding packet
collisions.

Bandwidth allocation techniques providing TDMA-
based access solves the unpredictability in the total duration
of network transactions and guarantees timing constraints to
the networked application. Moreover if time synchronization
among the nodes is enforced at the MAC layer occasional
collisions should be in principle avoided and successful
reports guaranteed.

The existing technology standardized in the IEEE
802.15.4 protocol actually fits the requirements discussed
hereby allowing Collision Free transmissions through the

usage of the Guaranteed Time Slots (GTS) and time syn-
chronization through the beacon-enabled mode of the MAC
operations.

7.4. The Kernel Level. In so far we implicitly assumed that
reports can be easily packed and transmitted over the
air within a specific GTS or similia. This is actually not
straightforward for many working solutions of network
stacks implemented on top of non real-time kernels. Local
processing is required and the Operating System must be able
to perform time synchronization over the tasks devoted to
computation and networking.

In our hypothetical system the image frames must be
timely processed to fit the transmission of the reports in the
allocated band. Late Operating System responses ultimately
cause loss of Quality of Service and system malfunction.

7.5. Performance Metrics. Our distributed application makes
use of the device nodes which apart from image capturing
can perform image processing and send reports towards
a defined location (say the sink). For simplicity (and
considering statistical effects only although systematics is
expected to play a relevant role in this context) we intend
the Multi-View Vision Application as a generalization of a
detector providing binary results (0: track detected, 1: track
missed).

In a real-time perspective, the system overhead for event
detection is very relevant. We imagine that controller reacts
whenever the Detection Window is closed, so that its response
time for event i happening at time Ti

event is

Ri = Ti
detect − Ti

event . (4)

Its average value is given by

R =
∑k

i=0 R
i

k
, (5)

k being the number of detected events when n is the true
number of events in the WSN scope.

14 EURASIP Journal on Wireless Communications and Networking

0

20

40

60

80

100

N
u

m
be

r
of

ve
h

ic
le

s

0 5 10 15 20 25 30

IAT (s)
Path cover time

IAT of aircrafts

0

10

20

30

40

50

60

70

80

N
u

m
be

r
of

ve
h

ic
le

s

1 2 3 4 5 6 7 8 9

IAT (s)
Path cover time

IAT of cars

Figure 23: The Inter Arrival Time (IAT) distribution of vehicles in the taxiway and parking scenarios. The (fixed) path cover time is
superimposed in the graphs.

To assess the performance of such system we should make
use of global metrics such as the efficiency (ε) defined as

ε = k

n
. (6)

Of course, an ideal system detects all the events (ε = 1),
and minimizes the response time (R → 0).

Referring to Figure 20, a network is composed by 6 nodes
getting two independent views of the same scene. Redundant
information are usually injected into the network if the
number of nodes is larger than the number of views.

Of course the matter of efficiency cannot be considered
independently from networking issues: the report prolifer-
ation induced by information redundancy can cause traffic
congestion or, in TDMA based accesses, bandwidth lack
since GTSs (maximum 7 in case of IEEE 802.15.4) represent
scarce resources allocated on the basis of the node MAC
addresses.

8. Multiview Vision Support in RTNS

We introduced into RTNS the abstraction of external stimuli
modeled outside the WSN (by means of entities not directly
participating in communication like vehicles) and generat-
ing event-driven transmissions. We believe this simulation

paradigm fits very well the essentials of the domains where
WSNs can effectively be deployed.

On one hand we included intra-node mechanisms and
external stimuli (generating event-driven transmissions) into
the model; on the other hand we adopt global level metrics
like system latency and efficiency which serve for system
validation from a holistic perspective. These objects can be
detected by cameras according to the computational activity
in the device CPU.

The device nodes are equipped with detection peripher-
als like pin-hole cameras: each camera captures the portion
of the background scene covered by its solid angle. The
topology support offered by NS-2 has been extended to
introduce self-moving entities like vehicles not involved in
communication. The moving targets act as external stimuli
inducing transmissions by device nodes: network activity
is therefore event-driven differently from the time-driven
traffic generation which is generally adopted in NS-2 based
simulations.

Each microcontroller in an individual device node runs
the same firmware encoding the activities related to network-
ing and Image Processing (IP). As discussed in Section 3,
the RTNS Kernel prototype (implemented in the RT-App
class) abstracts the services related to the scheduling policy
and resource access. We define task the computational unit
corresponding to one activity. A task consists of a set of

EURASIP Journal on Wireless Communications and Networking 15

instructions that, when executed, reserve the CPU for a finite
amount of processor ticks. The tasks can be run concurrently
at a node.

The IPApp class is the specialization of the RT-App base
class used in this work for instantiating the node kernel.
IPApp handles the I/O from the peripherals and executes
a S/W task customized for Image Processing (IPTask).
Together with IPTask, the SendTask and ReceiveTask imple-
menting the Network layer functionalities for data exchange
are spawned at the start-up of the device nodes.

The IPTask task is a periodic activity, parameterized with
a likely number of lines of code (Execution Time) and a
Period set to the inverse of the maximum frame rate (T =
1/� f ps) of the camera. When the permanence of an object
inside the view of a camera is such that the processing task
intercepts it, a notification in the shape of unicasted message
(“a report”) is sent to the network coordinator. The report
transmission is handled by the IPAgent class which represents
the UDP-like endpoint of the network stack.

The coordinator is required to collect all the reports in a
Detection Window (DW) to take action. The CoordApp class
(abstracting its kernel) handles the I/O from the transceiver.
The UDP-like agent CoordAgent correlates all the received
reports ending in the same DW, and, from their unique
signature, predicts the target track on the topological grid.
These mechanisms are described by means of UML sequence
diagrams in Figure 22. The data coming from the reports are
organized in a Tree structure (eased by the on-line availability
of the ROOT [33] package classes in RTNS) which is saved on
disk during the RTNS simulation runs.

9. Real-TimeMultiview Vision Case Study

In this section, we present the effectiveness of the RTNS
simulator with the help of a distributed imaging application
in Multi-View Vision applications. In this application, the
distributed system is in charge of detecting a vehicle and
sending the results of image processing tasks to the co-
ordinator. The co-ordinator is responsible to take appropri-
ate action based on the number of events arrived within
the DW. RTNS provides the necessary means to analyze
such a system in terms of OS scheduling of imaging and
networking tasks, bandwidth allocation using GTS which
helps to determine the event detection efficiency of the
overall Multi-View Vision system. The metrics used to assess
the system performance have been defined in Section 7.5.

9.1. Event Distribution Models. In Figure 24, five nodes build
up a WSN and are in charge of tracking a target along two
possible directions. The camera views do not overlap and the
object provides a unique signature in case of going straight
(reports from nodes 0,1,2) or turning right (reports from
nodes 0,1,3).

We simulated two scenarios with different statistical
distributions of event InterArrival Times (IAT) having fixed
the time needed by the target to travel across the camera
views (path covered time): a taxiway in a big airport, and a
parking area (see Figure 23).

Vehicle

0 1 2

3

C

Figure 24: The scenario used for RTNS simulation. Nodes 0,1,2,3
track a vehicle using embedded pin-hole cameras covering com-
plementary views. They send detection reports to the coordinator
whenever they recognize the target entered their camera view.

Event-based DAQ

Rep 0 Rep 1 Rep 2

DW

t

ReportTime-based DAQ

Rep 0 Rep 1 Rep 2

DWDW

t

Figure 25: The DAQ logic: the event-based opens the DW at the
arrival of a report from Node 0; the time-based opens the DW
regularly as a function of the time.

In the first case the distributed system provides a critical
service where events expectations are rare with respect to
path covered time. If the IAT are Gaussian distributed, this
analytically translates to the constraint:

ΔTmin(events) = 〈ΔT〉 − 3 · σ >
S

V
, (7)

S, V , 〈ΔT〉, and σ being, respectively, the path length, the
target speed, the average value and the standard deviation of
the IAT probability distribution. In this simplistic model, all
aircrafts move at the same speed thus path covered times are
deterministically computable.

If we drop the constraint 3, we can have a superposition
of arrival events in the scope of the cameras ending in the
generation of reports related to independent detections.

The distributed system we keep unchanged from the code
perspective responds differently in the two cases as we will see
in the remaining part of this section.

We model two different types of Data AcQuisition
(DAQ), the time-based and event-based (see Figure 25).
Since the expected signatures are {0, 1, 2} or {0, 1, 3}, if the
chain of the events is truncated and the reports split into
subsequent DWs, the event is discarded.

The time based DAQ is purely hardware, based on a timer
activating at constant intervals the detection window. The
reports related to the same event arrive in random order
being the DW totally uncorrelated with the report arrivals.

Alternatively we can elect Node 0 as the DAQ trigger
since all incoming vehicles pass through its hardware view.

16 EURASIP Journal on Wireless Communications and Networking

0

0.2

0.4

0.6

0.8

1

ε

0 10 20

DW (s)

Detection efficiency

Event-based DAQ
Time-based DAQ

Ev
en

ts

0
5

10
15
20
25
30
35
40

10 15 20 25 30
IAT (s)

Figure 26: Efficiency behavior as a function of the DW width for
the two DAQ models. The embedded plot is a reminder of vehicle
IAT.

Following this argument we model an event-based DAQ
where the DW is opened at the arrival of a report from
Node 0.

9.2. Simulation Results

9.2.1. The Effects from the Detection Window. In this sim-
ulation study we focus on the system performances as a
function of the detection window width and the adopted
DAQ scheme. We consider CSMA/CA for medium access and
First Come First Served (FCFS) for task scheduling at the
nodes kernels.

In Figure 26 the system efficiency is plotted against the
DW size. For event-based DAQ, the efficiency is maximum
when DW is of the order of the path cover time (S/V =
6 seconds). As expected the performances degrade as the
DW size increase and thus reports coming from independent
detections are mixed up.

If we adopt a time-based DAQ, reports arrivals and DW
are uncorrelated. As the DW increases we collect more events
reaching the ratio of 70% with DW = 20 seconds.

Depending on the type of DAQ adopted at the coor-
dinator, two different set-points are suggested in this
analysis.

As a side effect of the uncorrelation between reports
arrivals and DW, the average response time is strictly smaller
in the case of time-based DAQ with respect to event-based
because for the sub-sample of detected events, the DW results
already open at the arrival of the first report thus reducing the
response time of the system as shown in Figure 27.

Of course from the design requirements of the visual
tracking system (in terms of efficiency and latency) it is
possible to select the appropriate DAQ profile privileging
either the efficiency or the latency.

0

5

10

15

20

D
el

ay
(s

)

0 5 10 15 20 25

DW (s)

Average response time

Event-based
Time-based

Figure 27: Average response time distribution for Event-based and
Time-based DAQ models as a function of the DW width.

0

0.2

0.4

0.6

0.8

1

ε

0 20 40 60 80 100

C

CBR frequency (Hz)

Detection efficiency

Real-time traffic

CBR best effort traffic

CSMA/CA
CFP (GTS)

Figure 28: Efficiency as a function of the CBR rate of two disturbing
nodes for the case of CSMA/CA (empty markers) and the GTS
(filled markers).

9.2.2. The Effects from the Transmission Schedule. Making use
of the GTS mechanism support in RTNS we can differentiate
real-time and best-effort traffic sources in simulation and
assess the benefits of communication over guaranteed band.

In Figure 28 the efficiency (obtained making use of
event-based DAQ) is plotted against the rate of disturbance
introduced by two nodes generating CBR traffic with tunable
frequency. On the x-axis the nominal rate for one node is
reported, thus the disturbance rate felt by the controller is
actually the double.

The disturbing nodes attempt to inject 100 bytes packet
frames into the network at regular intervals. For example, at

EURASIP Journal on Wireless Communications and Networking 17

0

0.2

0.4

0.6

0.8

1

ε

0 0.2 0.4 0.6 0.8 1

Load [cL/TL]

Detection efficiency

Overload

FCFS scheduler

FP scheduler
D

el
ay

(s
)

Average response time

Overload
10

102

103

0 0.2 0.4 0.6 0.8 1
Load

Figure 29: Efficiency as a function of CPU load factor in device
nodes for Fixed Priority (FP) and First Come First Served (FCFS).
The embedded frame contains the distribution of the Average
Response Time in semi-log scale for FCFS. Overload condition
occurs when cL/TL = 60% > 50%.

a disturbing frequency of 40 Hz, this translates into 64 Kbps
demand having the network 250 Kbps as total capacity.

The nodes are associated to the coordinator and trans-
missions are done at the same frequency as regulated by
the IEEE 802.15.4 standard for the star-shaped networks. As
it can be seen (empty markers in the plot), although the
working conditions have been selected to produce a fully
efficient set-up, this is true only in absence of parallel data
flows. Already at a disturbance frequency of 40 Hz, using
the CSMA/CA schedule for message transmission, the actual
value of the system efficiency is about half of the nominal.

If we schedule the traffic related to visual tracking
during the CFP, and the concurrent best effort traffic during
the CAP, we permit parallel flows in the network without
worsening the performances of the guaranteed services.

In this simple case study, we statically allocate a GTS, 2
slots long (to let the transmission report fit into it), to each
device equipped with camera. The system is found insensitive
to disturbances and the nominal value for the efficiency
(filled markers in the plot) is achieved regardless of any non-
real time activity present in the network.

9.2.3. The Effect of the CPU Load. So far the multitasking
capabilities of the kernels did not play any role because the
“optional” transmission of the report on IPTask completion
can be easily coded as an ordinary code branch.

Suppose the device nodes run other activities con-
currently with visual tracking (e.g., self-diagnosis, error
reporting, etc.). The effects on global metrics depend on the
scheduling policy adopted in the kernels, notably upon their
preemptive capabilities.

In Figure 29 the system efficiency and latency are tracked
against the computational load introduced by a background
task scheduled concurrently with the IPTask. The IPTask

0

0.2

0.4

0.6

0.8

ε

0 5 10 15 20

DW (s)

Detection efficiency

CSMA/CA
CFP (GTS)

Figure 30: Efficiency behavior as a function of the DW width for the
case of CSMA/CA (empty markers) and the GTS (filled markers).

provides a standalone load of cIP/TIP = 50%, so that
the overload condition is reached whenever additional load
exceeding 50% is scheduled on the node.

If the kernel has no real-time functionality as in the case
of TinyOS [24], as the extra load increases, the absolute
response time and its jitter increase. Moreover, as the
overload condition is met, the system starts missing events
and malfunctions show up like that of events being detected
after the appearance of many others: in the plot of Latency
versus Background load, the trend is discontinuous at the
overload condition where response time jumps by two orders
of magnitude meaning that the aircraft track is recognized
after 300 seconds (5 minutes) from its appearance.

The visual tracking system deployed on top of non
real-time kernels does not respect safety critical constraints
with respect to background task. This result encourages
to adopt real-time kernels like ERIKA [40] and Nano-RK
[41] supporting Fixed Priority scheduling whenever the
nominal performances must be guaranteed in variable (or
even unpredictable) conditions of CPU load.

9.2.4. The Effects from Bandwidth Limitations. When the
vehicle inter-arrival times are smaller, events are more fre-
quent and the average network traffic generated by report
transmission gets larger. The effect is stronger if the inter-
arrival time is comparable with path cover time; in such
a case reports related to different vehicles are injected
concurrently into the network by different device nodes.

The limitation in bandwidth for the low rate nature of
the IEEE 802.15.4 standard prevents the system from the full
efficiency. Selecting the most favorable options for the DAQ
(the event-based), the system achieves 80% efficiency with
a DW equal to 20 s (empty markers in Figure 30). Higher
values for the DW have not been explored for reasons related
to latency matters.

18 EURASIP Journal on Wireless Communications and Networking

As it can be seen from the plot, the GTS mechanism
does not improve the system performances (filled markers
in the plot) and the two curves are statistically compatible.
The non-monotonic behavior is explained by the fact that the
system starts working properly when the detection window is
larger than the path covered time.

10. Conclusions

Next generation WSN applications will present designers
and developers additional challenges, as relevant high com-
putational load and timing constraints. Therefore, it is
necessary to provide analysis and simulation tools to do early
performance estimation.

In this paper, we have presented RTNS, a simulation
tool that allows to jointly simulate the effects of network
protocols and of RTOS mechanisms in real-time distributed
applications. The tool is a combination of two existing open
source packages, NS-2 and RTSim, hence it includes models
of a wide range of network protocols and RTOS scheduling
algorithms.

The tool has been demonstrated on realistic case-studies.
We also tested its scalability in terms of simulation time and
memory occupancy by increasing the number of simulated
nodes.

We are currently working on the integration of RTNS
with existing RTOS, such as ERIKA, so to close the gap
between simulation model and real application development
[8]. In the future, we envision a methodology that can allow
the designer of WSNs to automatically generate application
code from simulation models into real hardware platforms.

Acknowledgments

The authors would like to thank Claudio Cicconetti, Pra-
shant Batra, Cesare Bartolini, and Francesco Piga for their
invaluable support in developing the RTNS framework.

References

[1] “SENSE—Smart Embedded Network of Sensing Entities,”
http://www.sense-ist.org/.

[2] “CoBIs—Collaborative Business Items,” http://www.cobis-
online.de/.

[3] “WINSOC—Wireless Sensor Network with Self-Organization
Capabilities for critical and emergency applications,” http://
www.winsoc.org/.

[4] “SCIER—a technological simulation platform to managing
natural hazards,” http://www.scier.eu/.

[5] “SensAction-AAL—SENSing and ACTION to support mobil-
ity in Ambient Assisted Living,” http://www.sensaction-
aal.eu/.

[6] A. Cervin, M. Ohlin, and D. Henriksson, “Simulation of net-
worked control systems using TrueTime,” in Proceedings of
the 3rd International Workshop on Networked Control Systems:
Tolerant to Faults, Nancy, France, June 2007, invited talk.

[7] LAN-MAN Standards Committee of the IEEE Computer
Society, Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), IEEE Press, New York, NY, USA, 2003.

[8] M. Chitnis, P. Gai, G. Lipari, P. Pagano, and A. Romano,
“Rapid prototyping suite of IEEE 802.15.4-compliant sensor
networks,” in Proceedings of the IEEE Internatonal Conference
on Mobile Adhoc and Sensor Systems (MASS ’07), pp. 1–3, Pisa,
Italy, October 2007.

[9] P. Pagano, P. Batra, and G. Lipari, “A framework for modeling
operating system mechanisms in the simulation of network
protocols for real-time distributed systems,” in Proceedings
of the 21st International Parallel and Distributed Processing
Symposium (IPDPS ’07), pp. 1–8, Long Beach, Callif, USA,
March 2007.

[10] P. Pagano, M. Chitnis, and G. Lipari, “RTNS: an NS-2 exten-
sion to simulate wireless real-time distributed systems for
structured topologies,” in Proceedings of the 3rd International
Conference on Wireless Internet (WICON ’07), ACM Press,
Austin, Tex, USA, October 2007.

[11] “The RTNS simulation suite,” http://rtns.sssup.it.
[12] “The Network Simulator NS-2,” Information Sciences Insti-

tute, University of Southern California, Los Angeles, Calif,
USA, http://www.isi.edu/nsnam/ns/.

[13] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini,
and P. Ancilotti, “An object-oriented tool for simulating
distributed real-time control systems,” Software: Practice and
Experience, vol. 32, no. 9, pp. 907–932, 2002.

[14] P. Pagano, F. Piga, G. Lipari, and Y. Liang, “Visual tracking
using sensor networks,” in Proceedings of the 2nd International
Conference on Simulation Tools and Techniques (SIMUTools
’09), p. 28, Rome, Italy, March 2009.

[15] P. Pagano, F. Piga, and Y. Liang, “Real-time multi-view vision
systems using wsns,” in Proceedings of the ACM Symposium
on Applied Computing (SAC ’09), pp. 2191–2196, ACM,
Honolulu, Hawaii, USA, 2009.

[16] P. Pagano, C. Nastasi, and Y. Liang, “The multivision problem
for wireless sensor networks: a discussion about node and
network architecture,” in Proceedings of the International
Workshop on Cyber-Physical Systems Challenges and Applica-
tions in Conjunction with the 4th IEEE International Conference
on Distributed Computing in Sensor Systems (DCOSS ’08),
Santorini Island, Greece, June 2008, invited talk.

[17] M. Korkalainen, M. Sallinen, N. Kärkkäinen, and P. Tukeva,
“Survey of wireless sensor networks simulation tools for
demanding applications,” in Proceedings of the 5th Interna-
tional Conference on Networking and Services (ICNS ’09), pp.
102–106, Valencia, Spain, April 2009.

[18] “The OPNET Simulator,” OPNET Technologies, Bethesda,
Md, USA, http://www.opnet.com/.

[19] “The GloMoSim simulator,” UCLA Computing Laboratory,
University of California, Los Angeles, Calif, USA, http://pcl
.cs.ucla.edu/projects/glomosim/.

[20] “The PARSEC environment,” UCLA Computing Laboratory,
University of California, Los Angeles, Calif, USA, http://pcl
.cs.ucla.edu/projects/parsec/.

[21] “The QualNet Simulator,” Scalable Network Technologies,
Culver City, Calif, USA, http://www.scalable-networks.com/.

[22] “The OMNeT++ Discrete Event Simulation System,”
http://www.omnetpp.org/.

[23] “The J-Sim Simulator,” Illinois Network Design and EXper-
imentation (INDEX) Group, University of Illinois, Urbana-
Champaign, Ill, USA, http://www.j-sim.org/.

[24] “The TinyOS operating,” University of California, Berkeley
Calif, USA, http://www.tinyos.net/.

[25] T. Henderson, “NS-3 project Goals. Talk given during
the “Workshop on NS-2: The IP Network Simulator”,”

EURASIP Journal on Wireless Communications and Networking 19

http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial-
handouts.pdf.

[26] P. Jurčı́k, A. Koubâa, M. Alves, E. Tovar, and Z. Hanzálek,
“A simulation model for the IEEE 802.15.4 protocol:
delay/throughput evaluation of the GTS mechanism,” in
Proceedings of the 15th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS ’07), pp. 109–116, IEEE,
Istanbul, Turkey, October 2007.

[27] G. F. Lucio, M. Paredes-Farrera, E. F. Jammeh, and M. J.
Reed, “Opnet modeler and ns-2—comparing the accuracy of
network simulators for packet-level analysis using a network
testbed,” WSEAS Transactions on Computers, vol. 2, no. 3, pp.
700–707, 2003.

[28] S. Ivanov, A. Herms, and G. Lukas, “Experimental validation
of the ns-2 wireless model using simulation, emulation, and
real network,” in Proceedings of the 4th Workshop on Mobile
Ad-Hoc Networks (WMAN ’07), pp. 433–444, VDE, Bern,
Switzerland, February-March 2007.

[29] J. Zheng and M. J. Lee, “A comprehensive performance study
of IEEE 802.15.4,” in Sensor Network Operations, pp. 218–237,
John Wiley & Sons, New York, NY, USA, 2006.

[30] “The ns Manual (formerly known as ns Notes and Documenta-
tion),” http://www.isi.edu/nsnam/ns/ns-documentation.html.

[31] R. Ontko and A. Reeder, http://www.ontko.com/moss/.
[32] “The RTSim simulator,” http://rtsim.sf.net/.
[33] R. Brun and F. Rademakers, “ROOT. An Object Oriented Data

Analysis Framework,” http://root.cern.ch/.
[34] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and

J. Haskins Jr., “A survey of configurable, component-based
operating systems for embedded applications,” IEEE Micro,
vol. 21, no. 3, pp. 54–68, 2001.

[35] “802.15.4 and ZigBee Routing Simulation at Samsung/CUNY,”
http://www-ee.ccny.cuny.edu/zheng/pub/file/WPAN ZBR
pub.pdf.

[36] “The Flex board,” http://www.evidence.eu.com/.
[37] “The Imote2 wireless module,” http://www.xbow.com/.
[38] “The Microchip 16-bit dsPIC Digital Signal Controllers,”

http://www.microchip.com/stellent/idcplg?IdcService=SS
GET PAGE&nodeId=75.

[39] “The Intel Xscale chipset family,” http://www.intel.com/
design/intelxscale/.

[40] “E.R.I.K.A.,” http://erika.sssup.it/.
[41] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: an energy-

aware resource-centric operating system for sensor networks,”
in Proceedings of the 26th IEEE Real-Time Systems Symposium
(RTSS ’05), pp. 256–265, Miami, Fla, USA, December 2005.

	1. Introduction
	2. State of the Art
	3. RTNS Architecture
	4. Multihop Solution
	5. Simulator Performance
	6. ModelingWSN in RTNS
	7. The Multi-View Vision Problem Based onWSN
	8.Multiview Vision Support in RTNS
	9. Real-Time Multiview Vision Case Study
	10. Conclusions
	Acknowledgments
	References

