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of resource block (RB) assignments. Results are given along with discussions.
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1. Introduction

3GPP Long-Term Evolution (LTE) aims at improving the
Universal Mobile Telecommunication System (UMTS) mo-
bile phone standard to cope with future requirements. The
LTE project is not a standard itself, but it will result in the new
evolved Release 8 of the UMTS standard, including most or
all of the extensions and modifications of the UMTS system.
Orthogonal frequency-division multiplexing (OFDM) is
considered as the strongest candidate of the technology that
will be deployed in LTE because of its advantages in lessening
the severe effect of frequency selective fading. Since wide-
band channels experience frequency selectivity because of
multipath effect single-carrier modulations necessitate the
use of equalizers whose implementations are impractical due
to their complexities. Therefore, OFDM is selected in order
to overcome these drawbacks of single-carrier modulation
techniques [1]. In OFDM, the entire signal bandwidth is
divided into a number of narrower bands or orthogonal
subcarriers, and signal is transmitted over those bands in
parallel. This way, computationally complex intersymbol

interference (ISI) equalization is avoided and channel esti-
mation/equalization task becomes easier. However, orthog-
onal frequency-division multiple accessing (OFDMA) has
a high peak-to-average power ratio (PAPR) because of
very pronounced envelope fluctuations, which will decrease
the power efficiency in user equipment (UE) and thus
decrease the coverage efficiency in uplink for the low cost
power amplifier (PA). Moreover, in the uplink, inevitable
frequency offset error caused by different terminals that
transmit simultaneously destroys the orthogonality of the
transmissions leading to multiple access interference [2].

In the literature, various methods are proposed in order
to alleviate the aforementioned problems and shortcomings.
In order to keep the PAPR as low as possible, single
carrier frequency-division multiple access (SC-FDMA) that
combines single-carrier frequency-domain equalization (SC-
FDE) system with FDMA scheme is introduced. SC-FDMA
has many similarities to OFDMA in terms of throughput
performance, spectral efficiency, immunity to multipath
interference, and overall complexity. Furthermore, it can
be regarded as discrete Fourier transform (DFT)—spread
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OFDMA, where time domain data symbols are transformed
into frequency-domain by a DFT before going through
OFDMA modulation [2]. Therefore, air interface of Release
8 is being referred to as Evolved Universal Terrestrial Radio
Access (E-UTRA) which is assumed to employ SC-FDMA for
the uplink and OFDMA for the downlink [3].

To the best knowledge of authors, the very first papers
addressing the channel estimation problem in the context of
SC-FDMA are [4, 5] both of which consider time-invariant
frequency-selective multipath channels, throughout an SC-
FDMA symbol. In these papers, zeroforcing (ZF) or mini-
mum mean squared error (MMSE) linear channel estimation
methods have been proposed in frequency-domain although
they all suffer from ICI, without proposing any cancellation
method. Note that, since most of the next generation wire-
less network standards require transmission in high speed
environments, time-variant frequency-selective multipath
assumption should be considered rather than time-invariant
frequency-selective multipath assumption. However, it is
important to note that when the channel is time-variant, the
subcarrier orthogonality is destroyed giving rise to ICI due
to channel variation within an SC-FDMA symbol.

Even though they are not in SC-FDMA context, there
are methods proposed in the literature dealing with ICI
mitigation for OFDM-based systems [6—8]. In [6], receiver
antenna diversity has been proposed; however, high normal-
ized Doppler spread reduces the efficiency of this approach.
In [7], a piece-wise linear approximation is proposed based
on a comb-type pilot subcarrier allocation scheme in
order to track the time-variations of the channel. In [8]
Modified Kalman filter- (MKF-) based time-domain channel
estimation approach for OFDM with fast fading channels has
been investigated. The proposed receiver structure models
the time-varying channel as an AR-process; tracks the
channel with MKF; performs curve fitting, extrapolation and
MMSE time domain equalizer. In [9], matched filter, LS
and MMSE estimator that incorporate decision feedback low
complexity time-domain channel estimation and detection
techniques are presented for multicarrier signals in a fast
and frequency-selective Rayleigh fading channel for OFDM
systems. Moreover, polynomial interpolation approaches
have been commonly used for channel estimation [10].

In this paper, we focus on a major challenge, namely, the
SC-FDMA transmission over time-varying multipath fading
channels in very high speed environments, which is regarded
as one of the most difficult problems in 3GPP systems.
Inspired by the conclusions in [6-9], the signal model in
[9] is extended to SC-FDMA systems. A channel estimation
algorithm based on Kalman filter and a polynomial curve
fitting interpolator whose order is selected adaptively is
proposed for LTE uplink systems which include time-
varying channels in high speed environments. The variations
of channel taps are tracked jointly by Kalman filter in
time domain during training symbols. Since channel tap
information is missing between the training symbols of two
consecutive slots within a single subframe, an interpolation
operation is performed to recover it. Hence, the interpolation
is established by using a polynomial curve fitting that is
based on linear model estimator. The contributions of this

study are twofold. (i) The factors which affect the selection
of the order of the polynomial curve fitting interpolator are
identified; (ii) A procedure that is based on mean squared
error (MSE) is developed in order to determine the optimum
polynomial order values.

The remainder of the paper is organized as follows.
Section 2 outlines the characteristics of the channel model
considered along with a discussion that is related to sample-
spaced and fractional-spaced channel impulse response con-
cerns. In Section 3, LTE uplink system model is introduced
and subcarrier mapping is discussed. In addition, the impact
of ICI is formally described for SC-FDMA system. Section 4
provides the details of frequency-domain least squares chan-
nel estimation, Kalman filter tracking, and polynomial curve
fitting interpolation along with the discussion regarding the
selection of its order. Section 5 introduces simulation setups
for various scenarios and presents corresponding perfor-
mance results. Finally, in Section 6, concluding remarks are
given along with possible future research directions.

2. Channel Model

The complex baseband representation of a wireless mobile
time-variant channel impulse response (CIR) can be de-
scribed by

W (1) = > ai(t)d(t - 10), (1)

where «;(t) is the time-variant complex tap coefficients
of the ith path, and 7; is the corresponding path delay.
The fading channel coefficients «;(t) are modeled as zero
mean complex Gaussian random variables. Based on the
Wide Sense Stationary Uncorrelated Scattering (WSSUS)
assumption, the fading channel coefficients in different
delay taps are statistically independent. In time domain,
fading coefficients are correlated and have Doppler power
spectrum density modeled as in [11] with the following
autocorrelation function:

E{ai(t1)af ()} = 0'025[]0(27deTs(t2 - t)), (2)

where 0 = E{ la;(£)|*} denotes the average power of the
ith path channel coefficient, f; is the maximum Doppler fre-
quency in Hertz, and ()" represents the complex conjugate
operation. The term f; T represents the normalized Doppler
frequency; T, is the sampling period. Jo(-) is the zeroth-order
Bessel function of the first kind.

Considering the effect of transmitter-receiver pair in a
more generalized way, (1) can be written as follows [12]:

h(t,t) = W (t,7) * c(1) = Zoci(t)c(t - 1), (3)

where * denotes convolution operation, and ¢(7) is the
aggregate impulse response of the transmitter-receiver pair,
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which corresponds to the Nyquist filter. Continuous channel
transfer function (CTF) can be obtained from (3) as follows:

H(t, f) = J:h(t, De Ty

(4)
= C(f) Deu(t)e >/,
1

where C(f) is the Fourier transform of impulse response,
c(1), of the transceiver pair. For LTE Uplink system of
interest, which uses a sufficiently long cyclic prefix (CP) and
adequate synchronization, the discrete subcarrier-related
CTF can be expressed as

H[m,n] & H(mT;,nAf)

L'-1 .
]2nnri>
= C(nA (mT, (—7
(n f)i;)(x(m ) exp i 5)
-1
_ Zh[m’ l]e—j27rnl/M,
1=0
where
L'-1
h(m, 1] £ h(mT,IT;) = > ai(mT)c(ITs — 1) (6)

i=0

is the CIR which has sample-spaced delays at [T time instant.
M denotes the number of SC-FDMA subcarriers, T; denotes
the base-band signal’s sample duration, L’ and L denote
the number of fractionally-spaced channel paths and the
number of equivalent sample spaced CIR taps, respectively.
Note that because of the convolution with impulse response
of the system, sample-spaced CIR (SS-CIR) has correlated
nonzero taps compared to fractionally spaced CIR (FS-CIR).
Due to the band limited property of the physical systems,
SS-CIR cannot be implemented with limited number of
components. One of the solutions to this problem is to
truncate SS-CIR in such a way that most of its energy is
preserved in the truncated part. In this study, truncation
strategy is adopted in simulations. However, for the sake of
completeness, in Figure 1, the impact of truncation strategy
is illustrated for 3GPP rural area channel model for a
bandwidth of 10 MHz. All of the steps prior to truncation
operation, which are given in (1), (3), and (6), respectively,
are given in this figure with appropriate labels.

3. System Model

Figure 2 shows the discrete baseband equivalent system
model. We assume an N-point DFT for spreading the pth
users time domain signal d[k] into frequency-domain:

N-1
D(p)[K] _ Zd(p)[k]e—jZHkK/N. (7)
k=0
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FIGURE 1: 3GPP rural area channel model for a bandwidth of
10 MHz. Note that all of the steps prior to truncation operation are
illusturated with appropriate labels corresponding to (1), (3), and
(6), respectively.

After spreading, D'P)[x] is mapped onto the nth subcarrier
SP)[n] as follows:

(p) (p)
S®)[n] = DIl n € TyIxl, (8)
0, ne (®-Iylx]),

where F%’)[K] denotes N-element mapping set of pth user,
@ is a set of indices whose elements are {0,...,M — 1} with
M > N. The fundamental unit of spectrum for LTE uplink
is a single subcarrier. A Resource block (RB) is composed
of 12 adjacent subcarriers and forms the fundamental unit
of resources to be assigned a single user as illustrated in
Figure 3. Assigning adjacent RBs to a single user is called
localized mapping which is the current working assumption
in LTE [13]. Alternatively, if RBs are assigned apart, then, it
is called distributed mapping, which is generally employed
for frequency diversity [3] and possible candidate for LTE
Advanced.

The transmitted single carrier signal at sample time m is
given by

M-1
1 .
(p) — (p) j2mmn/M
sPm] g S'Pnle . )
n=0
The received signal at base station can be expressed as

P-1L-1
yiml = > S hO m, s [m — 1] +wim), (10
p=0 1=0

where h(P)[m, 1] is the sample spaced channel response of the
Ith path during the time sample m of pth user, L is the total
number of paths of the frequency selective fading channel,
and w[m] is the additive white Gaussian noise (AWGN) with
N(0,02).

In this paper, we assume that there is only one user, P =
1, therefore (10) becomes

L-1

ylm] = Zh[m, ls[m — 1] + w[m]. (11)

1=0
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FIGURE 3: An example subcarrier mapping for a specific scenario.

By plugging (9) into (11), the received signal can be rewritten
as follows:

M-1  L-1
ylm) = = 3 S[nl 3 Bl D080 gl (12)
n=0 1=0
When (5) is placed into (12), it yields:
| Mo '
ylm] = M Z S[n]H[m, n]e/Z™™M 4+ yw[m]. (13)
n=0

Thus FFT output at nth subcarrier can be expressed in the
following form:

M-1
Y[n] = Zy[m]eijHmn/M
m=0 (14)

= S[n]H[n] +1[n] + W([n],
where H[n] represents frequency-domain channel response

expressed as

| Mo
Hn] = M ZH[m,n],

m=0

(15)

and I[n] is ICI caused by the time-varying nature of the
channel given as

1 M-1 M-1 )
I[n] = — > S[i] > Hlm,i]e>mi-m/M
M. & —
i=0,i#n m=0

(16)

and W [n] represents Fourier transform of noise vector w|m]
as follows:

M-1
Win] = Z wlm]e i¥mmnM (17)
m=0

Because of the I[n] term, there is an irreducible error
floor even in the training sequences since pilot symbols
are also corrupted by ICIL. Time-varying channel destroys
the orthogonality between subcarriers. Therefore, channel
estimation should be performed before the FFT block. In
order to compensate for the ICI, a high quality estimate of
the CIR is required in the receiver. In this paper, the proposed
channel estimation is performed in time domain, where
time-varying-channel coefficients are tracked by Kalman
filter within the training intervals. Variation of channel taps
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during the data symbols between two consecutive pilots is
obtained by interpolation.

We assume that equalization is performed in frequency-
domain after the subcarrier demapping block. Data are
obtained after the demapping described as

X[k] = Y[n], wheren € I'y[k]

(18)
= D[k|H[n] + I[n] + W([n].

4. Channel Estimation

4.1. Frequency-Domain Least Squares Estimation. In this
study, frequency-domain least squares channel estimation
is employed in order to find the initial values required by
Kalman filter. Channel frequency response, which corre-
sponds to used subcarriers, can be found by the following
equation:

X[«]Df [«]
Dy > "IN (19)
0, ne (®-TIylkl),

ﬁo[ﬂ] =

where (-), denotes the initial value, and D;[«] is a training
sequence known by the receiver. If (5) and (15) are
considered together, yielding time average of time-varying
frequency response over one SC-FDMA symbol is

L-1 1 M-1
Z h[m, l]e*jZTIrll/M
0

(20)
_ Z ]’l[l] e—jZﬂnl/M)

=0

where h[l] is the time average of time-varying impulse
response over one SC-FDMA symbol:

1 M-1
hll] = In Z h[m,1]. (21)
m=0

It can be easily observed that in (22) and (20) the DFT pair
will result in corresponding channel representations both in
time and frequency-domains, respectively,

M-1
hil] = > Hin]e 2w, (22)
n=0

Hence, in order to initial values for Kalman filtering in time
domain, we can write M-point IFFT of Hy[n] as

holll = = S Bolnle™™, 1=0,,M~1.  (23)

nely(x]

Recall that in (19) some of the subcarriers are left
unused for a given user. It is also known that transform-
domain techniques introduce CIR path leaks due to the
suppression of unused subcarriers [14]. Besides, Kalman
filter needs time-domain samples in order to initiate the
tracking procedure. However, due to the aforementioned

leakage problem, unused subcarriers for a given user will
create inaccurate time-domain value. In the literature, the
problem has been studied for a single user OFDM system in
[15-17]. As mentioned before, leakage problem just affects
the initialization of the algorithm therefore we do not focus
on the leakage problem and in the subsequent subsection
Kalman filtering is introduced along with this inherent
leakage problem. By using sophisticated solutions for the
leakage problem, initialization of the Kalman can also be
improved.

4.2. Kalman Filtering. It was shown that time selective fading
channel can be sufficiently approximated by using first-order
autoregressive (AR) model. Time-varying channel taps can
be modeled through the use of a first-order AR process in
the vector form as follows [18, 19]:

h{m + 1] = fh{m] + v[m + 1], (24)

where h[m] = [h[m,0],...,h[m,L — 1]], which is also called
process equation in Kalman filtering [20]. v[m] and fI; are
called process noise and state transition matrix, respectively.
The correlation matrix of the process noise and the state
transition matrix can be obtained through the Yule-Walker
equation [21]

Qlm] = (1-p%) diag(a]z'l[m])
B =Jo(2m faTs),

(25)

2 2 2 2 .
where 63, (Oh(m.01> Oinfm,1]>+ - > Onfmop—17 ] 18 the power
delay profile of the channel. The equivalent of (11), which is
a measurement equation in the state-space model of Kalman
filter, can be shown in vector form as

y[m] = s"[m]h[m] + w[m], (26)

where s[m] = [s[m],s[m—1],...,s[m—L+1]]". The channel
estimate h[m + 1] can be obtained by a set of recursions

elm] = ylm] = §lm] = ylm] —s" [mlh[m],
L@
K[m] = pP[m]s*[m] (o2 + " [m]P[m]s*[m])

where P[m] = E{(h[m] — fl[m])(h[m] ffl[m])H}. The
updating rule of recursion is as follows:

h(m + 1] = ph[m] + K[m]e[m],
(28)
P[m +1] = B(BL - K[m]s" [m])P[m] + Q[m +1].

4.3. Polynomial Curve Fitting Based on Linear Model Esti-
mator and Order Selection. When the frame structure in
Figure 4 is considered, one can easily notice that the channel
tap information is missing in between the training symbols of
two consecutive slots within a single subframe. The purpose
of interpolation is to recover this missing information in
between by employing a polynomial curve fitting based on



6 EURASIP Journal on Wireless Communications and Networking

I A frame |

1.slot | 2.slot i. slot

j. slot 19. slot | 20. slot

/ 2.
symb symb

B Cyclic prefix
Data

. Reference signal (training symbol)

\
I symb

I A subframe |

FIGURE 4: An LTE uplink type 1 frame structure with extended CP. In one slot there are six symbols for extended CP case whereas there are

seven symbols for normal CP case [3].

R N

— Real tap values
+  KF estimates
- -~ Interpolater estimates

E3 Data

Time

= Cyclic prefix

Reference signal (training symbol)

F1Gure 5: Kalman tracking and polynomial curve fitting procedure applied in consecutive slots with type 1 frame structure and extended CP

size.

linear model estimator. Note that, in this study, it is assumed
that within one training symbol duration the channel is
time-variant. Kalman filter is employed in order to keep track
of the changes within a single training symbol; therefore,
these estimates are mandatory for interpolating the values
in between because the channel might vary significantly
from one training symbol to the next one. Curve fitting is
established by estimating the coefficients of the polynomial
of interest. In order to estimate the coefficients, in this
study, the linear model estimator is applied to the channel
tap estimates generated by Kalman tracker within training
symbols; see Figure 5. The linear model considered here can
be expressed in the following form [22]:

Elll =XZ- 0[], (29)

where E[1] = [h[m1,1,..., hlmiag, 11, Blmj 0, hlmga,
11" is a 2M x 1 vector of observations supplied by Ith path
Kalman filter channel estimates, and m;, and m;, a

1,..., M are time instants of training symbols. X = [V} Vf] T

is a known 2M X v matrix which is co?structed with two Van-
dermonde matrices V;(k,u) = mi’,; , Vilk,p) = m’;;< k=
,...,Mandy =1,...,2. 0[] = [6:[1],...,6,[1]] " isav x 1
vector of polynomial coefficients to be estimated and v is the
order of the polynomial. In order to obtain the estimates,
classical least-squares approach is employed as follows:

A~ -1

ol = (=7z) =TE[l. (30)
Based on the general description of the linear model
and its estimator given in (29) and (30), respectively, the
channel taps that are estimated with the aid of interpolation
operation are given by

hlm,1] = Z@M[l]m“‘l, My <m < mj. (31)
u=1

Up until this point, a general sketch of the linear model
estimator is outlined. However, the most important param-
eter of the procedure defined (29) through (31), which is
the order of the polynomial, has not been introduced yet.
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through the use of numerical methods for 3 MHz of bandwidth
with fully assigned RBs to a single user in a rural area.

Selection of the order of the polynomial depends on many
factors such as distance between training symbols in time,
maximum Doppler shift, SNR, propagation environment
including number of multipath components and delay
spread, and so on. In other words, all of the parameters
that affect the performance of the tracker and some of the
structural factors (e.g., training symbol placements) have
an influence on the order of the polynomial. In this study,
to decide on the order of the polynomial, mean squared
error (MSE) is selected to be the performance metric in the
following manner:

1 1 — 2
MSE = Z;M%‘h[m,l] — h[m, 1] \ . (32)

Because the proposed method requires the order of the
polynomial as an input, a special scenario in which Doppler,
SNR, and propagation environment are taken into account
while neglecting the impact of the rest of the aforementioned
factors is investigated. The order information is obtained via
steps (29) through (32) in a recursive fashion and recursion
is terminated when the MSE reaches its minimum for a
specific case. Figure 6 plots an instance of the output of
this procedure which solely focuses on mobile speed-SNR
pair. It is seen in this figure that low SNR values actually
prevent the selection of higher orders due to the deteriorated
tracker performance. However in realistic scenarios, channel
parameters are not known exactly, prior knowledge on
channel and its statistics can be used to form look-up table
which contains optimum order values for various scenarios.

We now summarize the proposed method for LTE uplink
systems.

Step 1. Initialization. Frequency-domain LS estimation to
obtain initial tracking parameters for Kalman filter.

Step 2. Tracking. Jointly track CIR taps with Kalman filter
employing training sybols.

TaBLE 1: 3GPP channel models which are used in simulations.

Channel model ~ FS-CIR 1.4 MHz 3 MHz > MHz
SS-CIR SS-CIR SS-CIR
TUx 20 13 17 25
RAx 10 10 11 13
TasLE 2: LTE uplink simulation parameters.
Parameters 1.4 MHz 3MHz 5MHz
Sampling frequency, fi  1.92MHz  3.84MHz  7.68 MHz

FFT size, M 128 256 512

Maximum available
subcarriers, N

Extended CP 32 64 128

72 (6RB) 180 (15RB) 300 (25RB)

Step 3. Order decision. Decide the order of the polynomial
from the look-up table (i.e., Figure 6).

Step 4. Coefficient Estimation. Compute the polynomial
coefficients by applying least-squares approach (30) to the
linear model (29) of Kalman estimates and Vandermonde
matrix of corresponding time instants.

Step 5. Curve Fitting. Estimate the CIR taps from data
symbols by using polynomial coefficients.

5. Simulation Results

In this section, computer simulation results are presented in
order to evaluate the performance of the proposed channel
estimation technique for LTE uplink systems. In simulations,
the channel models given in [23] are used. Only typical urban
(TUx) and rural area (RAx) models are taken into account. In
addition to the default speed values, higher speed values are
also considered in simulations. It is important to state one
more time that there is a discrepancy between the number
of channel taps given in [23] and simulated ones due to
the reasons explained in Section 2. A comparison of these
discrepancies with respect to different settings can be found
in Table 1 by using the FS-CIR and SS-CIR notions.

A QPSK modulation format is employed. We consider
type 1 frame structure, constant amplitude zero autocor-
relation (CAZAC) pilot sequences, and extended CP size
for LTE uplink [13]. As shown in Figure 4, frames have 20
slots, and each slot has six symbols. Fourth symbol in each
slot is a pilot symbol, and the rest is data symbols. Critical
parameters of simulation environments are given in Table 2.
In each simulation loop, one frame (100 data symbols)
is transmitted. In what follows, simulation scenarios are
presented sequentially in detail.

Scenario 1. In this scenario, bandwidth is 1.4 MHz, all
resource blocks are assigned to one user, and the channel
environment is rural area so there are 10 taps to track. Two
speed values are considered, namely, 60 Km/h and 120 Km/h,
for UE. Simulation is run 500 times in order to obtain reliable
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FiGure 7: BER performance comparisons of methods for scenario
1. M1: the proposed method which is LS estimate is obtained
from the pilots for the CFR used with the Kalman filter and then
linear interpolation is used for symbols in between. M2: frequency-
domain LS is used. M3: perfect channel state information is used.

statistics. The results are plotted in Figure 7. The proposed
method (Method 1—M1) is compared with two methods.
In the first method, perfect CSI (Method 3—M3) is fed into
the equalization process, whereas in the second one, which
is outlined in Section 4.1, LS estimates (Method 2—M2) of
CSI are used. It is worth mentioning that in the M2 the
same channel frequency response (CFR) estimates are used
until the next reference (training) symbol. As expected, M3
case provides the best performance among all. On the other
hand, M2 performs the worst among all of the methods
considered in this scenario, since it neither keeps track of the
channel during data symbols nor takes the channel variation
into account during the training sequence. Furthermore,
during the training sequence, it just calculates the average
CSI which is already contaminated by noise. Note that the
performance of M1 is placed in between these two cases
while its performance converges that of M3 case for low
SNR values, whereas diverging it diverges for high SNR
values. This is not surprising, because high SNR values allow
one to observe the irreducible ICI error floor due to time-
varying channel. Also note that for M3 case faster speed
corresponds to better performance because when a proper
detection technique is adopted, the time-varying nature of
the channel can be exploited as a provider of time diversity
[9].

Scenario 2. In this scenario, the impact of adaptive selection
of the order of polynomial curve fitting on the performance
of the method proposed is investigated with the following
settings. Transmission bandwidth is 3 MHz, all resource
blocks are assigned to one user, and the channel environment
is rural area so there are 11 taps to track and the mobile
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Ficure 8: BER performance comparisons of different methods with
respect to the method proposed which employs polynomial curve
fitting whose orders are selected adaptively in senario 2 for different
mobile speed values. Note that the performance of the method
proposed exhibits a staircase-like behavior over the SNR values that
correspond to the order shifts which can also be cross-checked with
the points given in Figure 6. M1: the proposed method which is
LS estimate is obtained from the pilots for the CFR used with the
Kalman filter and then linear interpolation is used for symbols in
between. M2: frequency-domain LS is used.

speeds are 250 Km/h, 350 Km/h, and 450 Km/h. The pro-
posed method (M1) and LS estimates (M2) which is afore-
mentioned in Scenario 1 are compared to each other with
respect to their bit error rate (BER) performances in Figure 8.
It is worth noting that the performance of the proposed
method improves by experiencing a staircase-like effect. This
stems from changing the order of the polynomial curve
fitting adaptively based on the results presented in Figure 6.
In addition to comparative analysis, the MSE performance
of the method proposed is also investigated in Figure 9. In
conjunction with BER performances, as can be seen in both
Figures 8 and 9, drastic drops in the performance curves
occur in parallel to the corresponding mobile speed-SNR
pairs given in Figure 6. It is very important to state that,
the results presented in Figure 6 are peculiar to the setup
considered here and calculated through the use of numerical
methods, since its analysis is out of the scope of this study.

Scenario 3. Another important aspect of the problem con-
sidered here is to examine how the behavior of Kalman filter
is affected by the accuracy of the initial value of channel
taps. As discussed in Section 4.1, the structure of frequency
spectrum of OFDM-based multicarrier systems causes a
phenomenon called leakage problem [14] in transform
domain methods. In the method proposed, leakage problem
combined with LS estimation in frequency-domain leads
to inaccurate initial value of channel taps to be fed into



EURASIP Journal on Wireless Communications and Networking 9

SNR (dB)

—— v = 250km/h
—e— v = 350km/h
—— v = 450km/h

FIGURE 9: MSE performances of the method proposed which
employs polynomial curve fitting whose orders are selected adap-
tively in Senario 2 for different mobile speed values. Note that
the performance of the method proposed exhibits a staircase-like
behavior over the SNR values that correspond to the order shifts
which can also be cross-checked with the points given in Figure 6.
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Figure 10: MSE performance comparisons for different resource
block assignments to a single user in Scenario 3. Note that a decrease
in number of assigned resource block worsens the performance
stemming from the leakage problem.

Kalman tracker. In order to see how this leakage problem
influences the MSE performance of the method proposed,
another simulation setup is constructed with the following
parameters. Transmission bandwidth is 3 MHz; different
numbers of RBs are assigned one user each time in a
typical rural area environment in which there are 11 taps

MSE

0 10 20 30 40 50 60 70
SNR (dB)

—*— Rural area
—e— Typical urban

FiGUre 11: MSE performance comparisons for different propaga-
tion channel environments in Scenario 4.

to track for a fixed mobile speed of 120 Km/h. The results
are given in Figure 10. In this figure, it is clearly observed
that assigning less number of RBs gives rise to poorer
performances compared to those of which are assigned more
RBs. This stems from the fact that less number of RBs causes
more leakage yielding worse accuracy in the initial values of
channel taps in time domain.

Scenario 4. Finally, the overall impact of propagation en-
vironment is also investigated through the simulations.
Two different setups, namely, rural and typical urban area
environments, are considered with the following common
parameters. Transmission bandwidth is 3 MHz, all RBs are
assigned to one user, and the mobile speed is 120 Km/h.
The results are plotted in Figure 11. It is clear that the
performance is significantly dropped in a typical urban
area compared to that in rural area because the number of
channel taps in a typical urban is greater than that in rural
area, as specified in Table 1. Since Kalman filter strives to
track the taps jointly in time, having a larger number of
channel taps yields worse performance, as expected.

6. Concluding Remarks and Future Directions

Future wireless communication systems such as LTE aim at
very high data rates for high mobility scenarios. Since many
of these systems have an OFDM-based physical layer, they
are very sensitive to ICL In this study, a channel estimation
method is proposed for OFDM-based wireless systems
that transmit only block-type pilots (training symbols).
In the method proposed, Kalman filter is employed to
obtain channel estimates during the training symbols. Next,
polynomial curve fitting whose order is adjusted adaptively
is applied in order to recover the time-variation of channel
taps between training symbols within two consecutive slots
in a single subframe. Results show that selecting the order
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of the polynomial adaptively improves the BER performance
significantly. However, as in most of the OFDM-based sys-
tems, the method proposed suffers from transform domain
techniques as well, since they introduce CIR path leaks due
to the suppression of unused subcarriers [14].

This study also reveals that selection of the order of
the polynomial used in interpolation depends on many
factors such as distance between training symbols in time,
maximum Doppler shift, SNR, propagation environment
including number of multipath components and delay
spread, and so on. However, to the best knowledge of
authors, there is no closed-form expression that takes all
of the aforementioned factors into account and determines
the optimum order value for the interpolation polynomial.
In case deriving a closed-form expression is impossible or
intractable, generating look-up tables which contain the
optimum order values for various scenarios is essential.

The performance of the proposed approach directly
related to Kalman filter performance. Specifically for more
than one user case Kalman performance will be effected
by initialization and the number of parameters to be
tracked. Since unused subcarriers increase additional chan-
nel impulse response path leakage will degrade the perfor-
mance of the initialization resulting in overall performance
degradation in the proposed approach.
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