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Massively multiplayer online role playing games (MMORPGs) have become extremely popular among network gamers. Despite
their success, one of MMORPG’s greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of
game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human
players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To
address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify
game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that
their traffic is distinguishable by 1) the regularity in the release time of client commands, 2) the trend and magnitude of traffic
burstiness in multiple time scales, and 3) the sensitivity to different network conditions. Based on these findings, we propose
four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against
countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.
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1. Introduction

Massive multiplayer online role playing games (MMORPGs)
have become extremely popular among network gamers,
and now attract millions of users to play in an evolv-
ing virtual world simultaneously over the Internet. The
number of active player subscriptions doubled between
July 2004 and January 2006 to a 13-million player
base [1]. Despite their success, one of MMORPG’s
greatest challenges is how to maintain the subscription
base in the face of the increasing use of game bots
(http://en.wikipedia.org/wiki/MMORPG#Bots).

A game bot, usually game-specific, is an automated
program that can perform many tasks in place of gamers.
Since bots never get tired, bot users can improperly reap
rewards with less time investment than legitimate players.
As this undermines the delicate balance of the game world,
bots are usually forbidden in games. However, identifying
whether or not a character is controlled by a bot is
difficult, since a bot does not necessarily exploit any bugs

or vulnerabilities of the game software; it just “plays” the
game in place of a human. Currently, bots must identified
manually by launching a dialogue with a suspect character,
as a bot cannot speak like a human. However, this method
leads to a significant administrative burden. In this paper,
we analyze the traffic generated by human players versus
game bots and propose general solutions to identify game
bots automatically. To the best of our knowledge, this is the
first work to investigate automatic, game-independent, bot
identification techniques by using network traffic analysis.

Taking Ragnarok Online (Ragnarok Online, http://iro
.ragnarokonline.com/), one of the most popular MMORPGs
in the world, as a case study, we analyze the traffic of
human players and mainstream game bots under different
network settings. We find that traffic generated by bots
versus human players is distinguishable in various respects,
such as the regularity and patterns in client response times
(i.e., the release time of client commands relative to the
arrival time of the most recent server packet), the trend and
magnitude of traffic burstiness in multiple time scales, and
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the sensitivity to network conditions. Based on the above
findings, we derive four strategies to determine whether or not
a given traffic stream corresponds to a game session played
by a game bot. Using proper combinations, we propose two
ensemble schemes, one conservative and one progressive, to
automatically identify game bots. Our evaluation shows that
the conservative scheme reduces the false positive rate to zero
and achieves 90% accuracy in identifying bots. Meanwhile,
the progressive scheme yields a false negative rate of less
than 1% and achieves 95% accuracy. The former completely
avoids making false accusations against bona fide players,
while the latter tracks game bots down more aggressively.
We show that the proposed methods are generalizable to
other bots and games, and that they are robust against simple
random-delay counter-measures of bot developers.

However, we also showed that the pure traffic-based
detection schemes might be deceived by sophisticated
counter-attacks that mimic human gaming activities. This
situation cannot be avoided completely because game bots
can always imitate human activities at the network level.
Given the intrinsic difficulties of automatic bot identifica-
tion, we believe that the most effective bot detection scheme
should be multimodal rather than a single approach. To this
end, we explore a number of promising strategies that work
at higher semantic levels.

The remainder of this paper is organized as follows.
Section 2 reviews related works. Section 3 provides a brief
introduction of the game Ragnarok Online and an assessment
of the current status of game bots. Section 4 discusses the
trace collection. Section 5 characterizes the discrepancies
between traces for bots and human players. Then, based on
our findings, we propose four bot identification strategies
in Section 6. Section 7 evaluates the performance of the
proposed schemes and discusses their practical use in real
business operations. We discuss the generality and robust-
ness of the schemes in Section 8. In Section 9, we explore a
number of potential strategies for managing bots at higher
levels (in contrast to the network level). Section 10 contains
our conclusion.

2. RelatedWork

While cheating is regarded as a crucial challenge to the design
of online games, a great deal of effort has been devoted to
cheat prevention schemes [2–5]. Since game cheats often
exploit loopholes in game rules or specific implementations,
researchers attempt to guarantee the integrity of game
systems by, for example, runtime verification of transaction
atomicity [4]. However, the proof of correctness approach
is not applicable to bot detection problems because game
bots do not necessarily “cheat.” Some game bots cheat by
exploiting bugs or reading process memory, while others
do not. Noncheating game bots work just like regular
players; they cannot do anything regular players cannot do.
The difference between a bot-controlled character and a
human-controlled character might only lie in the qualities
of humanness and intelligence that the former lacks.

A number of studies have employed machine learning
techniques to detect game bots in online games. For example,

Yeung et al. [6] proposed using the a dynamic Bayesian
network (DBN) to model the aiming accuracy for aimbot
detection in first-person shooter (FPS) games. In the DBN,
the aiming accuracy depends on whether the player is
cheating, whether the player or the target is moving, the
aiming direction, and the distance between the player and
the target. The model can detect cheaters with a high degree
of accuracy, but it can only be applied to aimbots. Kim et al.
proposed detecting auto programs in MMORPGs [7] based
on the window events, which are generated by a player’s
key strokes, mouse button clicks, and mouse movements.
Various classification schemes, such as the decision tree,
the k-NN classifier, the multilayer perceptron network, and
the naive Bayesian classifier, are used to determine whether
automated programs are being used. Because of the high
regularity exhibited by such programs, the window-event-
based approach yields a decent performance irrespective of
the classification method used. Chen et al. [8, 9] proposed
using avatars’ movement trajectories to detect the use of
game bots in FPS games. Their rationale is that the trajectory
of an avatar controlled by a human player is hard to simulate.
Since human decisions on avatar movements may not always
be logical and efficient, how to model and simulate realistic
movements is still an open question in the AI field. Chen et
al. show that game bot detection based on the spatial and
temporal characteristics of the avatars’ trajectories is effective
in Quake 2.

Golle and Ducheneaut proposed using completely auto-
mated public turing test to tell computers and humans apart
(CAPTCHA) tests [10], either software-based or hardware-
based, to prevent bots from playing online games [11].
Currently, the most widely used CAPTCHA tests currently
rely on the ability of human beings to recognize randomly
distorted text or images. The drawback of this approach is
that the cost of bot detection must be distributed among all
users, including legitimate players, as the tests will inevitably
interrupt players’ adventures and reduce their sense of
immersion in the virtual world. Legitimate players do not
normally like these kinds of tests as they may feel they
are suspected of cheating. This could be one reason that
password-book-based anticopy mechanisms for PC games
are no longer popular. However, these mechanisms might be
the best candidates for the last line of defense if automatic
bot identification mechanisms, such as our proposed traffic-
based schemes, are used. In other words, passive detection
schemes could be used initially to find suspects among the
thousands of honest players, after which CAPTCHA tests
could be applied to the suspected characters.

Recently, anticheating softwares, such as PunkBuster and
GameGuard, have been widely deployed in online games
to prevent cheating. Such software is bundled with game
clients, and cannot be uninstalled even if the game client
is uninstalled. It works by hiding the game client process,
monitoring the entire virtual memory space (to prevent
modification of the game executable image), blocking
suspected programs that might be hacker tools, and blocking
certain API calls. This kind of software can neutralize
nearly every plug-in tool that attempts to hook the game
client program in order to inspect or modify game states
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when the game is running; however, it cannot stop the
widespread of standalone bots, including the bot series we
study in this paper. The reason is obvious; anticheating
softwares are host-based, so they must be installed on
players’ PCs to be effective. In contrast, standalone
bots can be executed without game clients; therefore,
anticheating tools cannot prevent game bots as they would
not normally be installed on PCs where standalone bots
are running. This is evidenced by the fact that game bots
may still be active in games protected by PunkBuster or
GameGuard, for example, Quake (PunkBuster) and Lineage
(http://boards.lineage2.com/showflat.php?Number=573737.)
(GameGuard).

3. Ragnarok Online and the Bots

The core features of most MMORPGs are more or less
standard, for example, training characters, obtaining better
equipment, and completing various quests, which usually
involve fighting with monsters. Characters gradually become
stronger and better equipped by gaining experience points
and by accumulating loot from combat. However, repeated
combat is time-consuming and can become somewhat
routine and boring; thus, some players seek to set up scripts
(also known as macros or bots) that can automatically
and repeatedly perform assigned tasks without human
involvement. Given that bots never get tired, bot users can
reap huge rewards without the time investment made by
other honest players.

From the view point of business operations, bots erode
the balance and order of the game world, as bot users can
monopolize scarce resources by unleashing the indefatigable
power of bots. Although companies try to prevent the use
of game bots, automatic bot detection mechanisms are not
currently available; thus, bot-controlled characters can only
be identified manually through human intelligence. That is,
game masters try to open online dialogues with suspicious
characters; then, the masters can decide if the suspicious
characters are actually bot-controlled or human-controlled
based on their responses. However, given millions of online
players, this method is very inefficient and incurs a significant
administrative burden. The biggest drawback is that the
detection is intrusive, so it may offend innocent players. As
the problem of players cheating with game bots becomes
more rampant and serious, we believe the demand for
automatic bot identification techniques for online games is
urgent.

We surveyed publicly-available game bots for Ragnarok
Online, and found that although more than a dozen bots
are available, most of them are derived from the well-known
Kore project (Kore, http://sourceforge.net/projects/kore/).
Kore is a console-based, platform-independent, and open-
source bot program written in Perl and C. It could be
described as the ancestor of Ragnarok Online bots, since
many popular bots, for example, KoreC, X-Kore, mod-
Kore, Solos Kore, wasu, Erok, iKore, and VisualKore, have
been developed from it. Se also found that a similar bot
program, DreamRO (DreamRO, http://www.game186.com/

SoftList/Catalog 76 SoftTime Desc 1.html) and its deriva-
tives, is very popular in China and Taiwan.

Both Kore and DreamRO are standalone bots, that is,
they can communicate directly with game servers without the
official game clients. Their actions are script-based, covering
almost every action available in the game client. In addition,
they both allow users to give commands anytime, regardless
of the prearranged actions of the scripts, that is, the bots are
both script-based and interactive.

4. Trace Collection

To develop bot identification techniques based on traffic
patterns, we acquired a number of Ragnarok Online game
traces for both popular bot series and for human players.
For brevity, we use “players” to denote human players
hereafter. To make the trace collection tractable, we chose
a bot program to represent each series. KoreC, the Chinese
edition of Kore, was selected to represent the Kore series, and
DreamRO was chosen to represent the DreamRO series.

We collected a total of 19 game traces at the client
side, that is, the traffic monitor was attached to the same
LAN as the game clients. To ensure heterogeneity among
the limited number of traces, we intentionally incorporated
combinations of controllable factors into the trace collection.
From a networking perspective, both bot and player traces
contained fast and slow access links, and the network media
ranged from Fast Ethernet to ADSL. In terms of user
behavior, the human players were diverse in their choice of
characters and game playing proficiency; among the four
players, Gino and Kiya were experienced. Both of them had
played Ragnarok Online for more than one year, and their
characters were high-level (> level 60), well-equipped, and
highly-skilled. On the other hand, Kuan-Ta and Jhih-Wei
were newcomers to Ragnarok Online, and their characters
were low- to middle-level (level 5 and level 40, resp.) without
advanced skills or powerful weapons. The scripts we used for
the two bots are commonly available in the Ragnarok Online
community. Their actions are set to the most common
“kill, loot, and trade” cycles. In other words, at the start,
the bot will go to a selected area, where there are many
monsters, and proactively pursue and attack the nearest
monster. After killing a monster, the bot will take the loot,
and turn to another monster. The process will continue until
the backpack is full of loot. At that time, the bot will go
to a marketplace to sell the gathered loot, and then restart
the cycle. As in the human player case, we purposely ran
the bots with characters of different proficiency levels and
professions.

In total, the collected game traces (The complete
game traces (in tcpdump format) are publicly avail-
able at http://mmnet.iis.sinica.edu.tw/content.html?key=ro.)
contain 3 million packets over 206 hours, as summarized in
Table 1. For brevity, we denote the four players asA, B,C, and
D, respectively, Kore as K, and DreamRO as R. Traces from
the same bot/player are coded by a unique digit following the
bot/player’s identifier. The period of a game trace indicates
the continuous gaming time. We asked the human players
not intentionally leave their characters idle during the game
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Table 1: Game traffic traces (206 hours and 3 million packets in total).

Category Player ID Network∗ Period # Conn Pkt Bytes Pkt Rate‡ Avg RTT Loss

Human player

Gino
A1 HiNet 1.8 hr 12 51,823 3.5 MB 0.9 / 3.9 pkt/s 82.0 ms 0.03%

A2 2 M/512 Kbps 5.6 hr 14 147,814 10.5 MB 0.8 / 3.4 pkt/s 95.4 ms 0.03%

Kiya

B1 0.4 hr 45 15,228 1.0 MB 1.2 / 4.5 pkt/s 81.6 ms 0.01%

B2 APOL 2.3 hr 108 59,247 3.8 MB 1.1 / 3.3 pkt/s 108.8 ms 0.12%

B3 2 M/512 Kbps 2.1 hr 189 47,721 3.2 MB 0.9 / 2.8 pkt/s 125.5 ms 0.23%

B4 5.0 hr 326 129,177 8.4 MB 1.1 / 3.3 pkt/s 109.8 ms 0.09%

Kuan-Ta C1 ASNET† 0.8 hr 2 9,681 0.6 MB 0.8 / 1.4 pkt/s 191.8 ms 1.73%

Jhih-Wei D1 TANET 2.4 hr 28 48,617 3.2 MB 0.8 / 2.6 pkt/s 45.1 ms 0.01%

Bot

Kore

K1
TANET

13.4 hr 104 245,709 13.6 MB 0.7 / 2.3 pkt/s 33.0 ms 0.01%

K2 26.5 hr 306 479,374 30.4 MB 1.0 / 2.1 pkt/s 45.6 ms 0.04%

K3 32.7 hr 37 271,416 13.3 MB 0.6 / 0.7 pkt/s 96.5 ms 0.004%

K4
ETWEBS-TW

13.0 hr 38 225,528 11.5 MB 0.9 / 2.0 pkt/s 65.7 ms 0.01%

K5 5.7 hr 31 110,883 6.0 MB 1.1 / 2.1 pkt/s 90.6 ms 0.20%

DreamRO

R1
TANET

3.0 hr 7 46,381 2.6 MB 0.9 / 1.7 pkt/s 83.4 ms 0.03%

R2 4.8 hr 21 77,675 4.4 MB 0.9 / 1.9 pkt/s 65.2 ms 0.02%

R3 42.3 hr 42 652,877 34.1 MB 0.8 / 1.8 pkt/s 85.3 ms 0.05%

R4
ETWEBS-TW

11.2 hr 77 320,686 25.1 MB 1.7 / 3.5 pkt/s 85.2 ms 0.05%

R5 23.1 hr 176 672,325 53.3 MB 1.7 / 3.6 pkt/s 79.4 ms 0.16%

R6 10.5 hr 36 209,347 13.1 MB 1.0 / 2.4 pkt/s 87.7 ms 0.05%

Total 2 B / 4 P 19 206.6 hr 1,599 3,821,509 241.6 MB
∗

This column lists network names looked up using WHOIS service.
† Access link bandwidth: ASNET (2 M/512 Kbps), ETWEBS-TW (2 M/256 Kbps), and TANET (100 Mbps).
‡ Packet rate column format is “client data packet rate/server data packet rate,” that is, pure TCP ack packets do not count.

as client traffic will not be generated if game characters
are left idle. Each game trace is composed of a number of
TCP connections, where each connection corresponds to the
activity within the same map. The game world of Ragnarok
Online is partitioned into a number of maps, provided by
several map servers. When a character moves across map
boundaries (by walking, transport, or teleporting), the game
client will disconnect from the original map server and
establish a connection with the new map server. Therefore,
the number of connections implies the number of map
switches, which indicates how frequently a character moves
across maps. The packet rate column lists the average rate
that data packets are sent by game clients and servers. The
average client packet rate indicates the type of player activity,
since each player command is conveyed by a client data
packet. On the other hand, the average server packet rate
indicates the level of interaction, that is, the popularity of
and the amount of activity in the area where the character
resides, as server packets convey information about the
activities of characters nearby [12]. Note that the average
packet rate is roughly the same for the same bot/player
under the same network setting, which may be seen as
a “signature” of the game playing behavior of a certain
bot/player. Based on these two metrics, we show that the
behavior of our selected human players is heterogeneous. In
addition, the average round trip times (RTTs) and packet
loss rate statistics manifest the heterogeneity of the network
conditions experienced during the traced sessions.

5. Characterization of Traffic Patterns

From a traffic analysis perspective, the most intuitive
discrimination between bots and players is probably the
release timing of client commands. For human players, client
commands, for example, that approach another character,
attack a nearby monster, or cast healing magic, are triggered
by keyboard strokes or mouse clicks. In contrast, for game
bots, triggering client commands are decided by the decision
engine in the bot program. Thus, a bot’s decision about when
to issue the next command is critical to us because it leads to
major discrepancies in traffic patterns between different bot
series, as well as between bots and human players.

Our analysis of the release timing of client commands
from bots shows that the release of commands, for both
Kore and DreamRO, relates to the following events (1)
timer expiration, and (2) server data packet arrivals. The
use of periodic timers is intuitive and reasonable, since
many actions in a game are iterative in nature, for example,
continuous slashing until an enemy is defeated. A series
of successive commands are also usually implemented with
timers, for example, when the life point is lower than a
certain threshold, a character must immediately drink a
healing potion, and then cast protective magic at himself
and destructive magic at the most threatening enemy. Using
a timer to schedule the above commands sequentially with
certain intervals is the most common design. On the other
hand, since server data packets carry the latest status about
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Figure 1: Histogram of packet interarrival times.

the character and environment, for example, the current life
point of the character, the movement of nearby monsters,
and whether the last slash hits the enemy, bots often react
to server data packets by issuing new commands. For
example, to pursue a fleeing enemy, a bot would issue
movement commands continuously whenever it learns the
latest location of the enemy from the server data packets.

In the following, we analyze the traffic traces of game bots
and human players, and search for distinctive traffic patterns
exhibited by bots, but not by players, and vice versa. The
analysis of traffic patterns comprises three aspects. First, we
examine the timing of client commands relative to the arrival
time of the most recent server data packet. We then observe
the traffic burstiness of the packet arrival processes. Lastly,
we identify the particular patterns in human behavior caused
by sensitivity to network conditions, which, of course, game
bots do not possess.

5.1. Regularity in Client Traffic. Figure 1 shows the his-
tograms of client packet interarrival times shorter than 2

seconds. While player traces in the upper two plots show
randomness in packet interarrival times, the bot traces,
shown in the lower two plots, suggest the existence of a
timer triggering mechanism and the absence of randomness
that characterizes human actions. Specifically, Kore3 reveals
a periodic timer of 16 Hz, that is, most of the packet inter-
arrival times are multiples of 1/16 second, while DreamRO3
displays more regular timing, as most of the interpacket
times concentrate on certain values.

An empirical cumulative distribution function (CDF)
plot of packet interarrival times manifests the above state-
ments more clearly. In Figure 2, the CDF curves of player
traces, A1 and B2, increase smoothly, except for a sudden
rise around 0.6 seconds, which is a frequency component
inherent in game clients. We also provide the CDF curve of
an exponential random variable fitted to A1 by maximum
likelihood estimation (MLE). Though the exponential curve
does not fit the empirical CDF of A1 very closely, it can be
seen an approximation. On the other hand, the curves of
Kore1 and DreamRO3 show zigzag patterns, which strongly
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suggests that packet interarrivals in both bot traces are
concentrated around certain times.

5.1.1. Entropy of Packet Interarrival Times. From the above
observation, we find that the distribution of packet interar-
rival times is more regular for bot traffic than player traffic.
We now attempt to exploit this property to distinguish bot
traces from player traces.

A well-known metric for judging the degree of random-
ness of a variable is its degree of entropy. We start with the
definition of Shannon’s entropy, a traditional measure of the
uncertainty in a random variable. The Shannon’s entropy,
H(x), of a discrete random variable, x, that takes on the value
vi with probability pi is defined as

H(x) = −
∑

i

pilog2pi. (1)

We compute the entropy of each trace by segments, that
is, the interpacket times of each trace are first divided into
several segments, and the entropy is computed for each
segment separately. The computed entropy with segment
size 5000 for all traces is depicted in Figure 3. The result
conforms to our observation that the entropy of player traces
is mostly higher than that of bot traces. We provide a possible
threshold on the plot so that the entropy of player traces is
higher than the threshold, while the entropy of bot traces is
lower than that. However, choosing an appropriate threshold
is difficult, because we cannot decide how large is “large”
for the computed entropy. Furthermore, if we compute the
entropy with larger segments, the entropy between bot and
player traces will be less distinguishable. This is because with
more packets, there is more chance of randomness in the
packet interarrival times of bot traces. For these reasons,
we do not use the entropy of packet interarrival times to
distinguish between bots and human players.

5.1.2. Frequency Components. By incorporating the time
factor, we take the successive packet interarrival times in a
trace as a time series. We find that in some bot traces, packet
interarrival times occur periodically in a statistical sense.
For example, Figure 4(a) depicts 100 successive interpacket
times in the trace DreamRO3. On the graph, there is a
pronounced pattern, wherein one or two large packet gaps
of approximately 2.5 seconds occur about every 10 packets.
Such a regular pattern is a consequence of bot behavior for
certain tasks; for example, in its monster-hunting process,
a bot will move in a randomly chosen direction for certain
steps, and repeat the steps until a monster is within its
view scope. This time series can be viewed in the frequency
domain by a transform to the corresponding power spectral
density function, as shown in Figure 4(b). On the graph,
frequency components of 0.1 Hz and 0.2 Hz are clearly
present, where the 0.1 Hz frequency corresponds to the 10-
packet-period in Figure 4(a). Note this phenomenon appears
in both the Kore and DreamRO traces, but it is not present in
player traces. However, not all bot traces exhibit pronounced
frequency components, since the proportion of regular
behavior is small compared to the whole trace. Therefore, we
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The threshold is chosen arbitrarily to reveal that the entropy of
player traffic is almost always higher than that of bot traffic.

do not consider that periodicity in packet interarrival times
is an effective method for recognizing game bots.

We can use another metric to check the periodicity in
traffic, that is, the frequencies embedded in packet arrival
processes. For each trace, we obtain the corresponding packet
arrival process by counting the number of client packets
released every 0.1 seconds. Since for each trace, at every
instant exactly one connection is active, we argue that
the corresponding packet arrival process is just stationary,
regardless of the rate variation during game playing. A
preliminary check of player traces shows that at least three
strong frequencies are inherent in the game design, namely,
1/12 Hz, 1.67 Hz, and 60 Hz. This behavior echoes the study
of another MMORPG [12], ShenZhou Online, which shows
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Figure 4: (a) DreamRO3 exhibits regular packet interarrival times, such that, on average, one or two large packet gaps occur for every 10
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that significant frequency components exist in game traffic
in either direction. Comparing the power spectrum of bot
traces with that of player traces, we find that bots induce
additional frequency components not present in player
traces, as shown in Figure 5. However, since the frequencies
in game traffic may be adjusted based on a character’s
attributes [12], for example, race, skill, or equipment, and
since we do not have complete knowledge of all possible
frequencies built into the design of Ragnarok Online, we
cannot decide whether a frequency component is inherent in
the game design or induced by a bot program. For this reason,
we do not simply use the frequency components of packet
arrival processes to identify game bots.

5.2. Command Timing. We begin by defining the “client
response time” as the time difference between a client packet’s
departure time and the most recent server packet’s arrival time,
if no other client packets intervene; otherwise, the metric
is undefined. Since we do not consider the corresponding
server response time, for brevity, we use “response time”
to denote client response time hereafter. By the above
definition, for each trace, we compute the response times for
those client packets that immediately follow a server packet.

As an initial assessment of whether the response times
of bot traces differ significantly from those of player traces,
we plot the cumulative distribution functions of response
times of less than 0.1 seconds for four traces, as shown in
Figure 6. In the figure, except for an initial rise for A1, the
two player traces,A1 and B2, are similar in that their response
times of less than 0.1 seconds increase smoothly, that is, they
are almost uniformly distributed. On the other hand, bot
traces reveal different patterns; the CDF of Kore1 is a zigzag-
type, that is, the response times are clustered around certain

intervals, while that of DreamRO2 has a strong mode with
very small response times. In the following, we discuss these
two properties of bot traces, that is, strong modes and zigzag
CDF, in more depth.

5.2.1. Quick Response. Among all game traces, only those of
DreamRO possess a considerable number of short response
times, for example, ≤ 10 milliseconds, which we call quick
responses. These responses are frequent enough and clustered
so that more than one peak is formed in the corresponding
histogram, as shown in Figure 7. Note that to distinguish
peaks clearly we take a logarithm of the response time. The
quick response manifests that DreamRO often issues client
commands immediately upon the receipt of server packets,
while Kore employs a more sophisticated command timing
mechanism.

5.2.2. Regularity in Response Times. Although quick res-
ponses are not present in the traces of Kore, it still relies
on server packet arrival events to schedule the release of
client commands. In Figure 8, which depicts histograms of
response times shorter than 0.5 seconds, both bot traces show
spiky densities, while player traces do not present any visible
patterns. These plots indicate that both Kore and DreamRO
schedule their client commands by an intentional delay time
following the receipt of a server packet. In the histogram, if
the bin width is small enough, the distance between spikes
will reflect the smallest scheduling unit of the command
departure times; according to our traces, the value is set
to 16 milliseconds for both Kore and DreamRO (equivalent
to 60 Hz). In Section 6.1, we will propose a bot detection
scheme based on the quick responses and the regularity in
response times identified above.
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Figure 5: Power spectral density of packet arrival processes. Frequencies embedded in player traces are alike; however, bot traces display
additional frequency components that do not appear in player traces.

5.3. Traffic Burstiness. Traffic burstiness, that is, the variabil-
ity of byte or packet counts sent in successive periods, is an
indicator of how traffic fluctuates over time. While traffic
burstiness is commonly related to the scaling property of a
traffic stream, we use it to assess how bursty (or smooth)
the bot traffic is. Our hypothesis is that a bot, by virtue
of its periodicity, should exhibit smoother traffic compared
with those of players. In the following, we use the index of
dispersion for counts (IDCs) to quantify the variability of
traffic over different time scales.

There are several commonly used metrics of traffic
burstiness [13]. In the following, we first evaluate the
coefficient of variation (CoV) of packet interarrival times,
and then use the index of dispersion for counts (IDCs) to
capture the variability of traffic over different time scales.

5.3.1. Coefficient of Variation. The coefficient of variation
(CoV) of packet interarrival times is defined as the ratio
of the standard deviation of the interarrival times to the
expected value of interarrival times. The CoVs of selected
game traces, computed with a segment size of 500, are

plotted in Figure 9. By definition, the CoV of any exponential
random variable is equal to 1, as its standard deviation is
always equal to its mean. From the graph, the average CoVs
of player traces are all higher than 1, while most bot traces
have CoVs lower than 1. However, we do not consider that
the CoV is an effective indicator for differentiating bots and
players because of randomness. For larger segments, all game
traces tend to have CoVs higher than 1, so the boundary
between bot traces and player traces is difficult to determine.
Thus, in the following, we use a more sophisticated method
to measure traffic burstiness by characterizing it in various
time scales.

5.3.2. Index of Dispersion for Counts. Like all other software
programs, a bot program must have a main loop, where
each iteration of the loop corresponds to a minimum
unit of operation, for example, issuing a command for
a character, or processing a server packet. The rationale
behind multitime-scale burstiness analysis is that, assuming
each iteration (of the main loop) takes approximately the
same amount of time, and the game bot sends out roughly
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Figure 6: CDF of client response times.

the same number of packets in each iteration, then traffic
burstiness will be lowest at the time scale equal to the amount
of time needed for each iteration of the main loop.

We use the index of dispersion for counts (IDCs) to
measure traffic burstiness in multiple time scales. The IDC
at time scale t is defined as the variance in the number of
arrivals in an interval of time t divided by the mean number
of arrivals in t [14], that is,

It = Var(Nt)
E(Nt)

, (2)

where Nt indicates the number of arrivals in an interval of
time t. Thus, the IDC is defined so that, for a Poisson process,
the value of the IDC is 1 for all t.

The IDCs for selected game traces, with the Poisson
rate regulation heuristic applied, are plotted in Figure 10.
We make two observations from the plots (1) bot traffic
is smoother than player traffic, but it is hard to define
a threshold for the burstiness magnitude, and (2) all bot
traces support our hypothesis that they have the lowest
burstiness at time scales around 0.5–2 seconds. In other
words, the burstiness initially exhibits a “falling trend” when
the time scales are small; however, after a certain time scale
with the lowest burstiness, a “rising trend” will appear.
In contrast, the burstiness trends of most player traces
increase monotonically in time scales >1 second. We exploit
these patterns to develop a bot identification scheme in
Section 6.2.

Another aspect we investigate is the magnitude of traffic
burstiness. Though we cannot judge how smooth a traffic
process is simply by the absolute value of IDC measures,
in our case, we can take the IDC of server packet arrivals
as the baseline, and obtain the relative smoothness of client
packet arrivals. The rationale behind the comparison is that,
even if the client traffic is very different, game servers still
treat all clients equally, that is, the burstiness of server
traffic processes, especially in larger time scales, should be
similar regardless of the client type. For comparison, we first

normalize the server packet arrival process so that it has the
same average rate as client packet arrivals. Then, we define
the cross-point as the minimum time scale where the burstiness
of the client traffic is lower than that of the corresponding
server traffic to determine the relative smoothness of the
client traffic. Figure 11 shows the burstiness comparison for
selected traces; the dashed vertical line denotes the cross-
point. According to the plots, while both client types have
server traffic of similar burstiness trend and magnitude, bot
traces have cross-points at lower time scales (<1 second) than
player traces due to their relatively smoother client traffic. We
exploit this property further to identify bots in Section 6.3.

5.4. Sensitivity to Network Conditions. The last aspect we
consider is the subconscious human reactions to network
conditions embedded in traffic traces. This is considerably
different to previous approaches. We find that human players
adapt to the game pace involuntarily. While a game client
relies on server packets, which convey the latest information
about other characters and the environment, to render its
screen, its update speed is inevitably affected by network
conditions. In short, we conjecture that a user’s playing pace
will be affected by the game update rate, which in turn is
influenced by the transit delay of server packets. To evaluate
how network delay affects a player’s pace, samples of round
trip times (RTTs) as well as the average packet rate in the
next second following each RTT sample are computed. The
plots describing the relationship between average packet rates
and RTTs, where the latter are grouped in units of 10 ms, are
depicted in Figure 12.

First, we analyze the player traces shown in Figures 12(a)
and 12(b). The trend is clearly downward. This indicates
that human players unconsciously slow down their keyboard
and mouse actions to adapt to the slower game paces which
are caused by severely delayed server packets. Figures 12(c)
and 12(d) show that the same phenomenon does not occur
in bot traffic; both the Kore and DreamRO traces show an
upward trend in the relationship between the packet rate
and RTT. Since bots have their own pacing schemes (certain
frequencies dictated by timers), their pace is not affected by
server packets like those belonging to human players. One
possible explanation of the bots’ upward trend (instead of no
trend) is that, for a server packet that arrives late, bots issue
more commands, which are accumulated before the arrival
of that server packet.

The dashed vertical line on the graph denotes the median
of the RTT samples. We find that our traces conform to the
above observations for RTT samples smaller than the median
RTT. One explanation is that higher RTTs are spread more
diversely so that the number of samples in each group is not
large enough to provide a robust statistic. Another possibility
is that higher RTT samples are related to possible packet loss
and retransmission, which could shrink the size of the TCP
congestion window size. This in turn regulates the maximum
packet rate. For these reasons, we restrict our analysis to
RTT samples lower than the median. The pacing property
of human players will be further exploited in Section 6.4 as a
means of distinguishing bots from human players.
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Figure 7: Histograms of client response times in two DreamRO traces. More than one peak is formed at time scales smaller than 10
milliseconds. Peaks do not occur in player traces or Kore traces.

6. Proposed Bot Detection Strategies

Here, we propose four decision schemes for the bot iden-
tification problem. A decision scheme for a given packet
trace will output a dichotomous answer (true or false) to
indicate whether or not the trace corresponds to a game
session played by a game bot. In the following, we present
our methods and the preliminary results. A more complete
performance evaluation of these strategies is provided in the
next section.

6.1. Command Timing. From the traffic characterization in
Section 5.2, we find that client response times (following the
receipt of server packets) from game bots are either extremely
short because bots react to server packets immediately, or
regularly spaced out because timers are used. Our first
method, command timing, is based on these properties of the
client response time. In this scheme, we simultaneously apply
two tests (1) whether multiple peaks exist in the histogram of
client response times that are less than 10 milliseconds, and
(2) whether regularity exists in response times that are less
than one second. The scheme returns true if either test is true,
and false otherwise.

6.1.1. Multimodality Test. To detect the multimodality of
response times less than 10 milliseconds, we use the Dip
test [15, 16], which is designed to test unimodality. We
first identify all local peaks and troughs in the response
time histogram; then, for each candidate mode, which is
determined by two troughs with at least one peak in between,
we apply the unimodality test to the candidate, that is, to
determine if the Dip statistic is significant at the 0.05 level.

The multimodality test is deemed successful if and only if we
can identify two or more modes with response times smaller
than 10 milliseconds. Using this test with a segment size of
10000, we can correctly distinguish DreamRO bots from all
other client types in most cases, as shown in Figure 14(a).

6.1.2. Regularity Test. As discussed in Section 5.2.2, client
response times in bot traces show highly regular patterns in
the form of response times clustered in multiples of a certain
value (cf. Figure 8). To verify the existence of such regularity,
we take the histogram of response times as a spatial series,
and check the existence of frequency components in that
series. For a histogram with n bins, we apply a Fourier
transform on its ordinates by

I( f ) = n
∣∣d( f )

∣∣2
, (3)

where d( f ) is the discrete Fourier transform of that series
at frequency f , and I( f ) is known as the periodogram.
In order to exclude client packets that were not issued in
response to the arrival of server packets, only response times
shorter than one second are considered. Figure 13 shows the
corresponding periodograms of the histograms in Figure 8.
The strong spikes in the periodograms for bot traces are clear
evidence of regularity in the response times.

We adopt the Fisher test to judge whether periodicity
exists in periodograms, which is equivalent to the existence of
regularity in the response times. Fisher [17] proposed a test
of the significance of the largest peak in the periodogram,
which is used to determine if the prominent frequency
component is “strong enough.” The test statistic is the ratio of
the largest periodogram ordinate of the Fourier frequencies
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Figure 8: Histogram of client response times shorter than 0.5 seconds.

to the sum of the ordinates. Fuller [18] proposed an
equivalent statistic, namely, the ratio of the largest ordinate
to the average of the ordinates. While the null hypothesis is
that the data consists of white noise, [19, Section 6.8] suggests
that, even if the Gaussian assumption is not satisfied, the
theory should continue to provide a useful approximation.
Suppose I1, I2, . . . , Im are periodogram ordinates; then, by
the null hypothesis, I1, I2, . . . , Im will be independent and
exponentially distributed with mean σ2; that is,

F
(
I j
σ2

)
= 1− e−x, x ≥ 0, j = 1, 2, . . . ,m, (4)

where F(x) denotes the cumulative distribution function of
x.

Let Xm = max(I1, I2, . . . , Im), Ym =
∑m

i=1Ii, and let Fuller’s
test statistic be defined as ξm = Xm/(Ym/m). The significance
value for Fuller’s test is obtained by

Pr
(
ξm ≤ ξ

) ≈ exp
(−me−ξ

)
. (5)

Using this method, we test the regularity in response times.
We consider that a trace corresponds to a bot if Fuller’s
statistic is significant at the 0.01 level.

The identification outcome, computed with a segment
size of 2000 (as shown on the box-and-whisker plot in
Figure 14(b)) indicates that the result is correct in most cases,
although there are some misjudged cases.

6.2. Trend of Traffic Burstiness. We now turn to the second
identification strategy. In this scheme, we use the property
that bot traffic will exhibit the lowest burstiness at a time
scale approximately equal to the iteration time of its main
loop (cf. Section 5.3).

To check whether the burstiness initially exhibits a falling
trend followed by a rising trend, we use the Mann-Kendall
correlation test [20] to detect the trend of a pair of series.
The nonparametric Mann-Kendall test is expected to be
robust to outliers because its statistics are based on the ranks



12 EURASIP Journal on Advances in Signal Processing

r6r5r4r3r2r1k5k4k3k2k1d1c1b4b3b2b1a2a1

Trace

COV of exponential random variable

0.5

1

1.5

2

2.5

C
oe

ffi
ci

en
t

of
va

ri
at

io
n

Figure 9: Coefficient of variation computed from packet interar-
rival times for each trace. Each group of 500 interpacket times is
computed separately.

of variables, not on their values directly. Given the IDC
ordinates, {It}, where t > 0.1 is the corresponding time
scale, this scheme comprises two subtests. (1) Whether (t, It)
exhibits a significant falling trend followed by a significant
rising trend (both at a significance level of 0.05), and whether
both trends can be detected in time scales smaller than 10
seconds. (2) Whether any time scale t′ > 10 exists such that
{(t, It), t < t′} exhibits no significant trend, or a significantly
negative trend. The scheme outputs true if either test is true;
otherwise, it outputs false. The results demonstrate that,
except for a few outliers, the decisions of this scheme are
mostly correct, as shown in Figure 15.

6.3. Magnitude of Traffic Burstiness. As described in
Section 5.3 and exemplified in Figure 11, the burstiness of
client traffic is relatively smoother for bots, compared to that
of the corresponding server traffic. Moreover, recall that we
define the “cross-point” as a metric of how smooth the client
traffic is. The method based on the magnitude of traffic
burstiness is implemented as follows. For a given packet
trace, we compute the IDCs for the client and server traffic,
and search for the cross-point. If there is no cross-point,
that is, the client traffic is always more bursty than the
server traffic, we set the cross-point to the maximum time
scale we use, which is 100 seconds. In Figure 16, we plot
the cross-points for all game traces using a segment size of
10000. By observation, we set a threshold at 10 seconds so
that a trace is said to correspond to a game bot if the cross-
point is smaller than 10 seconds; otherwise, it corresponds
to a human player. In most cases, the decisions are exact
for player traces; however, some bot traces are classified as
human players, especially for the Kore traces. This suggests
that the burstiness of server traffic may not be a very good
baseline, since it depends on the region where the character
resides and the activities of characters nearby. Nevertheless,
this method merits our attention as it yields the minimum

false positive rate, that is, the number of times of a player is
mistaken for a bot.

6.4. Reaction to Network Conditions. In Section 5.4, we
investigated the relationship between round trip times
and the corresponding packet rate; that is, human players
subconsciously adapt to network delay; therefore, a negative
correlation exists between the RTT and the packet rate. In
contrast, the RTT and the corresponding packet rate are not
correlated or positively correlated for bot traces. Accordingly,
we now propose our final scheme. For a given trace, we first
take the RTT samples and the corresponding packet rates
in the next second of the occurrence time of RTT samples.
Then, we group the samples based on their RTT with a group
range of 10 milliseconds such that a series, {(RTTi,Ni), i ≥
1}, is formed, where RTTi is the middle point of group i
and Ni is the average packet rate of samples in group i. We
use the Mann-Kendall test to detect the trend of packet rates
versus the RTT. The method reports a bot if the τ statistic
is statistically greater or equal to zero, and a human player
otherwise.

The detection rule is as follows. First, compute τ1

and τ2, the statistics of the Mann-Kendall test, for
{(RTTi,Ni), i ≥ 1} and {(RTTi,Ni), i ≥ 2}, respectively.
If sign(τ1)∗sign(τ2) > 0, that is, the trend remains the
same regardless of the first RTT group, the identification is
completed by is.bot ← I(τ1 ≥ 0). Otherwise, we compute τ3

for {(RTTi,Ni), i ≥ 3}, and conclude the test by the sign of
τ3, that is, is.bot ← I(τ3 ≥ 0).

The classification result using the above procedures
is plotted in Figure 17. Although most player traces are
correctly judged, the scheme seems to have problems cor-
rectly identifying DreamRO bots. We find that DreamRO
traces sometimes exhibit a negative correlation between
the RTT and the packet rate, which we characterize as
human behavior. The reasons for this behavior need further
investigation. However, we consider such methods based on
human behavior rather interesting and potentially useful. An
analysis of the relationship between game traffic patterns and
user behavior will be part of our future work.

7. Performance Evaluation

In this section, we evaluate the performance of proposed bot
identification strategies. For each scheme, we evaluate three
metrics: the correct rate, the ratio the client type of a trace is
correctly determined; the false positive rate, the ratio a player
is mistaken for a bot; the false negative rate, the ratio a bot is
mistaken for a human player. In addition, we are concerned
about the sensitivity of the input size, that is, how long a
traffic stream must be to ensure correct identification. Thus,
the performance metrics are computed on a segment basis
by dividing the traces into segments of a certain size.

The evaluation results demonstrate that the first two
strategies, command timing and burstiness trend, perform
rather well, as shown in Figure 18. Specifically, both methods
yield correct decision rates higher than 95% and false
negative rates lower than 5%, given an input greater than
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Figure 10: IDC plots for different traces. Player traces are represented by filled symbols; bot traces are represented by unfilled symbols. Note
the trend of IDC for bot traces has a “dip” around 1 second.

10000 packets. From the viewpoint of business operations,
a bot detection solution should minimize the false positive
rate, while yielding a high correct decision rate. This is
because misjudging a human player as a bot would annoy
legitimate players, but misjudging a bot (as a human player)
should be relatively acceptable. By this rule, the burstiness
magnitude method is good, since it always achieves low false
positive rates (< 5%), and yields a moderate correct decision
rate (≈ 75%). Although the pacing method does not perform
well, it is still proposed because of its unique relation to
human behavior.

In practice, we can detect game bots based on an
integrated approach as the ensemble learning approach in
the machine learning field, that is, by applying multiple
schemes simultaneously and combining their results accord-
ing to desired preference. For example, if a conservative
judgement is preferred, a traffic stream would only be
deemed to correspond to a game bot if all schemes agree
with that decision. By this reasoning, we propose two
integrated schemes, a conservative approach and a progressive
approach. Combining the command timing and burstiness
trend methods, the conservative approach is achieved by a
logical “AND” operation and the progressive approach by an
“OR” operation. This corresponds to combining two indi-
vidual classifiers in parallel, using a static and nontrainable
combiner with an ensemble learning terminology.

The performance of these integrated classifiers is rather
good in terms of reducing the occurrence of certain kinds
of false alarm, as illustrated in Figure 19. The conservative
approach reduces the false positive rate to zero and achieves

a 90% correct decision rate, given an input size of 10000
packets. Meanwhile, the progressive approach produces a
false negative rate of less than 1% and achieves a 95% correct
decision rate, given an input size of 2000 packets.

8. Discussion

In this section, we first discuss the generality of our proposed
schemes, that is, whether they can be generalized to other bot
series designed for Ragnarok Online or other games, without
considering counter-attacks. We then evaluate the robustness
of the schemes under the presence of counter-strategies
from bot developers. Finally, we consider the issues related
to server-side deployment and how to further improve the
detection accuracy with reactive strategies.

8.1. Generality of Proposed Detection Strategies. As bots are
not actually “watching” screens, they perceive the envi-
ronment by analyzing the information conveyed by server
packets. Thus, the design naturally leads to the situation that,
whenever a bot is aware of a change in the game world, it
will react by sending commands back to the server. When
a succession of commands, rather than a single command,
needs to be sent, to avoid overwhelming the network and
the server, some pacing mechanism that spreads the release
time of the commands would be used. By this reasoning,
we argue that the regularity in client response times is not
unique to the particular bots we studied, but commonly
exists in MMORPG bots. In other words, the command
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Figure 11: IDC magnitude comparison. The IDC of client packet arrivals versus the IDC of server packet arrivals.

timing scheme is generalizable as it is based on the fact that
bots react to server packets with a certain form of regularity.

In view of traffic burstiness, as bots react based on server
packets, which are inevitably periodic to ensure smooth
screen updates, the periodicity will be propagated into the bot
traffic. Therefore, we will definitely find lower burstiness in
time scales around the status update frequency or the period
required to process a command or response. In addition,
since bots do not exhibit human-like behavior, such as heavy-
tailed activities [12], the large-scale burstiness of bot traffic
will be lower than that of traffic generated by human players.
This explains why the patterns we observed in multiscale
analysis of traffic burstiness (Section 5.3) should be generally
observable, rather than being a particular phenomenon in
our settings.

The sensitivity to network conditions should be game
independent because it reflects user reaction to the rate of
screen updates, irrespective of the game design. On the other
hand, a bot will not exhibit such human behavior as long
as the release of certain commands is timer-based, which is
usually unavoidable when scheduling a series of successive
actions. Thus, unlike human players, the command sending
rate of bots would not correlate significantly with the pace of
screen updates.

8.2. Robustness Against Random-Delay Counter-Attacks. Our
traffic analysis approach is particularly generalizable because
it is independent of game design and content; however,
one of the biggest challenges to our schemes could be
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Figure 12: Average packet rates versus round trip times plot. The figures exhibit a downward trend for player traces, and an upward trend
for bot traces.

their robustness under counter-attacks from bot developers.
Since our strategies use packet timestamps as the only
input, an obvious counter strategy would be to add random
delays to the release time of client commands. Because the
command timing scheme relies on the regularity of bot
behavior, it is inevitable that random delays would make less
effective. However, we argue that the schemes based on traffic
burstiness and human reaction to network conditions are
resistant to such attacks.

The burstiness trend scheme is immune to random-delay
attacks because bots must always take actions based on the
up-to-the-minute information that is sent from game servers
periodically. Adding random delay to the client response
time would not affect the regularity unless the added delay is
longer than the status update intervals by orders of magnitude
or it is heavy-tailed. However, adding such long delays would
make the bots less threatening, as we explain in the next
subsection (see Section 8.3).

We demonstrate this robustness property by simulations.
Using the Kore1 trace as an example, we postpone the release
of each command by random delays drawn from uniform
and exponential distributions, respectively. The IDCs of the
original packet arrival process and those of the intentionally-
delayed versions are shown in Figure 20. It is clear that
random delays do not remove the “dip” from the burstiness
trend; they only mitigate the extent of or change the location
of the dip. The figure also shows that the burstiness magnitude
scheme is not only resistant to simple random-delay attacks;
it is also more effective in terms of detection capability
because the burstiness of randomly-delayed traffic is even
lower than the original.

Moreover, random delays do not have any effect on
the pacing scheme if they are independent and identically-
distributed. In this case, delays merely increase the variance
of the command rates, but they do not change the average
command rates.
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Figure 13: Periodograms of corresponding histograms (of client response times) in Figure 8. Note strong frequency components exist in bot
traces.

8.3. Sophisticated Counter-Attacks. If bots are constantly
interrupted by the game operator, their developers would
naturally try to improve their programs to hide from the
detection schemes. Since our proposed schemes are based
on the discriminability of traffic between bots and human
players, intuitively, designing bots that better resemble
human players would lead to more sophisticated counter-
attacks. Next, we discuss three possible counter-attacks that
bots may adopt, their effectiveness on the proposed schemes,
and their consequent weakness (if applicable).

8.3.1. Heavy-Tailed Random Delays. This attack is similar
to the simple random delay attack we discussed in the last
subsection, except that now the delay times are drawn from
a heavy-tailed distribution instead. This type of attack would
make the burstiness trend scheme less effective as the “dip”
effect on the burstiness trend is less significant. Similarly,
this attack would be effective against the burstiness magnitude
scheme, since the heavy-tailed delays would significantly
raise the variability of client traffic in multiple time scales so

that the the burstiness of client traffic and server traffic would
be comparable.

As a demonstration, we simulate the effect of this attack.
The simulation results are plotted as the delayed Pareto
series, which draws random delays from a Pareto distribution
with the shape parameter 1.2, in Figure 21. We observe
that the attack makes the “dip” effect insignificant, which
demonstrates the effectiveness of this heavy-tailed delays
attack.

Weakness of this Counter-Attack. In trying to mimic human
activities, however, the heavy-tailed ON/OFF delays would
make bots much less efficient at reaping rewards because
of the nonsignificant probability of long idle times. Taking
the delayed Pareto series as an example, to have similar
burstiness to the original series in large time scales, the total
time needed to achieve the same tasks is approximately four
times greater than the original. In other words, a bot followed
the delayed Pareto random delays would be four times less
effective than it could be. Thus, even though bot developers
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Figure 14: Bot identification results using the command timing
method which comprises the multimodality test and the regularity
test.
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Figure 15: Bot identification results using the burstiness trend
method.

can fool detection schemes by incorporating heavy-tailed
ON/OFF activities, the bots will pose a much smaller threat
to the balance of the game world.

8.3.2. Independent Command Release Time. With this attack,
bots have to issue commands according to a schedule that
is independent of the server packet arrival time. This attack
would make the burstiness trend scheme ineffective, as the
client traffic no longer contains the regularity inherited from
server traffic. As shown in Figure 21, the Exp(1) and Pareto
series simulate the effect of this counter-attack, where the
client packet release time is completely decided by the value
drawn from an exponential distribution (with an average of 1
second) and a Pareto distribution (with the shape parameter
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Figure 16: Bot identification results using the burstiness magnitude
method.
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Figure 17: Bot identification results using the pacing method.

1.8). Under this attack the “dip” effect may completely
disappear so that the burstiness trend scheme would be now
unable to differentiate bots from human players.

Weakness of this Counter-Attack. If a bot only sends out
packets when one or more commands are ready, the client
packet departure time would correlate with server packet
arrival time, as bot commands are decided based on the up-
to-date game states conveyed by server packets.

Thus, to make the client packet departure time com-
pletely independent of server packet arrivals, a bot should
decide when to send out packets by a different schedule.
Whenever the scheduled timer is triggered, the bot must issue
a command no matter whether the command is necessary or
not. Consequently, there must be some cases where the bot
is not ready to issue any new commands, but it must send
out some because new game states have not been received
or processed yet, or there is nothing else to do at that point.
Hence, the bot would have to perform certain actions that
are not unnecessary, such as moving around or making
an insignificant gesture. In such cases, bots that perform
meaningfulness actions would be detected more easily by
higher-level bot detection schemes equipped with knowledge
about game semantics.

8.3.3. Intentional Packet Pacing. This attack intentionally
adapts the packet sending rate to the measured network
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Figure 18: Evaluation results for the proposed decision schemes with different input size.

conditions. The pacing scheme would be fooled, since
bots can simulate human players’ sensitivity to network
conditions in terms of the command sending rate.

Extension of the Pacing Scheme. On the positive side, the
pacing scheme can be further extended to model players’
general behavior under different network conditions. For
example, if the network lags are serious, human players could
not perform as well as they would with mild lags, but bots
can. Similarly, players normally cannot tolerate poor network
quality continuously for a few hours, but bots can. Although
bots can simulate human sensitivity to network quality, we
believe that certain kinds of player behavior are much more
difficult to simulate. At the very least, the bots would have to

pay for their imitation behavior in terms of efficiency (such as
pretending to miss a target, or leaving the game prematurely
due to serious lags). Paired with reactive identification
(which we will introduce in Section 8.5) and application-
level information, we believe the human behavior approach
is still a promising way to distinguish “fake” human players
from “genuine” human players.

8.4. Server-Side Deployment. In practice, the bot detection
mechanisms should be implemented at the server side
because client-side software can always be compromised by
crackers. We now discuss whether our schemes, which are
based on client traffic traces, would be ineffective if they were
run at the server side.
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Figure 19: Evaluation results for the integrated schemes with different input size.
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Figure 20: The IDC of the original packet arrival process in Kore1
and those of the intentionally-delayed versions.

Coincidentally, the packet timestamps collected at the
server side can be seen a random-delay-augmented version
of the packet timestamps collected at the client side, where
the random delays are caused by queueing fluctuations along
the network path from the client to the server. Furthermore,
the queueing variations of a typical Internet path is much less
than one second in most cases, so the added random delay
is considerably less than the time scales we are concerned
about. Therefore, we can directly apply the discussion in
the preceding section (Section 8.2) here. That is, although
the command timing scheme would be made ineffective by
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Figure 21: The IDC of the original packet arrival process in Kore1
and those of the versions under sophisticated counter-attacks.

random delays, the strategies based on traffic burstiness and
users’ sensitivity to network conditions will continue to be
effective when they are deployed on the game servers.

8.5. Reactive Identification. In this paper, all the bot detection
strategies introduced so far are purely passive, that is, the
schemes only make decisions based on observation of the
packets flowing from a game client to a server and vice versa.
We argue that the schemes can be extended to be reactive to
improve the efficiency and correctness of the decisions.

For example, in the pacing scheme, we determine
whether a traffic stream belongs to a bot by its adaptation the
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packet rates of different network conditions. If the network
conditions are quite stable, this scheme would be less effective
because samples would be not diverse enough to examine the
client’s behavior with different network delays. To solve this
problem, the detection scheme can purposely alter the state
update intervals for a suspicious character (detected by other
detection strategies or by user reports), so that it can collect
more information about how the client adapts to a particular
game pace more quickly and reliably.

In another example of reactive identification, a character
is enticed to perform certain actions that tend to draw out
regularity. For instance, the server can entice a suspicious
character to pursuer a monster by offering an attractive
reward, and then check if the character is issuing movement
commands that are highly periodic or dependent on server
packet arrival times. Since making false accusations against
bona fide players should be avoided as much as possible, such
reactive identification schemes could be used as a second line
of defense for more accurate detection of game bots.

9. Future Directions

Like the competition between computer virus writers and
antivirus software developers, the competition between bot
developers and bot detection mechanisms will never end.
Moreover, as writing game bots is usually rewarding in
terms of real money (many game bots are commercial
with a time-limited license), bot developers will certainly
continue trying to make their programs undetectable by
any bot identification algorithm. The pure traffic-based
detection schemes we proposed are generalizable because
they are independent of the game design and semantics,
but they might be deceived by sophisticated counter-attacks
that mimic human gaming activities. However, we do not
think this is the end of the campaign against bots. Many
tools are still available for use with traffic-based schemes to
tackle game bots with more robustness and efficiency. In the
following, we detail some promising strategies that we believe
will help in the automatic bot detection problem.

9.1. Players’ General Behavior. Even though bots try to
mimic how human players control their virtual characters,
certain aspects of human behavior are difficult to sim-
ulate with a computer program. For example, to make
the route computation tractable in real time, the move-
ments of virtual characters, decided by game logic or
bot programs, are nearly all computed by using the A�

algorithm [21]. The computer-decided trajectory, however,
is very different from the trajectory of a virtual character
controlled by a human. How to generate a human-like
path that simultaneously considers the tasks at hand, the
character’s status, and the environment (enemies, terrain,
obstacles, etc.), is an issue that has yet to be resolved and
is thus an ongoing research topic in the field of artificial
intelligence [22].

In sum, our strategy is to model certain types of human
behavior that current AI techniques cannot imitate well
(such as movement trajectories [8, 9]), and detect game bots

based on the results as bot programs cannot mimic such
behavior well.

9.2. Change of Player Behavior under Various Network Con-
ditions. Online gaming experiences are strongly related to
the QoS of the network path, including the network delay,
jitter, and packet loss rate [23–26]. When the network quality
is poor, the interactivity and responsiveness of game play
will be degraded, and players will have difficulty controlling
their characters in a timely and accurate manner. Hence, they
may become less involved in the game world, feel frustrated,
or even be angry so that their mood may further degrade
their gaming performance. Externally, human players behave
differently in terms of their gaming performance in game,
their typing speed, the way they control the game characters
(with a keyboard or mouse), and the way they treat other
virtual players or nonplayer characters. More importantly,
such behavioral changes due to different network QoS
conditions should vary among players, that is, the changes
are unique to each player.

Our strategy puts game bots in a dilemma by employing
this property. On one hand, bots must mimic players’
changeable behavior under various network conditions in
order to be human-like, which is not an easy task in the first
place. On the other hand, the bot will be easily detectable
if there are a number of bot instances (i.e., more than one
character is controlled by the same bot program) running
in a game, since their “sensitivity” to network quality would
be very similar. Of course a sophisticated bot may provide
a number of profiles to simulate different “personalities”
with different bot instances, but the number of profiles it
could provide would be limited. Thus, a bot program would
eventually be detected by a “personality profile” that multiple
bot instances use simultaneously.

9.3. Interrelationships of Characters. In some of MMORP-
Gs, (http:// en.wikipedia.org/wiki/Real-money trading) real-
money trading (RMT) is prevalent, so game bots are used
by some people to make a profit by selling virtual currency
and goods to other gamers. People who just want to make
money rather than play the game are usually referred to as
“gold farmers” or simply “farmers.” To gather valuable in-
game resources quickly, a farmer usually runs dozens of bots
simultaneously, which form a number of groups. The groups
of bots have the ability to collaborate with each other, so
they can move and act together to form a powerful force.
Groups of bots can cover each other by sharing needed items,
healing, or mutual shielding. They may also adopt a division
of labor strategy whereby some do the fighting and others are
responsible for collecting the loot.

By analyzing the behavior of game characters, the bot
groups run by farmers can be detected by the following
characteristics (1) characters run by game clients that are
located at the same LAN, (2) they usually participate in
and leave the game at approximately the same time, (3)
they usually move and act together all the time, (4) they do
not interact with characters played by other gamers unless
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necessary, and (5) they frequently exchange items or virtual
currency with other characters in the same group.

We believe that a group of characters with all the above
characteristics is probably controlled by game bots. This
scheme can serve as an efficient way to identify suspected
gold farmers. They can then be examined in more detail with
more accurate identification schemes.

9.4. Collective Decisions. As game bots tend to monopolize
resources in a game and break the balance of the game
world, most legitimate players would be happy if bots could
be eliminated from games completely. Being overwhelmed
by users’ complaints, the most common strategy currently
adopted by game companies is that, whenever a character
is reported as a bot, a game master must take some time
to follow and observe the suspect, until he/she can judge
whether the report is factual or not. However, this method
is very inefficient as it takes a great deal of time to manually
identify whether a character is controlled by a program or
a human, and the number of game masters is also limited.
In addition, more advanced bots may temporarily leave the
game when they detect the presence of game masters around
their characters, and return later.

The strategy we propose relies on users’ reports to decide
whether a character is a game bot. The rationale is that
legitimate players usually have strong incentives to report
bot use. We argue that if user reports can be appropriately
aggregated, they would form a powerful weapon against bots.
It would be not difficult to design a mechanism that allows
a player to report a bot-controlled character, or, conversely,
a witness of a human-controlled character. However, such
mechanisms might have the following problems [27].

(1) Misjudgement: players may mistake a normal player
for a bot, or vice versa.

(2) Ballot stuffing: a bot owner may collude with other
bot owners to lodge fake reports in order to avoid
detection by the system.

(3) Bad mouthing: a human player might be targeted by
a group of players who falsely accuse him/her of being
a bot owner.

The main challenge of this strategy is how to detect incorrect
and false reports. Even though individual reports might be
intentionally or unintentionally incorrect, if incorrect ones
could be detected and removed automatically, we could
determine whether a character is bot-controlled with the
help of the game’s participants.

9.5. Honey Pots. While CAPTCHA tests [11] might be the
only sure way to distinguish between human beings and
computer programs, forcing players to conduct such tests
is not appropriate in many games, since the tests inevitably
interrupt the flow of game play. We consider that honey
pots, which are also be based on human intelligence like
CAPTCHA but they are less intrusive, would be more
appropriate for detecting game bots.

For example, the game designer may put a special-
purpose monster in a game. The monster would be exactly

like the other monsters, except that it has a banner “Do not
attack me unless you are a bot!!” above its head, and the
banner text is distorted so that it is not easily recognized by
optical character recognition (OCR) techniques. In this way,
if a player keeps slashing the monster, we would know that
the player is likely a bot program. Even though the honey
pot mechanism should be very effective in capturing bots,
a player may still attack the honey-pot monster by mistake
or unintentionally ignore the warning message. Hence, it
would be better to use this strategy in cooperation with other
schemes to derive more accurate decisions about bot use.

10. Conclusion

Automatic game bot identification is a new and interesting
topic that involves networking, artificial intelligence, psy-
chology, human-computer interaction, social networking,
and game design. In this paper, we have addressed the
game bot problem and proposed a number of methods
that identify game bots automatically using a traffic analysis
approach. Taking Ragnarok Online as a case study, we
obtained and analyzed packet traces for human players and
mainstream game bots under different network settings.
We have shown that the traffic corresponding to bots and
human players is distinguishable in various respects, such
as the regularity in client response times, the trend and
magnitude of traffic burstiness in multiple time scales, and
user sensitivity to network conditions.

Based on the traffic patterns identified, we have proposed
four general decision strategies and two integrated schemes
for bot detection. For our collected traces, the conservative
approach of our proposed integrated schemes reduces the
false positive rate to zero and produces a 90% correct
decision rate, given an input size of 10000 packets. The
progressive approach, on the other hand, yields a false
negative rate of less than 1% and achieves a 95% correct
decision rate, given an input size of 2000 packets. We have
shown that the proposed methods are generalizable to other
bot series and games and robust against simple random-
delay counter-measures from bot developers. In addition, we
have discussed the issues regarding deployment and reactive
detection of bots.

Due to the highly profitable nature of game bots, bot
developers will try anything to improve their programs so
that they are undetectable by any bot identification algo-
rithm. The pure traffic-based detection schemes we propose
are generalizable because they are independent of game
design and semantics; however, they might be deceived by
sophisticated counter-measures that mimic human gaming
activities. This situation is not completely avoidable because
game bots can always imitate human activities at the network
level.

Given the intrinsic difficulty of the bot identification
problem, that is, telling computers and humans passively
while human behavior can be highly heterogeneous and
variable, we believe that the most effective bot detection
scheme should be multimodal rather than a single mode
approach. To this end, we have explored a number of
promising strategies (1) exploit bots’ inability to imitate
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human behavior, (2) exploit bots’ insensitivity to the chang-
ing network conditions, (3) exploit the interrelationships
of bot-controlled characters, (4) aggregate user reports
intelligently, and (5) use honey pots that only human players
can avoid getting trapped by. We are currently investigating
this array of detection methods and applying them in
practical ways. We hope that this nonintrusive and game-
independent bot detection study will help increase awareness
of the increasingly serious bot problem in the online game
community.
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