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This study devises and evaluates an energy-efficient distributed collaborative signal and information processing framework for
acoustic target tracking in wireless sensor networks. The distributed processing algorithm is based on mobile agent computing
paradigm and sequential Bayesian estimation. At each time step, the short detection reports of cluster members will be collected
by cluster head, and a sensor node with the highest signal-to-noise ratio (SNR) is chosen there as reference node for time difference
of arrive (TDOA) calculation. During the mobile agent migration, the target state belief is transmitted among nodes and updated
using the TDOA measurement of these fusion nodes one by one. The computing and processing burden is evenly distributed in
the sensor network. To decrease the wireless communications, we propose to represent the belief by parameterized methods such
as Gaussian approximation or Gaussian mixture model approximation. Furthermore, we present an attraction force function to
handle the mobile agent migration planning problem, which is a combination of the node residual energy, useful information,
and communication cost. Simulation examples demonstrate the estimation effectiveness and energy efficiency of the proposed
distributed collaborative target tracking framework.
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1. Introduction

Recent developments in sensor, wireless communication,
and embedded computing areas now make it possible to
deploy a wireless sensor network composed of a large
number of inexpensive microsensor nodes to “achieve qual-
ity through quantity” in complex applications [1-3]. The
nodes are typically with limited processing ability, battery
power, and sensing range. In order to ensure their sustained
operations, the power consumption must be kept to a
minimum. Most of the signal and information processing
tasks must be accomplished in network, where some nodes
close to the events locally share information and resource.
Only the processed data or results will be sent to the sink.
This is the so-called collaborative signal and information
processing (CSIP) in wireless sensor networks.

Target tracking is one of the key motivating applications
of wireless sensor networks [4-8]. Passive acoustic sensor
is often used in wireless sensor networks because of its
universality and low cost. In this study, we address the

issue of designing high energy-effective CSIP framework for
acoustic target tracking applications in sensor networks, that
is, to estimate the position and velocity of a moving target
by collaboration. The time difference of arrival- (TDOA-)
based-method is particularly attractive in this context [6, 7]
since it offers higher precision than acoustic energy-based
method [8] and does not require the prior knowledge of the
signal generated by the potential target. One TDOA value
can be calculated according to time series data from a pair
of nodes by certain time delay estimation techniques such as
generalized cross-correlation (GCC) methods [9, 10]. While
the basic concept of the TDOA-based method can be adopted
to the sensor networks problem, the energy-efficient data
aggregation procedure needs to be developed and character-
ized. But few contributions are dedicated to this issue for
TDOA-based tracking in sensor networks. A conventional
data aggregation procedure is that the central processing unit
(e.g., the cluster head) aggregates all the data from nodes to
make a final decision [11]. It is expectable that the energy
expenditure for time series data exchange will be very high.



We will call this the first CSIP (CSIP-I) scheme hereafter.
In [12], an energy-aware moving target localization strategy
based on a two-step communication protocol between the
cluster head (CH) and cluster members was presented. The
nodes that detect a target only give a binary report to the
CH. Then the CH will choose only a subset of sensor nodes
that must be queried for detailed target information. The
querying manner is that all chosen nodes send their local
data to the CH. We will call this the second CSIP (CSIP-
II) scheme hereafter. This scheme can save a large amount
of energy and reduce communication bandwidth, but most
signal and information processing tasks are performed at
the CH, which will shorten the life-span of the CH and
lead to poor scalability. In [13], an information-driven
approach to sensor collaboration for tracking applications
in ad hoc sensor networks is overviewed, which determines
participants in a “sensor collaboration” by dynamically
optimizing the information utility of data for a given cost
of communication and computation. In this study, the
essential point is that the algorithm must be distributed
and energy efficient. We propose a distributed estimation
method based on generic sequential Bayesian filtering and
apply it to the target state estimation at each time step.
The distributed algorithm is carried out by mobile agent
(MA) computing paradigm. Mobile agent methods have
been widely researched for data fusion and aggregation in
sensor networks’ applications such as target classification
or tracking [14, 15]. In this computing model, mobile
agents carrying data and executable code will migrate from
node to node orderly to provide progressive accuracy. The
advantages such as energy efficiency and scalability make
it more attractive than traditional client/server computing
mode for wireless sensor networks [16].

In our framework, sensor nodes that detect a target
will send short TargetInfo messages to the CH at each time
step. Then, a reference node will be chosen for broadcasting
its own time series data for TDOA calculation on other
nodes. We then use the developed distributed sequential
Bayesian estimation approach to achieve progressive tracking
accuracy during the MA migration. The main idea is that
the state posterior density, also known as the belief, is
updated incrementally by integrating the measurements one
by one, until a desired accuracy is satisfied or all valid
nodes are queried or the maximum MA migration period
expires. Note that the belief is transmitted among nodes
and updated incrementally in the space domain at each
time step, but it is also updated sequentially in the time
domain like ordinary sequential Bayesian methods when a
new time step comes. Furthermore, we use an attraction
force metric to handle the MA migration planning problem,
which is a combination of the node residual battery power,
useful information, and communication cost. Hence, we can
decrease the total energy consumption while maintaining
the processing performance above a desired threshold. The
processing burden is also evenly assigned among all partic-
ipating nodes in our method. For the sake of convenience
in simulation comparison, we will call our proposed method
the third CSIP (CSIP-III) scheme hereafter. The above three
CSIP schemes abstract the representative computing and
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processing methods for target tracking in wireless sensor
networks.

The rest of this paper is organized as follows. First,
we briefly describe the acoustic target tracking problem in
wireless sensor networks and make some assumptions in
Section 2. Section 3 will give an overview of the distributed
collaborative tracking framework. In Section 4, we detail
the distributed sequential Bayesian estimation algorithm,
including the distributed estimation and the belief approx-
imation methods. In Section 5, the mobile agent migration
planning problem is discussed. In Section 6, numerical
simulations are given to demonstrate the performance of
proposed algorithm. The last section is the conclusions of
this paper.

2. Problem Statements

In this section, we first give some assumptions of our work;
then the calculating methods of TDOA measurements used
for target tracking are described. Finally, the target tracking
system state space models are also given. The following
distributed collaborative tracking algorithm is developed
based on these assumptions and models.

2.1. Assumptions. Following assumptions are made about
the sensors and sensor networks in the development of
the energy-efficient distributed collaborative target tracking
framework.

(i) All sensor nodes are homogeneous. The nodes are
organized as clusters which are formed after initial
deployment and are maintained by certain clustering
protocol such as LEACH [17]. The cluster heads
are responsible of task decision and routing tracking
results to the base station.

(ii) All sensor nodes are synchronized with error not
more than 50 microseconds. Several well-known Ref-
erence Broadcast Synchronization (RBS) [18] and
Delay measurement time synchronization (DMTS)
[19] can meet this requirement.

(iii) The maximum communication range of each sensor
node is greater than twice the maximum sensing
range. This can guarantee all activated nodes receive
the reference signal successfully during the reference
signal broadcasting phase (described in Section 3.2).

(iv) Atany time, there is only one target in the sensor field
at most. For multiple target situations, blind source
separation technologies and data association algo-
rithms are needed to preprocess the measurements of
sensors, which will be lucubrated in our future work.

(v) All nodes start with the same fixed amount of battery
energy.

(vi) To compare the energy consumption during target
tracking in wireless sensor networks, the energy
consumed by sensor nodes when there is no target is
not considered.
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2.2. TDOA Measurement Calculation. The acoustic time
series data received by a generic pair of acoustic sensors can
be modeled by the following conventional equations in the
discrete-time domain as

x1[n] = s[n] * hi[n] + wi[n], (1a)
x2[n] = s[n] * hy[n] + w,[n], (1b)

where s[n] is the source signal, hj[n] is the impulse response
between the source and the ith sensor. w;[n] is uncorrelated
white Gaussian noise. Then, the TDOA value A between the
direct paths from the source to the acoustic sensors of the
generic pair can be estimated as

A= argmaX{R;(fzcz(d));, (2)

where

RE@ = [ (NG () epli2nfd)]df G

is the GCC between x; and x;. Wy(f) is an appropriate
weighting function such as the well-known phase transform
(PHAT) function, Eckart filter, and Hannan-Thomson (HT)
processor [10]; Gy, x,(f) is the signal cross-power spectrum.
The PHAT-based GCC method is adopted in this study
because of its ability to avoid causing spreading of the
peak of the correlation function. Note that the proposed
distributed collaborative tracking framework is applicable
whatever TDOA estimation method is used.

2.3. Target Tracking System Models. The ultimate aim of
target tracking is the online estimation of target position
and velocity information from available multiple sensor
observations, namely, the TDOAs. Generally, target tracking
problem can be stated in terms of estimation of an unob-
served discrete-time random signal in a dynamic system of
the form

X = filx1, ), (4)

Y = fy(xhwt)) (5)

where x; is the unknown system state vector of interest at
time t. fy(+) is the state transition function, and u, is the
process noise. y; is the sensor measurement at time t. f,(-)
is the observation function, and w; is the observation noise.
u; and w; are assumed statistically independent of each other.

The unknown target state is composed of the position
and velocity elements in x and y axes, respectively,

Xy = (fz Nt ét ﬁt)Ts (6)

where &, ¢ denote the target positions in x-axis and y-axis
at time ¢, and E}, 1t denote the velocities in x-axis and y-axis
at time t.

For nearly constant velocity model [20], (4) can be
rewritten by

x; = Bxxp 1 + Geuy, (7)
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Where T is the sampling period of y;.

If the reference node for TDOA estimation is indexed by
0, the TDOA calculated at kth node can be modeled with
respect to the target state as follows:

k_De—=Do e —mll = e —wroll 4

Vi = B + w; ” +wy, 9)

where v is the traveling speed of the acoustic signal. Dy =
lrs — rell is the distance between the current target position
r; and the sensor node position ry. Wf is the zero-mean
measurement noise used to model the TDOA estimation
error.

3. Distributed Collaborative Target
Tracking Framework

In this study, we develop an energy-efficient distributed col-
laborative target tracking framework based on mobile agent
computing paradigm. The target tracking task initialization,
intracluster collaboration, intercluster collaboration, and
task termination are four main aspects when implementing
tracking function, which are detailed in this section.

3.1. Tracking Task Initialization. If a sensor node detects a
target, we call it an activated node at current time step. These
activated nodes will report the event to their CH. First, the
CH needs to distinguish whether the tracking task has been
established corresponding to this target. Because tracking
results at each time step are forwarded to base station among
CHs, a CH is easy to know whether the target is tracked by
certain adjacent cluster. If no, the tracking task initialization
will be triggered. The CH will send a Registration message to
base station, which contains the IDs of all activated nodes.
After receiving the Registration message, the base station will
register an MA for this target. This time step is referred to
as t = 0. Assume there are Ny nodes that first detect the
presence of the position of jth node is (x;j,y;), for j =

1,..., No. The initial target state xo can be estimated as
RIS L !
Xo = (Nij FZ%‘ 0 0) : (10)
(e (o

The registration acknowledgment message together with
initial target state xo will be sent back to the CH thus the
tracking task is initialized successfully. It is possible that the
activated nodes may belong to several clusters, namely, there
may be several CHs that send Registration messages to the
base station. In this case, the base station will only send
registration acknowledgment message to the cluster that has
most activated nodes.
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FiGure 1: The illustration of proposed distributed processing framework for acoustic target tracking.

3.2. Intracluster Collaboration. The process of intra-cluster series data of the reference node is used by other

collaboration is shown in Figure 1. There are mainly three activated nodes to calculate TDOAs. First, the CH

phases. dispatches a mobile agent to the chosen reference

node, which indicates the tasks of the destination

(i) Reporting phase: at each time step, each activated and the transmission power when broadcasting the

node sends a TargetInfo message to the cluster head reference signal. The transmission power is large

to report detected event, which contains the node enough to guarantee that all activated nodes can

ID, estimated signal-to-noise ratio (SNR), and the receive the reference signal. Other unactivated nodes
residual battery energy E;, as listed in Table 1. To will ignore it.

avoid collision, each activated node starts a random
backoff timer before sending its TargetInfo message.
The collection of TargetInfo messages is fulfilled
in a time window in each cycling time step. Any
TargetInfo message arriving after this time window
will be discarded. If an activated node overhears any
TargetInfo message from other activated nodes, it will
receive and keep a copy of this message, which will
be used for MA migration planning. Note that the
TargetInfo message is very small compared with raw
time series data.

(iii) Distributed sequential Bayesian estimation phase: in
this phase, a series of sensor nodes will be queried by
the MA. These nodes are called fusion nodes. They
are chosen dynamically according to the TargetInfo
messages as well as current belief estimation, which
will be expatiated in Section 5. The fusion nodes
will execute a distributed sequential Bayesian esti-
mation algorithm (expatiated in Section 4) to obtain
progressive tracking result by integrating the current
TDOA into a Bayesian inference framework. If it
is the last node needing to be queried or the new

(ii) Reference signal broadcasting phase: the CH will progressive result is satisfying, the MA will return to
choose one node as the reference node accord- the CH. Then, the CH will pick up the final estimate
ing to the collected TargetInfo messages. The time and use it as a prior for the next time iteration.
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TaBLE 1: The fields contained in TargetInfo message.

Field Description
ID The individual identification of the sensor node
SNR The current estimated signal-to-noise ratio
E; The current residual energy of the sensor node
@)
N N Cluster B
’ k CH
Cluster A O N ssage O
0] O
\
\
(©) \
Border

/\ True target position
O Activated nodes
(O Unactivated nodes

Figure 2: Illustration of target tracking task handover between
clusters.

3.3. Intercluster Collaboration. At every time step, when a
new tracking result is obtained, the CH will send out the
result, which is forwarded among CHs until it arrives at the
base station.

As shown in Figure 2, when the target is about to leave
the current cluster (denoted by cluster A) and enter another
cluster (denoted by cluster B) in the vicinity, it is intractable
but important to hand over the target tracking task to cluster
B at the right time. Although there is only one cluster that
in charge of the target tracking task at each time step, other
neighboring clusters also can give help to this cluster for
better estimation. When the tracking results are forwarded
to base station among CHs, each CH keeps a copy of the
results. If the target is near the boundary of the active cluster,
some members of neighboring clusters can also detect the
presence of the target. These nodes will send the TargetInfo
messages to their own CHs. Knowing the target tracking task
is held by cluster A, the CHs will then forward the collected
TargetInfo messages to the active CH. Upon doing so, it is
expectable that better estimation will be obtained when the
nodes around the current hot point are very sparse. The
tracking task handover procedure will be triggered in case
the number of activated nodes belonging to cluster A is less
than the number of activated nodes belonging to cluster B
and the estimated target motion direction is outward. The
CH of cluster A will send a Handover message including
the current estimated target state belief together with some

necessary algorithm parameters to the CH of cluster B. Then
cluster B will undertake the target tracking task.

3.4. Tracking Task Termination. When there is no sensor
node that can detect the target, the current tracking task
will terminate. At this time, the CH of the cluster in
which the target last appears will send a short Cancellation
message to the base station, which indicates that the previous
registration of MA corresponding to the current tracking
task will be cancellation. The registration-cancellation mech-
anism of mobile agent can guarantee that there is only
one MA assigned to a target, which is very important for
identification management in our future multiple target
tracking study.

4. Distributed Sequential Bayesian Estimation

In this section, the distributed sequential Bayesian estimation
algorithm is developed and applied to the tracking of a mov-
ing target using wireless sensor networks. Here, “distributed”
means that the task of belief update for a certain time step is
spatially distributed on a set of nodes; “sequential” means the
belief is also updated in time domain when a new time step
comes. In our algorithm, we need to update the state belief in
time domain when a new time step comes, and transmit the
belief in the network to update it in the space domain using
the measurement from a new sensor node during the current
time step. How to approximate the state belief properly is
also critical for efficient state estimation and decreasing the
communication burden.

4.1. Algorithm Description. To derive the sequential Bayesian
estimation, we extend the basic Bayesian estimation such
that it can incrementally combine measurements over space
domain. Assume the local posterior estimate p(x; | y}:k)
is available after fusion node k is queried. y/* denotes
the measurement sequence from fusion node 1 to fusion
node k. At fusion node k + 1, the posterior belief p(x; |
yi*) carried by the MA can be used as prior information.
New measurement y;* can be used to update the prior by
applying Bayes’ rule, namely,

1:k+1) _ p(yiﬁl |Xt)p(x‘ ! yg*)) (11)

p(xt | Y p<y£<+l | ytlzk)

where the denominator is a normalizing constant which can
be expressed as

p(yF 1 y%) = J P 1x) p(x | y*)dx,  (12)
so we can see that

p(xe | pi* ) o p(yE Ix)p(xe | %), (13)
where p(yf“rl | x;) is the likelihood function that can
be achieved from the measurement model (9). Because
the measurement model is nonlinear, we use Monte Carlo



method to represent the required belief by a set of random
samples with associated weights [21]. The details of how to
obtain the belief by Monte Carlo method are given in the
appendix.

In (13), the measurement yf*! is used to modify the prior
density to obtain the required posterior filtering density of
the current state. Then the current minimum-mean-square
error (MMSE) state estimation can be calculated as

)/Et _ E[Xt | ytlzk+1]

- th p(xt | ytl:k“)dxt

_ (B P(}’i‘+1 |Xt) P(Xz | }/tl:k)dxt
fP()’é(H \Xz) P(Xz | y}:k)dxt ’

and the covariance matrix of the current state estimate is

(14)

21;“ = E[(Xt - ﬁt)(xt - ;(t)T | )’tl :kﬂ]

xR = %) p(r %) p(xi |y *)dx

[ (Y 1x) (x| yi*)dx,
(15)

From (13) it also can be seen that the current belief
is a product of the previous belief at last fusion node and
the current likelihood function, which is very suitable for
distributed implementation. But, there are still two aspects
unsolved as follows.

(1) How to obtain the initial belief p(x; | y}) at the first
fusion node from the final belief p(x,—; | y:—1) of the last
time step, where y;_ is the vector of all TDOAs integrated at
time t — 1.

This is a belief update problem in time domain. From
Bayes’ rule, we also can get that

1 _ PO I xe) p(xe [ yi-1)
Pl 1 30) [ o 1 %) p(xe Lyer)dx, (16)

o< p(yt | %) p(xe | yie1),

where p(x; | yi—1) is the predictive state distribution, which
can be calculated as

P(Xt | Yt—l) = P(Xt ‘ Xt—l)P(Xt—l |Yt—1)- (17)

p(x¢ | x,—1) can be calculated there according to the state
transition equation (7). Known p(x; | x;—1) and p(x¢-; |
Yi-1), the predictive belief p(x; | y;—1) can be obtained. If we
obtain p(x; | y;—1) at the reference node and carry it to the
next fusion node, the distributed Bayesian estimation process
will be able to execute iteratively according to (13) and (16).

(2) How to represent the belief p(x; | y}:k) and transmit
it to the new fusion node k + 1 in an accurate and energy-
efficient manner.

In our algorithm, we need to transmit the current
belief to the next node. Because of the nonlinear or even
non-Gaussian characteristic of the measurement model,
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we cannot obtain an analytical form of the belief density.
Directly transmitting a large number of samples of the belief
would require significant energy consumption. Therefore, we
need to represent the belief in an appropriate way.

To reduce communication burden, the posterior belief
obtained at each node can be approximated by certain
parameterized distribution such as Gaussian distribution,
beta distribution, or Gaussian mixture model (GMM) [22].
Hence, only the distribution parameters which are much
smaller than raw samples need to be transmitted among

NN
nodes. Assume that {xﬁf,z}izl is a set of support points to

characterize the belief p(x; | ytl:k ), where N is the number
of samples. For Gaussian approximation, the mean and
covariance of the approximated posterior Gaussian can be
calculated as

N
By = ZP(Xi,k | ytl:k)xi,k’ (18)

i=1

Z

P(Xg,k | ytl:k) (Xi,k - ﬁt,k) (X:,k - ﬁz,k)T- (19)

1

Qi =

At each hop of the MA, only the Gaussian mean X and
covariance (A),,k need to be transmitted. New samples can be
retrieved from this distribution at the destination node.

For GMM approximation, the belief is approximated as a
mixture of several Gaussian distribution

c
P(xt | )’tl:k) ~ ZAdev(ﬁTkaé?k)) (20)
m=1

where C is the number of mixtures. Thus, the belief can
be transmitted through the transmission of the GMM
parameters )L;f’k, ‘ﬁ?jk, and (A)Z’k, rather than the raw samples
of the belief.

The number of mixtures in GMM, C, can be decided
in advance [23] or adaptively adjusted [24]. If C is fixed,
the parameters of GMM are estimated using expectation-
maximization method [25]. Using Lagrange multiplier, we
have

L XN
Tk = Nzlt’k <m | X;,k)’
i=1
N i Am Qm A
X Bejo Rk )Mk
C i ol Al 1’
2N (Xt,k’”t,k’ Qt,k)/\t,k

Atk (mx;,k) =

A , (21)
A 2511 X Atk (m ‘ X;,k)

[‘t,k = N i
ic1 Ak (m | X;,k)

N i i ~m i ~m\T
Am 2in1 At,k(m | Xr,k) (xt,k - !‘z,k) (xt,k - !‘t,k)
kT i :
t Zfil Atk (m | X;,k)
The C also can be adaptively estimated by using the

modified form of the general EM algorithm in [24]. But the
computation complexity may be a question. We suggest using
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a fixed C according to the practical application requirements.
Though the GMM approximation needs to transmit more
parameters than Gaussian approximation, it can describe the
real belief more exactly, which gives the chance of decreasing
the data transmission hops to obtain satisfying precision.

4.2. Working Scheduling. Figure 3 shows the general work
scheduling of reference node and fusion nodes. If the
reference node is indexed by 0 and fusion nodes are indexed
in order by i = 1,2,..., we can obtain the distributed
sequential Bayesian estimation algorithm summarized as
follows.

At time step ¢,

(i) the reference node: after receive MA from CH and
broadcast its own data, it calculates predictive belief
p(x¢ | yi—1) of current time step according to p(x;—; |
¥i-1) and system transition model (7). Then, p(x; |
yi-1) is approximated by Gaussian or GMM method
and carried by mobile agent to transmit to the next
node;

(ii) the ith fusion node: after receive MA, it calculates a
new belief according to the received previous belief
and its own TDOA measurement by (16) when i = 1,
or, by (13) when i > 1. Then, it tests the quality of the
current tracking result. If the result is satisfying, the
MA will terminate the migration and go back to the
CH; otherwise, the MA will migrate to the next node.

5. Mobile Agent Migration Path Planning

The above distributed sequential Bayesian estimation algo-
rithm incrementally updates the belief of current time step
by incorporating the TDOAs of a series of nodes. However,
not all available activated nodes in the network provide
information useful enough to improve the estimation;
furthermore, some inferior measurements may corrupt the
distributed inference. Therefore, we still need to plan the
mobile agent migration path properly, which can provide
a faster reduction in estimation uncertainty than blind
or simply nearest-neighbor sensor selection, and incur a
lower communication burden for meeting a given estimation
performance requirement. From Sections 2 and 3 we can
see that the MA migration path planning consists of two
parts: the reference node selection when the MA dispatched
by CH and, the next fusion node selection during the MA
migration.

5.1. SNR Estimation. In our collaborative target tracking
framework, the estimation of SNR is crucial for reference
node selection and fusion node selection. The noise power
spectral density (PSD) estimation has been intensively
studied in speech enhancement applications [26-28]. In
[26], the authors estimate the noise PSD during the speech
pauses using a classic recursive relation. Martin proposed a
noise estimation algorithm based on the minimum statistics
[27]. In [28], the minima controlled recursive averaging
(MCRA) approach is introduced for noise estimation. There

are several similarities between speech signal and the acoustic
signal created by ground moving target. For example, there
are pauses between the target signals, and the target signal
and the background noise are usually considered statistically
independent. It is reasonable to apply these algorithms to
acoustic target tracking applications. Here, we adopt a simple
SNR calculation method which contains three steps: (1) the
energy of noise is estimated as mean square of the sample
points in each frame of acoustic signal and is updated
sequentially, when no target in the presence. (2) The target
signal energy is calculated as mean square of the sample
points in each frame of acoustic signal, when a target is
detected. (3) Then, the SNR is derived from the ratio between
the target signal energy and the noise energy. By using this
method, the background noise is tracked in succession.

5.2. Reference Node Selection. The reference node chosen by
the CH is the destination of the first MA hop. Reference node
selection is very important for TDOA calculation, which will
directly influence the performance of subsequent distributed
estimation. For time delay estimation, high SNR of the
reference signal will improve the estimation accuracy. On the
other hand, the broadcasting of time series data is very energy
consuming. Therefore, the CH will choose the reference node
according to the SNRs and residual energy values contained
in TargetInfo messages

so = max{SNR; | E; > En1}, (22)
1

where Eq,; is an energy threshold measuring whether a sensor
node is powerful enough to play the role of reference node.

5.3. Fusion Node Selection. The fusion node selection will
determine the total of energy consumption, data fusion
accuracy, agent migration time, and has a significant impact
on the overall performance of the sensor network. It needs to
take into consideration the tradeoffs between the migration
cost and the information benefit from fusion, since although
visiting more nodes improves the fusion accuracy, it also
increases the communication and computation overheads.
So, the objectives of our fusion node selection strategy will
be reducing energy consumption and improving reliability
of collaborative tracking in sensor networks.

Assume the current MA host is node s; and the set of
sensor nodes whose TargetInfo messages are overheard by
node s; is S;. We define an attraction force Fj; of s; which
exerts on the current MA host s; as follows:

Fij = “Fpower,j +ﬂFinf0,j + YFcomm,j) for ] € Sia (23)
where Fyower,j> Finfo,j» and Feomm,j are the power attraction
component force, information attraction component force
and communication attraction component force exerting
on s; by sj, respectively. They have the same orientation
that points to s; from s;. a, 8, and y are three nonnegative
constants which adjust the ratios of above three component
forces,and a + f+y = 1.
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FiGure 3: The working flowchart of distributed sequential Bayesian estimation for target tracking.

(i) Power attraction component force Fyower,j- Fpower,j i
used to indicate the node battery energy level, which
is defined as follows:

E,
] .
E 5 lf E] > Ech)
Fpower,j = max
—o0, else,

(24)

where Ey, is an energy threshold measuring whether
a sensor node is powerful enough to process the MA.
Ej is the residual energy of s;. Emax is the maximum
residual energy among allnodes in S;.

(ii) Information attraction component force Finfo,j. High
SNR of signal can improve the accuracy of the TDOA
calculation, so the SNR can be considered as an
information measurement of a sensor node. Finfo,; is
defined as follows:

SNR;
——7 if SNR; > SNRg,

Finfo,j = 1 SNRmax 1 (25)
— 00, else,

where SNRy, is the desired SNR threshold to guar-
antee correct TDOA estimation. If integrating incor-
rect TDOA into the distributed Bayesian estimation
described in Section 3, the result will be corrupted.
SNR; is the current SNR of s;. SNRpy. is the
maximum SNR among all nodes in S;.

(iii) Communication attraction component force Feomm, i
According to the wireless channel models, the single-
hop communication energy consumption is nearly
proportional to the square of distance between sender
and receiver in free space field [29]. We define Feomm,j
as follows:

5
Fcomm,j = _dT’ (26)
max
where d;; is Euclidian distance between s; and s; - dmax
is the maximum Euclidian distance among all nodes
in S; to node s;.

Finally, the destination of the next MA hop will be chosen

as
j* = rjneas)l({F,] | F,‘j #* — 00}. (27)
Note it is possible that there are multiple candidate nodes
that have the same maximum attraction force. In this case,

we will choose one node randomly among these nodes as the
destination of the next MA hop.

5.4. Return Conditions. For our distributed collaborative
tracking, the mobile agent can achieve progressive accuracy
as it migrates. Once it accumulates enough information that
the accuracy of the estimation meets the desire, the MA will
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terminate migration and return to the CH. The tracking
accuracy can be measured by either the determinant of the
estimation covariance X! or the magnitude of the accuracy
improvement between two successive hops. Namely, the MA
can return to the CH when

det(ZIt‘”) <e, (28a)

or

(28b)

H)/Et,k - ;(t,k—1|| = &,

or there is no candidate nodes available, where ¢, ¢, are
predefined performance thresholds. It is expectable that if
appropriate fusion nodes are chosen, the MA will be able to
have fewer hops to reach the desired tracking accuracy.

There may be some exceptions, for example, it is possible
that the desired accuracy is not achieved even all activated
nodes are queried. In this case, the final tracking result will be
send to base station by the CH, and it can be refined by track
smoothing methods later. Furthermore, there is a maximum
MA migration period Tmigmax at each time step, which starts
when the CH is ready to dispatch the MA and ends before
the next time step is coming. Assume the time for a signal
to propagate over the air to reach a receiver is negligible. If
the total time for a node to receive, process, and transmit
the MA is AT, the maximum number of nodes that the MA
can queried is | Tmigmax/AT |. The tracking accuracy may be
dissatisfied when Thigvax expires. If it happens, the MA will
return to the CH immediately.

6. Simulations and Analyses

In this part, we set up a simulation platform to evaluate the
performance of the proposed distributed collaborative target
tracking framework. We will study the tracking performance
of our distributed algorithm, compare the energy saving
performance with CSIP-I and CSIP-II schemes, and consider
the lifetime of the network which is defined as the life-span
of the node whose energy is exhausted for the first.

In these simulations, N = 64 acoustic sensor nodes are
deployed uniformly in a 35m X 35m square field, taking
measurements corrupted by zero-mean i.i.d. Gaussian noise
with variance 02 = 1 x 107>, The data observation interval
for time delay estimate is 1 second while the sampling rate is
2000 Hz. The algorithm parameters adopted in simulations
are: weighting constants &« = 0.2, § = 0.4, y = 0.4; energy
thresholds Eg,; and Ey, are set as 20% and 10% of the initial
battery energy, respectively, SNR threshold SNRy, = 1 dB.

A typically tracking scenario is shown in Figure 4. The
64 nodes are managed by four clusters. Assume that a target
enters the sensor field at time ¢+ = 0 with initial state
vector [0, 0, 0.6, 0.6]Tand moves across the surveillance field
in T4y = 30. The target generates a 20-1000 Hz signal
when moving. The process noise u; is assumed Gaussian
distribution with variance ¢2 = diag([0.03,0.03]). The
PSD of the acoustic signal is approximately even within
the bandwidth. The acoustic signal is assumed propagating
in isotropic air and the propagation velocity is 345 m/s.
We implement the target tracking system using the CSIP-I

F1GURE 4: The typical tracking scenario under discussion, where the
blue stars are the uniformly deployed nodes, the pentagrams are the
cluster heads, and the dashed crossed black circles are the true target
trace. x-axis unit: meter; y-axis unit: meter.

scheme, CSIP-1I scheme and the proposed CSIP-III scheme,
respectively. In CSIP-I and CSIP-II, the TDOAs are calcu-
lated by CH and a generic centralized particle filter [30] is
used for state estimation. The number of particles is 600
in our simulations. In CSIP-III, the Gaussian model is used
to approximate the state belief. The determinant of state
estimation covariance, det(th‘“), is used to measure the
tracking accuracy. The performance threshold ¢ in (28a) is
setas2 X 1078,

6.1. Tracking Performance. Figure 5 shows the root of mean
square errors (RMSEs) of position and velocity estimations
at each time step under Nyy¢ = 100 Monte Carlo runs,
according to the following equation:

p

1 Nmc

\ Nuc j=1 <<Et] a gttrue)z + (ﬁ{ N }ﬁrue)2>’

for position,
Nmc i 2 . 2
1 ¥ 'true) (4\] . true)
PR — + — s
— jzl((ft )+ (il -

for velocity,
(29)

RMSE(t) =

where &, 7/ are the estimated target positions at time step ¢
in jth Monte Carlo run, and &™¢, "¢ are the true positions

A
at time ¢. Similarly, &,, 171]f are the estimated target positions

at time £ in_jth Monte Carlo run, and &™¢, ;i

positions at time ¢.

From Figure 5 we can see that all the three tracking
information processing schemes can achieve good track-
ing accuracy. CSIP-I has the smallest estimation errors

are the true
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F1GURE 5: The position RMSE and velocity RMSE under 100 Monte Carlo simulations. x-axis unit: second; y-axis unit for left subplot: meter;

y-axis unit for right subplot: meter per second.

in average, because data of all nodes that have detected
the presence of the target are used. But, in Section 6.2,
we will analyze that this high precision comes from the
cost of vast energy consumption. On the other hand,
the accuracy of CSIP-III is somewhat lower than CSIP-
II. We think it arises from the state belief approximation
during the MA migration that introduces information loss.
Section 6.2 will show that the slight performance degrada-
tion is worthy in contrast to the significant energy saving
benefit.

Figure 6 shows the approximated Gaussian belief of
position estimation along the migrating of the MA at time
snapshot ¢ = 24 during one Monte Carlo run. The true target
position locates at the centre of each subfigure. When the
MA only visits one node, there is large estimating error and
the variance of the Gaussian distribution is also very large,
which means it is not a good estimate to the state. When
more nodes are visited, the means of the Gaussians become
very close to the true value, and the gradually constrictive
colored girds indicate that the estimation uncertainty is also
minished.

We also compare the performance of our method with
the information-driven approach proposed in [13]. Figure 7
shows a plot of the number of fusion sensors incorporated
versus the determinant of error covariance of the belief state
at time step t = 13. In the information-driven approach, we
use Mahalanobis distance as an information utility measure
and Euclidean distance as an energy cost measure, thus the

objective function for the optimization problem of node
selection becomes

M(X]) = —OC(X]' - )/Et>§71 (Xj — )/Et>
. (30)
—(l—oc)(xj—xl) (xj—xl),

where %, %, xj, x; are the mean of the target position,
its covariance, the position of queried sensor, and the
position of querying sensor, respectively. In Figure7, a
nearest neighbor sensor selection method is also utilized as
baseline for comparison.

We can see that the tracking performance is still unsat-
isfactory when 6 fusion nodes are queried under the nearest
neighbor method. The volume of the error covariance under
CSIP-III scheme is less than that under information-driven
approach, except during the initial phase. To meet the
predefined tracking accuracy, only 3 fusion nodes are needed
to be queried under CSIP-III, while 5 fusion nodes are
needed under information-driven approach. The reason that
CSIP-IIT is superior to information-driven approach may be
that CSIP-III utilizes explicit knowledge of candidate nodes,
such as the SNR and residual energy. But in information-
driven approach, the decision is made solely based upon
the sensor characteristics such as the sensor position, and
the predicted contribution of these sensors. Figure 8 is an
example to indicate the difference between CSIP-III and the
information-driven approach. Assume s, and s; have the
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FIGURE 6: The approximated Gaussian belief after different number of TDOA values is integrated by the mobile agent. The white triangle at
the centre of each subfigure is the true target position at time snapshot 15. (a) one TDOA is integrated; (b) two TDOAs are integrated; (c)

three TDOAs are integrated. x-axis unit: meter; y-axis unit: meter.
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FIGURE 7: Determinant of the error covariance at time step t = 13
for different node selection method.

same residual energy. If the distance between s; and s, is
equal to the distance between s; and s3, and the current
target position estimate is closer to s,, information-driven
approach will choose s, as the next fusion node. s3 is closer
to the true target position, which has higher SNR and will be
chosen as the next fusion node in CSIP-III scheme.

6.2. Energy Saving Performance. In this section, we will
evaluate the energy consumption of different collaborative
processing schemes. The node energy consumption arises
from sensing module, wireless communication module, and
processing module. Then, the total energy depletion at time
step t can be expressed as

E(t) = Es(t) + Ecomm(t) + Eproc(t)- (31)

Among the above three parts, wireless communication
module makes the main contributions. There has been a

TaBLE 2: The message descriptions and their sizes used in simula-
tion.

Message Sender Receiver  Length (bit)
gasrlg;_tllﬁfo message for nodes CH 30
Reportmessage for —oge cn »
Eescll;_elslt message for CH nodes 9%
Ié/ISOI];i_IFI? gent packet for CH/nodes nodes/CH 312
Time series data packet nodes CH/nodes 32024

significant amount of research focusing on the low-energy
radios. The first-order radio energy consumption model in
[17] is adopted for rest simulations. The energy to transmit
an n-bit message a distance d is

Erx = 1% Eelec + 11 % €free * d7, (32)
and the energy to receive an n-bit message is
Ery = n % Eelec, (33)

where E. is the energy spent to activate the baseband circuit
to transmit or receive one bit. ef.. denotes the energy spent
to run the radio frequency module to transmit one bit with
acceptable bit-error rate in free space. In the simulation
below, these energy parameters are set as Eeec = 50 nJ/bit,
efee = 10 pJ/bit/m?. The size of each message used in the
simulation is defined in Table 2.

Figure 9 shows the total communication energy con-
sumption of the tracking process when the target moves
along its trace as shown in Figure 4. Figure 10 shows the
instantaneous communication energy saving of CSIP-III and
CSIP-1I at each time step in percentage, using CSIP-I scheme
as baseline. The energy saving percentage is defined as

y = Fesea®) ZE® 00, (34)

Ecsip-r(t)

where E(t) = Ecsip-ii(t)or Ecsip-mi (). From Figures 9 and 10,
we note that the CSIP-III scheme can achieve a large amount
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CSIP-III for node collaboration.
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FIGURE 9: The cumulative communication energy consumptions of
CSIP-1, CSIP-I1, and CSIP-III after the entire trafcking process. x-
axis unit: second; y-axis unit: Joule.

of energy saving comparing with CSIP-I and CSIP-II. The
average instantaneous energy saving percentage of the CSIP-
III scheme is above 60% relative to CSIP-I, while the CSIP-II
can only obtain about 23% percentage energy saving relative
to CSIP-1.

6.3. Network Lifetime. To prolong the sensor network life-
time, one needs to reduce total energy consumption as well
as even the burden among all nodes. Unbalanced energy
dissipation among nodes can lead to the situation that some
nodes lose energy at a higher rate and die much faster than
others, so each sensor node should have the nearly similar
duration of life to prevent the blind area in coverage. The
network lifetime can be measured by the time Tgeaq When
first node in the network is dead. A node is considered dead
when its remainder energy is lower than a threshold that it
can not send one data packet. In the simulation, a target
moves continuously inside the sensor field in manner of the
nearly constant velocity model. When arriving at any side of
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FiGure 10: Instantaneous energy saving percentage of CSIP-IIT and
CSIP-II relative to CSIP-I during the tracking process. x-axis unit:
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FIGURE 11: The network lifetime of different collaborative process-
ing schemes.

the field, the target will change its velocity to the mirror-
reflection velocity immediately and move again, which
guarantees that the target is always in the field. To avoid
losing the target during dynamic clustering, the clustering
architecture is kept steady during this simulation. Assume the
initial energy of each sensor node is 2.5]. Figure 11 presents
the T4ead values under different collaborative processing
schemes. We can see that CSIP-I is nearly useless because the
first node death occurs very early. The first dead nodes in
CSIP-I and CSIP -II are expectable to be a CH because the
CHs bear much more heavy tasks than their members.

7. Conclusions

The primary goal of this study is focusing on high energy-
effective strategy of collaborative signal and information
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processing for acoustic target tracking applications in wire-
less sensor networks. Our approach is based on mobile
agent computing paradigm. At each time step, the cluster
head first chooses a reference node to broadcast its time
series data used for TDOA calculation, and then we inte-
grated the obtained TDOAs into the collaborative tracking
framework by mobile agent migration and proposed a
distributed sequential Bayesian estimation method. Actually,
the proposed distributed estimation method provides a
general manner for other signal and information processing
applications besides target tracking. In our algorithm, we
distributedly update the state belief in the space domain,
which originates from the nonlinear recursive Bayesian
filtering, that is, we transmit the state belief in the sensor
networks by mobile agent and update the belief using the
TDOA from the new fusion node. The representation of
the belief is also very important because of the battery and
computation capability limits for wireless sensor networks.
We propose use Gaussian approximation or GMM approx-
imation method to handle this issue. The mobile agent
migration planning problem, containing the reference node
selection and fusion node selection, is also considered in
this study, which is implemented to maximize the available
information and minimize the energy consumption cost
during the mobile agent migration. Simulations show that
this collaborative tracking framework can diminish the total
energy consumption, prolong the network lifetime, and
guarantee high tracking accuracy.

In future, we will extend our proposed methods to
multiple target tracking situations, where the processing
and scheduling are more complex. Associated blind source
separation algorithms and light-weight data association
algorithm will be investigated.

Appendix

A. Monte Carlo Method for Bayesian Estimation

Let {xt [RE wt A +1} denote a random measure that charac-

terizes the posterior pdf p(x, | y/**1), where {xt k+1}

the set of support points with associated weights {wt,,C l }1:1
Then, p(x; | y1**!) can be represented as

plx 1) = EWE’;iH( ~ X )-

Therefore we have a discrete weighted approximation
to the true p(x; | y}:k“). The weights are chosen using
principle of importance sampling. Suppose p(x) oc m(x)
is a probability density from which it is difficult to draw
samples but for which 7(x) can be evaluated. In addition,
let x) ~ q(x), i = 1,2,...,N be samples that are easily
generated from a proposal g(-) called an importance density.
Then a weighted approximation to the density p(x) is

p(x) = iw(i)(S(x - x(i)),

i—1

(A1)

(A.2)
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where w(?) is the normalized weight of the ith particle, and

n(x(i))

q(x®)

w? o (A.3)

Therefore, if the importance density is p(x; | y*), which

is assumed known at fusion node k+1, then the weight w[ k "
in (A.1) can be derived to be

(i) (xtkﬂ |y kﬂ)

W1 (Xﬁlziﬂ Iy )

o P( £ |th+1) ( ;llzﬂ |)’ ) (A'4)

<tk+1|)’ )

p(yfﬂ | th+1)
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