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1. Introduction

Image processing is one of the most demanded areas of
signal processing applications, where the wavelet transform
has been offered significant performance advantages [1].
In most cases, the wavelet transform is carried out in the
tensor product form, that is, by applying a one-dimensional
transform repeatedly in the horizontal and vertical direc-
tions. This gives the simple two-dimensional extension of
wavelet transforms and yields the lower-resolution images
consisting of the approximation and three detail components
that contain directional information. In the case of this
separable transform, however, the diagonal detail component
is only the product of horizontal and vertical details. Thus,
isotropy in the sense of uniform distribution of three detail
components may not be well respected.

To remedy this drawback many attempts have been
carried out to construct nonseparable wavelets [2, 3] or
to implement dual-tree complex wavelet transform [4, 5],
though the constructions of the associated filters are highly
involved and computationally complex. The largest bottle-
neck is the lack of intrinsically two-dimensional wavelets that
are easy to use.

On the other hand, in the framework of subdivision
scheme, the wavelet transforms on more general data sets

such as geometric meshes or surfaces have been successfully
implemented [6, 7]. In particular, with the advent of lifting
scheme [8], the so-called second generation wavelets [9]
have opened a way to handle data on irregular grids over
arbitrary surfaces [10, 11]. Their main aim is, however,
the efficient representation of large data sets and isotropy
and/or rotational symmetry in two-dimensional data are not
a major concern. If we limit to data on a plane such as images,
the usual first generation wavelets would be more desirable,
since they would allow more general treatments due to their
periodicity on the plane.

In this context a new class of wavelets, called triangular
wavelets, whose nonseparable biorthogonal filters are defined
on a regular triangular lattice have recently been proposed
[12]. Our formulation is based on a straightforward general-
ization of one-dimensional settings including the lifting. This
allows the simple nonseparable extension of biorthogonal
wavelets without loosing their special properties such as
vanishing moments, which are a crucial criterion for both
stability and smoothness of wavelets.

In this paper we further develop the triangular wavelets
by extending one-dimensional interpolating wavelets to
triangular lattice and show a general procedure to generate
triangular wavelet filters for any order or any number of
vanishing moments. The proposed triangular-lattice wavelets
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are expected to improve smoothness characteristics of low-
order triangular filters discussed in [13]. In addition we have
observed that the energy of decomposed images is evenly
distributed over the three detail components. This suggests
that the triangular wavelets are promising in keeping isotropy
of images, which has been a key issue in wavelet-based image
processing.

As an interpolation technique, we use the Lagrange
interpolation, which is a standard method of a pointwise
polynomial interpolation [14]. Whereas B-splines are also
known to have good approximation orders, the Lagrangian
method allows us to construct interpolating wavelets having
any number of vanishing moments [15]. Unlike in the
case of splines, their coefficients are given by easy explicit
formulas, and the associate functions are an optimal tradeoff
between support size and approximation order, in a similar
way to Daubechies wavelets [16]. Moreover, the wavelet
transform with any order of the interpolating filters can
be implemented by only two lifting steps. This remarkable
fact would be quite important in our direct generalization
scheme.

It should be noted that orthogonal quadrature mirror
filters and biorthogonal wavelets defined on the triangular
lattice have also been considered [17–19]. While their
formulations partially agree with ours, one of the crucial
differences is that their filter construction relies on the
numerical analysis technique or algebraic approaches. In
contrast, our method uses direct generalization of lifting and,
thus, resulting in easy construction of biorthogonal wavelet
filters or perfect reconstruction filters. In addition to low
computational cost of the triangular wavelet transform, the
filter coefficients are all rational numbers.

This paper is organized as follows. Section 2 briefly
reviews the one-dimensional wavelets including the lifting
scheme and interpolating wavelets. The two-dimensional
nonseparable biorthogonal wavelets on triangular lattice are
developed in Section 3. The application of triangular wavelet
transform to image analysis and performance comparison
with conventional tensor product wavelets are given in
Section 4. Finally, conclusions are drawn in Section 5.

2. BiorthogonalWavelets

2.1. Perfect Reconstruction Filters. The wavelet transform
decomposes a signal cj[k], j, k ∈ Z into the coarse
component cj−1[k] and detail component dj−1[k] by a low-
pass (LP) filter h[k] and a high-pass (HP) filter g[k] followed
by subsampling. In the Fourier domain, the signal is defined
by

ĉ j(ω) =
∑

k∈Z
cj[k]e−iωk, ω ∈ R, (1)

and the decomposition is written as

⎛

⎝

ĉ j−1(2ω)

̂dj−1(2ω)

⎞

⎠ = 1
2
̂M∗(ω)

⎛

⎝

ĉ j(ω)

ĉ j(ω + π)

⎞

⎠, (2)

where ̂M∗(ω) is the complex conjugate of the modulation
matrix

̂M(ω) =
⎛

⎝

̂h(ω) ̂h(ω + π)

ĝ(ω) ĝ(ω + π)

⎞

⎠. (3)

Here, we assume that ̂h(0) = √
2 and ĝ(0) = 0. The

reconstruction of the original signal is carried out by taking

the reverse steps using the dual filters ˜h[k] and g̃[k], which
may be written as

⎛

⎝

ĉ j(ω)

ĉ j(ω + π)

⎞

⎠ = ̂˜M
T

(ω)

⎛

⎝

ĉ j−1(2ω)

̂dj−1(2ω)

⎞

⎠, (4)

where ̂˜M(ω) is the transpose of the dual modulation matrix
defined similarly as (3). The exact reconstruction of the
original signal from the decomposition is guaranteed if the
filters satisfy the perfect reconstruction condition

̂

˜M
T

(ω)̂M∗(ω) = 2I. (5)

Such particular filters are called perfect reconstruction
filters or biorthogonal filters that satisfy the biorthogonality
condition derived from (5)

̂

˜h(ω)̂h∗(ω) + ̂g̃(ω)ĝ∗(ω) = 2,

̂

˜h(ω)̂h∗(ω + π) + ̂g̃(ω)ĝ∗(ω + π) = 0,

(6)

with

ĝ(ω) = e−iω̂˜h
∗

(ω + π), ̂g̃(ω) = e−iω̂h∗(ω + π). (7)

Once a set of biorthogonal filters are devised, the
associated scaling functions ̂φ and wavelets ψ̂ are defined by

̂φ(ω) = 1√
2
̂h
(

ω

2

)

̂φ
(

ω

2

)

, ψ̂(ω) = 1√
2
ĝ
(

ω

2

)

̂φ
(

ω

2

)

,

(8)

whose inverse Fourier transforms yield the particular rela-
tions

φ(t) =
∑

k∈Z

√
2h[k]φ(2t − k),

ψ(t) =
∑

k∈Z

√
2g[k]φ(2t − k).

(9)

Their dual functions are also defined by using dual filters in
a similar way which, together with the primal pair, turn out
to form an biorthogonal basis for L2(R).

We now move to the polyphase domain to introduce
the lifting scheme for construction of biorthogonal wavelet
filters. In the polyphase representation, a signal cj[k] is
defined in terms of its even and odd components separately

ĉ j,e(ω) =
∑

k∈Z
cj[2k]e−iωk, ĉ j,o(ω) =

∑

k∈Z
cj[2k + 1]e−iωk.

(10)
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We then have the relation
⎛

⎝

ĉ j(ω)

ĉ j(ω + π)

⎞

⎠ = ̂U(ω)

⎛

⎝

ĉ j,e(2ω)

ĉ j,o(2ω)

⎞

⎠, (11)

where

̂U(ω) =
⎛

⎝

1 e−iω

1 e−i(ω+π)

⎞

⎠. (12)

With the polyphase form of an LP filter h[k] and an HP
filter g[k] defined similary as (10), we assemble the polyphase
matrix as

̂P(ω) =
⎛

⎝

̂he(ω) ĝe(ω)

̂ho(ω) ĝo(ω)

⎞

⎠, (13)

so that

̂P(2ω)† = 1
2
̂M∗(ω) ̂U(ω), (14)

where ̂P(ω)† is the Hermitian conjugate of the polyphase
matrix. The modulation matrix can also be found from the
polyphase matrix

̂MT(ω) = ̂U(ω) ̂P(2ω). (15)

In the polyphase domain, decomposition (2) and the
reconstruction (4) may be rewritten as

⎛

⎝

ĉ j−1(ω)

̂dj−1(ω)

⎞

⎠ = ̂P(ω)†
⎛

⎝

ĉ j,e(ω)

ĉ j,o(ω)

⎞

⎠,

⎛

⎝

ĉ j,e(ω)

ĉ j,o(ω)

⎞

⎠ = ̂˜P(ω)

⎛

⎝

ĉ j−1(ω)

̂dj−1(ω)

⎞

⎠,

(16)

where ̂˜P(ω) is the dual polyphase matrix formed similarly as

(13) with dual filters ˜h and g̃. Then the perfect reconstruction
condition (5) becomes

̂

˜P(ω) ̂P(ω)† = I. (17)

Thus, finding the perfect reconstruction filters (h, ˜h, g, g̃)

amounts to find ̂P(ω)† and ̂

˜P(ω) that satisfy (17). This
condition implies that the matrices must be invertible, and
the inverse should be polynomials of e±iω, which provides
perfect reconstruction FIR filters and thus compactly sup-
ported wavelets.

2.2. Lifting Scheme. Lifting is a convenient method to con-
struct an invertible polyphase matrix. The odd component
cj[2k + 1] is predicted by a predictor p using the even
component cj[2k], and cj[2k + 1] is replaced by dj−1[k]
which is the differences between the original values and the
prediction at the odd indices

cj[2k + 1] −→ dj−1[k] = cj[2k + 1]− p
(

cj[2k]
)

. (18)

The even component cj[2k] is then updated using the results
of the prediction

cj[2k] −→ cj−1[k] = cj[2k] + u
(

dj−1[k]
)

, (19)

where the updater u is designed so that the coarse signal
preserves the average of the original signal

∑

k

c j−1[k] = 1
2

∑

k

c j[k]. (20)

Note the fact that the computation in these two steps can
be performed in-place, which reduces computational cost of
the wavelet transform. Finally, cj−1[k] and dj−1[k] are scaled
by K and 1/K , respectively, for the energy normalization
‖cj[k]‖2 = ‖cj−1[k]‖2 + ‖dj−1[k]‖2.

Each lifting step corresponds to the factorization of the
polyphase matrix

̂P(ω)† =

⎛

⎜

⎝

K 0

0
1
K

⎞

⎟

⎠

⎛

⎝

1 û(ω)

0 1

⎞

⎠

⎛

⎝

1 0

− p̂(ω) 1

⎞

⎠, (21)

where p̂(ω) is defined by
∑

k p(cj[k])e−iωk = p̂(ω)ĉ j(ω),
and similarly for the updater û(ω). One can immediately
recognize that these factorized matrices are all invertible, and
hence it is easy to construct the dual polyphase matrix by

taking its inverse ̂˜P(ω) = ̂P(ω)†
−1

.
For example, the simple choice p̂(ω) = 1, û(ω) = 1/2,

and K = √2 gives the orthogonal Haar filters ̂h(ω) = ̂˜h(ω) =
(1 + e−iω)/

√
2 and ĝ(ω) = ̂g̃(ω) = (−1 + e−iω)/

√
2. The

predictor operator uses the even component cj[2k] at its left
neighboring odd component cj[2k + 1]. The order of the
predictor is one [15]. The prediction is accurate if a signal
is constant or, in other words, zeroth-order polynomial.

If we choose the linear prediction

p̂(ω) = 1 + e−iω

2
, û(ω) = 1 + eiω

4
, (22)

and K = √2, we obtain CDF(2, 2) biorthogonal filters [20]

̂h(ω) = −ei2ω + 2eiω + 6 + 2e−iω − e−i2ω

4
√

2
,

ĝ(ω) = −1 + 2e−iω − e−i2ω

2
√

2
.

(23)

In this linear case, the order of the predictor is two, which
predicts first-order polynomials of a signal. Both HP filters

ĝ(ω) and ̂g̃(ω) have second-order zeros at ω = 0 while

LP filters ̂h(ω) and ̂

˜h(ω) have the same number of zeros
at ω = π. Correspondingly, the wavelets (ψ, ψ̃), shown
together with (φ, ˜φ) in Figure 1, have 2 vanishing moments,
respectively. Different choices of p̂ and û lead other types
of CDF biorthogonal filters or any FIR filters used for the
wavelet transforms [21]. We now introduce the method
to design higher-order predictors based on a polynomial
interpolation.
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Figure 1: The system (φ,ψ, ˜φ, ψ̃) of CDF(2, 2) biorthogonal wavelets with 2 vanishing moments.

2.3. Interpolating Wavelets. To build a higher-order pre-
dictor, we use the Lagrange interpolation scheme. The
corresponding interpolating filter is Lagrange half-band filter

[22], which is a symmetric maxflat filter that satisfies ̂h(ω) =
̂h(−ω) and

̂h(ω) + ̂h(ω + π) =
√

2. (24)

The filter has 2L + 1 nonzero coefficients and is the shortest
filter that reproduces mid-values of polynomials of degree
2L − 1 from a given set of samples. Therefore, the Lagrange
half-band filter can directly be used as a 2Lth-order predictor
of the lifting scheme. For any L ≥ 1 and −L < k ≤ L, the
coefficients are given in an explicit form as

hL[2k − 1] = (−1)L+k−1∏2L
n=1(L− n + 1/2)

(L + k − 1)!(L− k)!(k − 1/2)
, (25)

and the even coefficients are constrained as hL[2k] =
δ[k]. They are also known to be identical to those of the
Deslauriers-Dubuc filters [23, 24] of order N = 2L.

When the odd coefficients of the Lth-order Lagrange
half-band filter are chosen to be a predictor p[k] of order
N

p[k] = pN [k] = hL[2k − 1], (26)

one can set an updater as

û(ω) = p̂ ˜N∗(ω)
2

for ˜N ≤ N. (27)

As a result, we can obtain a family of (N , ˜N) interpolating
wavelet filters constructed in [8], where (N , ˜N) denotes the
number of vanishing moments of HP filters (g, g̃). They are
a set of symmetric biorthogonal perfect reconstruction FIR

filters (h, ˜h, g, g̃), where ˜h is equivalent to the Lagrange half-
band filter (25) of order 2L = N , and the corresponding dual
scaling function ˜φ is an interpolating function that recovers
polynomials of degree N − 1. It is remarkable to note that

̂h(ω)̂˜h
∗

(ω) in caseN = ˜N gives rise to the orthogonal maxflat
Daubechies filter with N vanishing moments [22].

The case (N = 2, ˜N = 2) amounts to CDF(2, 2)
filters (23) whose wavelet and scaling functions are shown in
Figure 1. The dual scaling function is a linear hat function.
Since the lifting does not guarantee the stability of bases,
these both primal functions are known to be not a stable
basis, as we might recognize in their irregular shapes.
However, this is only the case for (N = 2, ˜N = 2). The
function is stable and its regularity increases when choosing
the order more than two.
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Figure 2: Frequency responses of (N , ˜N) interpolating filters

(|̂h(ω)|, |̂˜h(ω)|, |ĝ(ω)|, |̂g̃(ω)|) for even orders 2 to 8 in case N =
˜N , which are obtained according to the coefficients given in
Table 1. Solid line and dashed line represent primal and dual filters,
respectively. As N and ˜N increase, the filters are increasingly flat at
ω = 0 and ω = π.

Table 1 shows the different orders of predictor pN [k]
based on Lagrange half-band filters defined in (26). The

frequency responses of corresponding filters (h, ˜h, g, g̃) are
shown in Figure 2. As N and ˜N increase, the filters are
increasingly flat atω = 0 andω = π, which implies that a lack
of smoothness of a signal after the decomposition would be
improved. Their filter coefficients are always of the form z/2n

where z ∈ Z, n ∈ N, thereby allowing an implementation of
the integer wavelet transform [25], which has been adopted
in the JPEG2000 standard.

3. Triangular BiorthogonalWavelets

This section presents triangular wavelets, which are two-
dimensional nonseparable wavelets defined on a regular
triangular lattice. The construction basically follows a
straightforward generalization of the interpolating wavelets
described before. We first study a method for generating the
triangular lattice. Then we show how the filters as well as
wavelets constructed in Section 2 fit into the general settings.

3.1. Bravais Lattice Formalism. A discrete signal is naturally
indexed by integers in one dimension, but the indexing may
become a nontrivial problem in two or higher dimensions.
Here we introduce a convenient method of site indexing
for a two-dimensional plane by employing the primitive
translation vectors. In solid state physics, possible crystals are
classified as lattice structures called Bravais lattice generated
by three primitive translation vectors. While general crystals
have three-dimensional structures, the basic idea is still
applicable in two dimension and poses no basic problems.
We begin our formulation following the general strategy in
solid state physics for example [26].

We define two primitive translation vectors

t1 =
(

1 0
)T

, t2 =
(

−1
2

√
3

2

)T

, (28)

with which the regular triangular Bravais lattice is defined by

Λ = {t = n1t1 + n2t2 | (n1,n2) ∈ Z2}. (29)

The domain containing all the points whose closest site is a
site t ∈ Λ is the Wigner-Seitz cell of the site, which is also
called the Voronoi cell. It is the domain of definition of a
function f (r), r ∈ R2. Each site belongs to its corresponding
Wigner-Seitz cell, and a whole plane R2 is represented as a
tiling of the cells. For a two-dimensional discrete signal such
as an image, this plays the role of a pixel. In our setting the
Wigner-Seitz cell is a hexagon, as shown in Figure 3.

The reciprocal lattice vectors are similarly defined by

λ1 =
(

0
2√
3

)T

, λ2 =
(

1
1√
3

)T

, (30)

which generate the reciprocal lattice

̂Λ = {2π(λ = n1λ1 + n2λ2) | (n1,n2) ∈ Z2}. (31)

The Wigner-Seitz cell of the reciprocal lattice ̂Λ is called
the Brillouin zone, which is also a hexagon (see Figure 3).
Analogous to the nature of the Wigner-Seitz cells, a whole
ω-plane can also be tiled by a set of Brillouin zones, as
illustrated together in Figure 4.

For notational convenience we also define t0 = λ0 = 0,
t3 = −t1 − t2, and λ3 = λ1 − λ2, holding the relation

λm · tm = 0, m = 0, 1, 2, 3. (32)

Note that t3 and λ3 are not linearly independent and in
particular

e−iπnλi·t j =
⎧

⎨

⎩

1, i = j,

(−1)n, i /= j,
i, j = 1, 2, 3, n ∈ Z. (33)

A discrete signal {cj[t]}t∈Λ is assumed to be given on the
Bravais lattice Λ, and its Fourier transform

ĉ j(ω) =
∑

t∈Λ
cj[t]e−iω·t, ω ∈ R2, (34)

is doubly periodic with period 2πλ

ĉ j(ω) = ĉ j(ω + 2πλ), λ ∈ ̂Λ. (35)

Thus, one of the Brillouin zones is the domain of definition
of ĉ j(ω), which corresponds to the interval [−π,π] in one
dimension. In particular, the aliasing frequencies occur at the
boundary of the Brillouin zones. Unlike the one-dimensional
setting, where there exists only one alias point at ω = π, we
have three alias points at ω = πλk, k = 1, 2, 3 due to the
double periodicity.
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Table 1: Coefficients for predictor pN [k] of order N based on Lagrange interpolation.

N \ k −4 −3 −2 −1 0 1 2 3 4 5 Scaling

2 1 1 /2

4 −1 9 9 −1 /24

6 3 −25 150 150 −25 3 /28

8 −5 49 −245 1225 1225 −245 49 −5 /211

10 35 −405 567 −2205 19845 19845 −2205 567 −405 35 /216

−1 1 2
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x

(a)
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−2π
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4π
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η

ξ

(b)

Figure 3: Bravais lattice Λ generated by two primitive translation vectors t1 and t2, and Wigner-Seitz cell (a); reciprocal lattice ̂Λ generated
by two reciprocal lattice vectors λ1 and λ2, and Brillouin zone (b). For notational convenience t3 and λ3 are also defined.

A crucial observation is that the Bravais lattice Λ may be
split into four sublattices

Λm = {2t + tm | t ∈ Λ}, m = 0, 1, 2, 3. (36)

The set Λ is now partitioned, and these four sets Λm are
completely disjointed from each other. If we add all of the
sites of sublattices, then we recover the original lattice. This
is exactly the polyphase decomposition of the Bravais lattice,
which immediately indicates that we have four polyphase
components and thus four patterns of indices (see Figure 5).
For example, a signal {cj[t]}t∈Λ is represented as its four
polyphase components

ĉm, j(ω) =
∑

t∈Λ
cj[2t + tm]e−iω·t, m = 0, 1, 2, 3, (37)

which play the role of even and odd indices in one dimension.
Then the formula analogous to (11) is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ĉ j(ω)

ĉ j(ω + πλ1)

ĉ j(ω + πλ2)

ĉ j(ω + πλ3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= ̂U(ω)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ĉ0, j(2ω)

ĉ1, j(2ω)

ĉ2, j(2ω)

ĉ3, j(2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (38)

where

̂U(ω) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 e−iω·t1 e−iω·t2 e−iω·t3

1 e−iω·t1 −e−iω·t2 −e−iω·t3
1 −e−iω·t1 e−iω·t2 −e−iω·t3
1 −e−iω·t1 −e−iω·t2 e−iω·t3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (39)

In order to obtain the wavelet transform applied to
our triangular lattice, the filters used for the decomposition

and reconstruction must be formed by a set of four filters,
because we have four polyphase components. The straight-
forward generalization shows that the possible combination
of four filters turns out to be one LP and three independent
HP filters {h[t], g1[t], g2[t], g3[t]}t∈Λ, which satisfies

̂

˜h(ω)̂h∗(ω) +
3
∑

m=1

̂g̃m(ω)ĝ∗m(ω) = 4,

̂

˜h(ω)̂h∗(ω + πλ1) +
3
∑

m=1

̂g̃m(ω)ĝ∗m(ω + πλ1) = 0,

̂

˜h(ω)̂h∗(ω + πλ2) +
3
∑

m=1

̂g̃m(ω)ĝ∗m(ω + πλ2) = 0,

̂

˜h(ω)̂h∗(ω + πλ3) +
3
∑

m=1

̂g̃m(ω)ĝ∗m(ω + πλ3) = 0,

(40)

or in terms of the modulation matrix

̂

˜M
T

(ω)̂M∗(ω) = 4I , (41)

where

̂M(ω) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂h(ω) ̂h(ω + πλ1) ̂h(ω + πλ2) ̂h(ω + πλ3)

ĝ1(ω) ĝ1(ω + πλ1) ĝ1(ω + πλ2) ĝ1(ω + πλ3)

ĝ2(ω) ĝ2(ω + πλ1) ĝ2(ω + πλ2) ĝ2(ω + πλ3)

ĝ3(ω) ĝ3(ω + πλ1) ĝ3(ω + πλ2) ĝ3(ω + πλ3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(42)
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Figure 4: Set of Wigner-Seits cells (a) and Brillouin zones (b) in Bravais lattice Λ and reciprocal lattice ̂Λ, respectively. Both whole plane R2

can be represented as a tilling of them.

and ̂˜M(ω) is defined in a similar way. As in one dimension,
the set of these four filters produces a scaling function φ and
wavelets ψm, m = 1, 2, 3 defined on R2

̂φ(ω) = 1
2
̂h
(

ω

2

)

̂φ
(

ω

2

)

, ψ̂m(ω) = 1
2
ĝm

(

ω

2

)

̂φ
(

ω

2

)

,

(43)

which are normalized as ̂φ(0) = 1 and ψ̂m(0) = 0, assuming

that ̂h[0] = 2 and ĝ[0] = 0. Note that we have three wavelets.
On the Bravais lattice Λ they satisfy the relation

φ(r) =
∑

t∈Λ
2h[t]φ(2r− t),

ψm(r) =
∑

t∈Λ
2gm[t]φ(2r− t).

(44)

The dual scaling function and wavelets are formed similarly.

3.2. Triangular Wavelet Transform. Corresponding to the
decomposition of the Bravais lattice Λ, the polyphase
representation of a LP filter {h[t]}t∈Λ and three HP filters
{gk[t]}t∈Λ, k = 1, 2, 3, are given by the following form:

(

̂h(ω) ĝ1(ω) ĝ2(ω) ĝ3(ω)
)T

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂h0(2ω) ̂h1(2ω) ̂h2(2ω) ̂h3(2ω)

ĝ1,0(2ω) ĝ1,1(2ω) ĝ1,2(2ω) ĝ1,3(2ω)

ĝ2,0(2ω) ĝ2,1(2ω) ĝ2,2(2ω) ĝ2,3(2ω)

ĝ3,0(2ω) ĝ3,1(2ω) ĝ3,2(2ω) ĝ3,3(2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

e−iω·t1

e−iω·t2

e−iω·t3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(45)

where

̂hm(ω) =
∑

t∈Λ
h[2t + tm]e−iω·t,

ĝk,m(ω) =
∑

t∈Λ
gk[2t + tm]e−iω·t,

m = 0, 1, 2, 3. (46)

y

x

(a)

y

x

(b)

Figure 5: Polyphase decomposition of the Bravais lattice Λ (a) into
four sublattices Λm, m = 0, 1, 2, 3 (b). Circle mark (a) represents
original lattice sites while under side of circle, square, triangle,
and star marks (b) represents each polyphase of four sublattices
according to directions in t0, t1, t2, and t3, respectively.

We then assemble the polyphase matrix as

̂P(ω) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂h0(ω) ĝ1,0(ω) ĝ2,0(ω) ĝ3,0(ω)

̂h1(ω) ĝ1,1(ω) ĝ2,1(ω) ĝ3,1(ω)

̂h2(ω) ĝ1,2(ω) ĝ2,2(ω) ĝ3,2(ω)

̂h3(ω) ĝ1,3(ω) ĝ2,3(ω) ĝ3,3(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (47)

and dual polyphase matrix ̂˜P(ω) similarly.
Now we are ready to define the triangular wavelet

transform. With a particular set of four filters, a signal ĉ j is
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˜P(ω)

e−iω·t3

e−iω·t2
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Figure 6: Poplyphase representation of triangular wavelet trans-
form. First signal is decomposed into four phases subsampled by
4, then they are filtered by applying the polyphase matrix to yield
the coarse (LP) and three detail (HP) components. The inverse
transform is simply realized with the dual polyphase matrix by
taking the exactly backward procedure.

decomposed into a coarse component ĉ j−1 and three detail

components ̂dm, j−1, m = 1, 2, 3, subsampled by a factor of 4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ĉ j−1(ω)

̂d1, j−1(ω)

̂d2, j−1(ω)

̂d3, j−1(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= ̂P(ω)†

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ĉ0, j(ω)

ĉ1, j(ω)

ĉ2, j(ω)

ĉ3, j(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (48)

which is illustrated schematically in Figure 6. The original
signal ĉ j can be reconstructed by the inverse transform

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ĉ0, j(ω)

ĉ1, j(ω)

ĉ2, j(ω)

ĉ3, j(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= ̂˜P(ω)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ĉ j−1(ω)

̂d1, j−1(ω)

̂d2, j−1(ω)

̂d3, j−1(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (49)

assuming that the perfect reconstruction condition is satis-
fied

̂

˜P(ω) ̂P(ω)† = I. (50)

As we see in Figure 6, the structure of the triangular wavelet
transform is essentially the same as that of a four-channel
filter bank for a two-dimensional signal. On the lattice plane
the decomposition and the reconstruction are defined by
convolutions and subsampling of the output by 4. This can
be written in terms of the extension of the Mallat algorithm
[27]

cj−1[t] =
∑

s∈Λ
h∗[s− 2t]cj[s],

dm, j−1[t] =
∑

s∈Λ
g∗m[s− 2t]cj[s],

cj[t] =
∑

s∈Λ

⎛

⎝˜h[t− 2s]cj−1[s] +
3
∑

m=1

g̃m[t− 2s]dm, j−1[s]

⎞

⎠.

(51)

Recall that the lifting scheme corresponds to the factor-
ization of a polyphase matrix. It allows one to construct any
biorthogonal filters as well as fast in-place implementation

of the wavelet transform that require less computational cost
than the direct implementations (51). We now wish to extend
the factorization (21) to our case, which is found to be

̂P(ω)† =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

K 0 0 0

0
1
K

0 0

0 0
1
K

0

0 0 0
1
K

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 û1(ω) û2(ω) û3(ω)

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

− p̂1(ω) 1 0 0

− p̂2(ω) 0 1 0

− p̂3(ω) 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(52)

with three predictors p̂m and updaters ûm, m = 1, 2, 3.
Obviously, these matrices are still invertible. The lifting
implementation of the triangular wavelet transform is then
realized by the following steps. First, we have three predict
steps; three odd components cj[2t + tm], m = 1, 2, 3, are
predicted by three predictors pm, respectively,

cj[2t + t1] −→ d1, j−1[t] = cj[2t + t1]− p1

(

cj[2t]
)

,

cj[2t + t2] −→ d2, j−1[t] = cj[2t + t2]− p2

(

cj[2t]
)

,

cj[2t + t3] −→ d3, j−1[t] = cj[2t + t3]− p3

(

cj[2t]
)

.

(53)

Then the update step is carried out dealing with three results
of the prediction

cj[2t] −→ cj−1[t] = cj[2t] +
3
∑

m=1

um
(

dm, j−1[t]
)

, (54)

which preserves the average of a two-dimensional signal.
Finally the normalization steps are applied.

Since we take three predict steps, we have degrees of free-
dom to design three independent HP filters. If we make the
filters isotropic, the energy of three detail components dm, j−1

is expected to be evenly distributed while the diagonal detail
component in the tensor product transform is not essentially
the independent component. The factorization (52) for M-
channel case is also considered in [28], where the individual
predictors are modified depending on the situations. In our
setting, we directly use the one-dimensional predictor for
each predictor pm in (52), and its subscript m corresponds to
the directions of symmetric primitive translation vectors tm.
This gives much easier extension of one-dimensional filters
and obtains three isotropic HP filters whose coefficients on
the triangular lattice are symmetrically arranged with respect
to the origin. Moreover, this trigonal arrangement of filter
coefficients provides hexagonal symmetry for the LP filter
if each updater um is also set in a similar manner. We now
proceed to construct such filters and discuss their properties.
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3.3. Triangular Interpolating Wavelets. In this section we
extend (N , ˜N) interpolating filters presented in Section 2.2
including the Haar filter to the triangular lattice using (52).
As in one dimension, the simplest choice

K = 2, p̂m(ω) = 1, ûm(ω) = 1
4

, m = 1, 2, 3, (55)

and ̂

˜P(ω) = ̂P(ω)†
−1

gives two-dimensional Haar filters
defined on the lattice, which turn out to be biorthogonal

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂h(ω)

ĝ1(ω)

ĝ2(ω)

ĝ3(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1

−1 1 0 0

−1 0 1 0

−1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

e−iω·t1

e−iω·t2

e−iω·t3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂

˜h(ω)

̂g̃1(ω)

̂g̃2(ω)

̂g̃3(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

e−iω·t1

e−iω·t2

e−iω·t3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(56)

In a similar way, we generalize (N , ˜N) interpolating filters
by letting predictors pm as pNm[ktm] = pN [k], where pN [k] is
given in Table 1 and slightly rewriting condition (27) as

ûm(ω) = p̂ ˜N∗m (ω)
4

for ˜N ≤ N. (57)

A set of resulting filters (h, ˜h, gm, g̃m) is (N , ˜N) interpolating
filters defined on the triangular lattice. Since our construc-
tion is straightforward generalization of the one-dimensional

case, the dual LP filter ˜h is still interpolating or half-band in
the sense that

̂

˜h(ω) +
3
∑

m=1

̂

˜h(ω + πλm) = 2, (58)

which is in place of (24). If we extend the linear prediction
(22) according to (57)

p̂m(ω) = 1 + e−iω·tm

2
, ûm(ω) = 1 + eiω·tm

8
, (59)

with K = 2, then we obtain the triangular version of (2, 2)
interpolating filters or CDF(2, 2) filters. This shows that our
method is general so that (N , ˜N) interpolating filters of
higher-order can be generalized directly.

For the Haar and (2, 2) interpolating cases, we display the
filter coefficients and their frequency responses with vectors
2πλm in Figures 7 and 8. In each case of m = 1, 2, 3, the
coefficients of primal HP filters gm are one dimensionally
arranged along the directions of the primitive translation
vectors tm. This is true for dual filters g̃m while they have two-
dimensional support on the lattice plane. In other words, this
means that both HP filters (gm, g̃m) are isotropic as we exactly
intended, and m = 1 and m = 3 cases are thus simply 2π/3

Table 2: Number of zeros for triangular (N , ˜N) interpolating filters.

̂h ĝ1 ĝ2 ĝ3
̂

˜h ̂g̃1
̂g̃2

̂g̃3

ω = πλ1 ˜N 0 N N N N ˜N ˜N

ω = πλ2 ˜N N 0 N N ˜N N ˜N

ω = πλ3 ˜N N N 0 N ˜N ˜N N

rotations of the m = 2 case. As we mentioned before, it is
obvious that the triangular filters are periodic with respect

to the translation ω → ω + 2πλ, and (h, ˜h) are intrinsically
two-dimensional LP filters having the hexagonal symmetry.

Let us now concentrate on the nature of the triangular
filters along the directions of reciprocal lattice vectors λm,
m = 1, 2, 3. Due to the hexagonal symmetry, LP filters have
the same structure for each direction of λm. In particular, we
derive from (58) that they are also half-band

̂

˜h(ωλk) + ̂˜h(ωλm + πλm) = 2, k,m = 1, 2, 3, (60)

and the biorthogonality condition implies

̂h∗(ωλk)̂˜h(ωλk) + ̂h∗(ωλm + πλm)̂˜h(ωλm + πλm) = 4. (61)

Correspondingly, one-dimensional responses of three HP
filters for directions in λm are defined from the LP filters
in a manner similar to (7). The relations are summarized as
follows:

ĝk(ωλm) =

⎧

⎪

⎨

⎪

⎩

0, k = m,

1
2
e−iωtk·λm̂˜h(ωλm + πλm), k /=m,

̂g̃k(ωλm) =

⎧

⎪

⎨

⎪

⎩

̂

˜h(ωλm + πλm), k = m,

e−iωtk·λm̂h(ωλm + πλm), k /=m,

(62)

where exponential factors give ±1 according to (33). In fact,

the frequency responses of LP filters ̂h(ωλm) and ̂

˜h(ωλm)
amount to the one-dimensional cases shown in Figure 2, and

hence the same holds for HP filters ĝk(ωλm) and ̂g̃k(ωλm) in
case k /=m. Note the different normalization factor.

The HP filters (ĝm(ω), ̂g̃m(ω)), m = 1, 2, 3, have (N , ˜N)
vanishing moments. More precisely, the vanishing moment
that we consider here is the number of zeros of ĝm(ωλm)

and ̂g̃m(ωλm) at ω = 0. Similarly LP filters ̂h(ωλm) and
̂

˜h(ωλm) have zeros at ω = π, which corresponds to the alias
points ω = πλm. The number of zeros of triangular (N , ˜N)
interpolating filters is summarized in Table 2.

Although the wavelet and scaling functions are often
less important than the associated filters in applications,
we mention some of their interesting properties. In one
dimension the Haar scaling function φ(t), whose value is
1 over the interval t ∈ [0, 1) and 0 otherwise is the most
trivial case for filling the real line R. However, this becomes
much more complicated for the two-dimensional case as
shown in Figure 9. Note that the primal and dual scaling
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Figure 7: Frequency responses of triangular biorthogonal Haar filters (h, gm, ˜h, g̃m), m = 1, 2, 3, whose arrows indicate 2π times reciprocal
lattice vectors λm.

functions are identical and its value is 1 over the white region
and 0 otherwise, while the wavelets have positive, zero, and
negative values represented, respectively, in black, grey, and
white. It is interesting to note that the scaling function with
this fractal shape tiles a whole plane R2. Such functions are
also obtained in [29] on the rectangular setting t1 = (1, 0)T

and t2 = (0, 1)T as one of the particular functions that
have the property of self-similar tiling of Rn. On the other
hand, the set of (2, 2) interpolating wavelets, shown also in
Figure 9, is obviously no longer involved with a fractal shape.
Their supports are based on the corresponding filters as given

in Figure 8 where LP filters h and ˜h have the hexagonal
symmetry. They are much more smooth functions but both
primal functions still seem to contain jaggy parts, as we
have already seen in their one-dimensional shapes shown
in Figure 1. As we pointed out in Section 2, this lack of
regularity is improved by increasing the order of N and ˜N .

4. Applications

The main purpose in this section is to explore effective
applications that are well suited for the triangular wavelets.
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Figure 8: Frequency responses of triangular (N , ˜N) interpolating filters (h, gm, ˜h, g̃m), m = 1, 2, 3, in case N = ˜N = 2, whose arrows indicate
2π times reciprocal lattice vectors λm.

Triangular filters are applied to various images and their
performances are compared with those in the conventional
tensor product transform in terms of isotropy of images and
quality of reconstruction.

4.1. Preliminaries. In the application of the triangular filters
to images, the original data should represent hexagonal
pixels arranged in a honeycomb structure. In the study of
numerical computations, such data may easily be generated
by sampling at Bravais lattice sites. Unfortunately, however,
such data are not available in the standard image database,
and hence we employ the following convention. We assume

that the second primitive translation vector t2 is almost
vertical, and then the hexagonal Wigner-Seitz cell approaches
a square, as shown in Figure 10. In this limit, the coarse
component cj−1 and detail components d1, j−1, d2, j−1, and
d3, j−1 correspond, respectively, to LL, LH, HL, and HH
components of tensor product transform yielded from
following the combinations of one-dimensional separable
filters

̂h(ξ)̂h
(

η
)

, ̂h(ξ)ĝ
(

η
)

, ĝ(ξ)̂h
(

η
)

, ĝ(ξ)ĝ
(

η
)

, ω = (ξ,η
)

,
(63)

where (ξ,η) is the rectangular coordinates of ω.



12 EURASIP Journal on Image and Video Processing

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0.5

0

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.5 0 0.5 1 −0.5 0.50 1 −0.5 0 0.5 1

−0.5 0 0.5 1 −0.5 0.50 1 −0.5 0 0.5 1

x

y

x

y

x

y

x

y

xx

y y

ψ̃2(r)˜φ(r)
∑3

m=1 ψ̃m(r)

φ(r) ψ2(r)
∑3

m=1 ψm(r)

(a) Haar

−1.5

−1

−0.5

0

0.5

1

1.5

0

1

1.5

−1

−0.5

0.5

−1.5

0

1

1.5

−1.5

−1

−0.5

0.5

−1.5

−1

−0.5

0.5

0

1

1.5

0

1

1.5

−1

−0.5

0.5

−1.5

0

1

1.5

−1.5

−1

−0.5

0.5

−1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5

x

y

x

y

x

y

x

y

xx

y

x

y

ψ̃2(r)˜φ(r)
∑3

m=1 ψ̃m(r)

φ(r) ψ2(r)
∑3

m=1 ψm(r)

−1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5

(b) (2,2) interpolating

Figure 9: The density plots of triangular biorthogonal wavelet bases. Each column gives the scaling functions, wavelets in case m = 2, and
sum of three wavelets from the left. The other wavelets for m = 1 and 3 cases are defined by rotating them by ±2π/3 on the plane R2.
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Figure 10: Honeycomb and nearly square array of Wigner-Seitz
cell.

(a) (b)

Figure 11: Decomposed images of Mesh-circle with triangular Haar
(a) and tensorial Haar (b).

The images obtained by the decomposition are displayed
in the pyramidal tiling, with the coarse approximation at
the top left corner, while the detail components d1 j−1, d3 j−1,
and d2 j−1 are arranged clockwise. The grayscale images used
here have 512 × 512 pixels, and we treat the image data as
the original signal {c9[t]}t∈Λ to which the decomposition
algorithm is applied with periodic boundary condition in
both t1 and t2 directions.

In a variety of the triangular wavelet filters, we use the
Haar and (2,2) interpolating filters constructed in Section 3
as well as their conventional tensor product forms to make
the comparison simple. Since the filters are biorthogonal, we
assume the L1 norm of coarse and detail components as the
energy.

4.2. Image Decomposition. Let us first discuss the decom-
posed images of a simple symmetric artificial figure, the
Mesh-circle, by one-level decompositions with the triangular
Haar filters and their conventional tensor product forms
shown in Figure 11. The original image c9 has been decom-
posed into a coarse approximation c8 and three oriented
detail components dm,8, m = 1, 2, 3, with half a resolution,
respectively.

Here we can clearly see the three detail components
in the triangular decomposition as we expected, while the
diagonal detail component d3,8 in the tensor product case
is not visually apparent. This corresponds to their energy
distributions of three detail components which, together
with the results of Lena, are shown in Figure 12. As is
obvious from the decomposed images of each triangular and

tensor product case for Mesh-circle, d1 and d2 components
share almost the same amount of energy, implying that
the image contains the same density of energy in vertical
and horizontal directions. However, diagonal d3 components
are significantly different. Since d3 component obtained
from the tensor product transform is not an independent
component, its energy is appreciably less than the other
components d1 and d2. In contrast, the triangular case has
more energy of d3 component that is independent and
thus the energy is evenly distributed over the three detail
components. Note that the Mesh-circle image originally
contains diagonal information the most.

In the case of a more realistic image, Lena, the observa-
tions are very similar, except for the effect of the directional
property, which has the strong energy concentration of
d1 component. Thus isotropy, or rotational invariance,
of the original images is well respected in the triangular
decomposition.

4.3. Compression. We reconstructed images keeping some of
the largest detail components |dm, j[t]|, j = 8, . . . , 2, and
|c2[t]|, using both (2,2) interpolating filters. Figure 13 shows
compressed images of Lena at the largest 5% of coefficients
and their zooms. Since the triangular filters preserve isotropy
of an image, they should still represent its edge structures
nicely even if the image is compressed. While the triangular
case appears to be better at some particular parts of the
figures such as the hat of Lena and the frame of the mirror,
one might say, however, that the tensorial case has good
quality because its Peak-Signal to Noise Ratio (PSNR) value
is slightly higher compared with ours. This is due to the
fact that the tensor product transform has relatively smaller
total energy of detail components. We have observed that
the triangular decomposition produces even energy of three
detail components while the tensor product case has much
less energy of diagonal detail components and thus the total
energy is lower. The difference is fairly small but in general
causes the serious disadvantage in compression.

The uniform distribution of coefficients is somewhat
inconvenient for image compression because in general it
needs a biased distribution of coefficients to reduce the
entropy. However, for both images shown in Figure 13, we
emphasize that no definite statement can be made as to which
is better judging from the PSNR values. PSNR is one of
the standard criteria of distortion measure, but it does not
always agree well with human perception. Nevertheless, the
difficulty lies in evaluating the distortion that we actually
perceive.

4.4. Edge Detection. The particular property of isotropic
energy distributions is very effective when representing the
edge of figures. After the one-level decomposition by both
sets of Haar filters, we reconstructed images, the Fingerprint
and the Boat, only using detail components so that the whole
edge structure is detected. Results are shown in Figure 14. In
the triangular decomposition for both images, we see that
the edge structures of the images are distinctly detected in
independent orientations. This is a sharp contrast to the
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Figure 12: Energy (L1 norm) distributions of three detail components after one-level decompositions for Mesh-circle (a) and Lena (b).

(a) (b) (c)

Figure 13: Lena reconstructed with the largest 5% of coefficients and its zoom. (a) displays original image, and (b) and (c) show triangular
(2,2) case and tensorial (2,2) case having PSNR = 34.4 dB and = 35.5 dB, respectively.

tensorial case, where some parts of the edge information are
lost and ringing effects are observed.

The Fingerprint image mainly contains the correlation in
the diagonal direction, which is similar to the Mesh-circle
because a fingerprint has a spiral structure. Hence, in the
triangular decomposition the energy of detail components

should be evenly distributed while most of the energy goes
to horizontal and vertical directions in the tensorial one. The
reconstruction of the image from only detail components in
the triangular case therefore reproduces its edge structures
clearly. This might be even more evident in the Boat image.
The Boat contains much information composed of straight
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(a) (b) (c)

Figure 14: Zoom of images reconstructed with only detail coefficients d8,m, m = 1, 2, 3; each column shows original image, triangular Haar
case, and tensorial Haar case from the left.

lines such as masts, which are not clearly represented in
the tensor product example. This is true especially for the
inclined objects.

These results clearly indicate that for the edge detection
it would be more desirable to use the triangular filters as they
allow an isotropic image representation. It is also suggestive
that our filters are effective for the feature or keypoint
detection [30], where isotropy and orientation analysis play
an important role.

5. Concluding Remarks

We have developed the nonseparable biorthogonal wavelets
on triangular lattice by extending the one-dimensional
interpolating wavelets. It turned out that it is possible to
design three oriented wavelets having an arbitrary order of
vanishing moments. The three HP filters are symmetrically
arranged on the lattice thereby allowing them to be isotropic
filters and thus giving hexagonal symmetry to the LP
filters. Since our formalism is basically a straightforward
generalization of the one-dimensional case, the extension to
three or multidimension appears to pose no fundamental
problems.

In the exploration of effective application examples
with triangular wavelet filters in image processing, we have
observed that triangular filters have distinctive advantages in
the edge detection for independent orientations of images
compared to the conventional tensor product forms. This
surely suggests that the triangular wavelets are promising in
preserving isotropy of images well.

In dealing with more complicated applications such as
feature or keypoint detection, the triangular wavelets appear

to be appealing as it can offer the isotropic image processing.
We believe the triangular wavelets developed in this paper
would be appreciably useful for a wide range of scientific
fields, where symmetry plays an important role.
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[3] J. Kovačević and M. Vetterli, “Nonseparable multidimensional
perfect reconstruction filter banks and wavelet bases for Rn,”
IEEE Transactions on Information Theory, vol. 38, no. 2, pp.
533–555, 1992.

[4] Z. Zhang, H. Fujiwara, H. Toda, and H. Kawabata, “A new
complex wavelet transform by using RI-spline wavelet,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’04), vol. 2, pp. 937–940,
Montreal, Canada, May 2004.

[5] N. Kingsbury, “The dual-tree complex wavelet transform: a
new technique for shift invariance and directional filters,” in



16 EURASIP Journal on Image and Video Processing

Proceedings of the 8th IEEE Digital Signal Processing Workshop
(DSP ’98), Bryce Canyon, Utah, USA, 1998, paper no. 86.

[6] M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresolution
analysis for surfaces of arbitrary topological type,” ACM
Transactions on Graphics, vol. 16, no. 1, pp. 34–73, 1998.

[7] G.-P. Bonneau, “Optimal triangular Haar bases for spherical
data,” in Proceedings of the 10th IEEE Visualization Conference
(VIS ’99), pp. 279–284, 1999.

[8] W. Sweldens, “The lifting scheme: a custom-design construc-
tion of biorthogonal wavelets,” Applied and Computational
Harmonic Analysis, vol. 3, no. 2, pp. 186–200, 1996.

[9] W. Sweldens, “The lifting scheme: a construction of second
generation wavelets,” SIAM Journal on Mathematical Analysis,
vol. 29, no. 2, pp. 511–546, 1998.
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