Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 930250, 12 pages
doi:10.1155/2008/930250

Research Article

High Speed 3D Tomography on CPU, GPU, and FPGA

INTRODUCTION

Nicolas GAC," 2 Stéphane Mancini," Michel Desvignes," and Dominique Houzet'

I Grenoble-Images-Parole-Signal-Automatique Laboratoire (GIPSA-lab), Grenoble Institute of Technology (INPG),
BP 46, 38402 Grenoble Cedex, France

2 Equipes Traitement des Images et du Signal (ETIS), Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure
de PElectronique et de ses Applications (ENSEA), Université de Cergy-Pontoise, 95000 Cergy-Pontoise Cedex, France

Correspondence should be addressed to Nicolas GAC, nicolas.gac@lss.supelec.fr
Received 1 March 2008; Revised 24 June 2008; Accepted 12 November 2008
Recommended by Dragomir Milojevic

Back-projection (BP) is a costly computational step in tomography image reconstruction such as positron emission tomography
(PET). To reduce the computation time, this paper presents a pipelined, prefetch, and parallelized architecture for PET BP (3PA-
PET). The key feature of this architecture is its original memory access strategy, masking the high latency of the external memory.
Indeed, the pattern of the memory references to the data acquired hinders the processing unit. The memory access bottleneck is
overcome by an efficient use of the intrinsic temporal and spatial locality of the BP algorithm. A loop reordering allows an efficient
use of general purpose processor’s caches, for software implementation, as well as the 3D predictive and adaptive cache (3D-AP
cache), when considering hardware implementations. Parallel hardware pipelines are also efficient thanks to a hierarchical 3D-AP
cache: each pipeline performs a memory reference in about one clock cycle to reach a computational throughput close to 100%.
The 3PA-PET architecture is prototyped on a system on programmable chip (SoPC) to validate the system and to measure its
expected performances. Time performances are compared with a desktop PC, a workstation, and a graphic processor unit (GPU).

Copyright © 2008 Nicolas GAC et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and 3D ultrasound imaging, or in other domains such

Tomography consists of reconstructing an object from its
projections via numerical methods [1]. This process is used
in medical scanners, such as computed tomography (CT)
or positron emission tomography (PET) scanners. PET is
a nuclear imaging modality; its goal is to measure the
spatial and temporal distribution of a radiotracer perfused
in a patient’s body. PET imaging is used in oncology, to
detect, track, and visualize tumors. After data acquisition,
the 3D image of the radiotracer is reconstructed offline from
the measures (called sinograms) to diagnose pathologies.
Oncology and other clinical applications need a high-
quality reconstruction as fast as possible (few minutes at
most) to reduce the device occupation and allow a patient
repositioning. (A patient cannot experience a radiotracer
twice in a short while and has to wait several months before
a new examination, in case of bad camera positioning.) Also,
dynamic PET is in need of even faster reconstruction.

Moreover, tomography is required in many other medical
imaging techniques, such as 3D magnetic resonance imaging

as synthetic aperture radar (SAR), contactless control, and
industrial X-ray applications. Therefore, the acceleration of
the reconstruction algorithm is of great interest for various
applications.

Due to the large amount of the acquired data and
the complexity of the algorithms, reconstruction is a very
time-consuming process. From a computing point of view,
reconstruction methods can be classified into two main
techniques: analytic (direct) reconstruction and iterative
reconstruction. They both include a back-projection (BP)
step that accounts for 50% to 70% of the processing time.

In 3D reconstruction, the computational complexity of
the standard algorithm to reconstruct an N* dataset from N
angles of projection is O(N*). In the previous decade, several
algorithms have been proposed to reduce BP complexity.
The lowest cost obtained is O(N?log N) but generally with
a lower quality of reconstruction; also it does not take into
account some required data management, which delay the
process. Although CPUs have gained sufficient computing
power for 2D reconstruction, with 3D reconstruction, the

EURASIP Journal on Embedded Systems

increase of the amount of data for high-quality images
leads to higher computing times. Iterative reconstruction
algorithms may reach several hours of processing [2].

The algorithmic optimizations of reconstruction have
reached some limits and it is becoming mandatory to reduce
the computing time through architecture solutions. General
purpose parallel computers benefit from recent competing
technologies: the system on programmable chip (SoPC) and
the general purpose graphical processing unit (GP-GPU).

This paper shows that a hardware implementation of the
BP algorithm needs to overcome the memory bottleneck.
This may be solved both by a loop reordering and the use of
an efficient caching mechanism. Parallel hardware pipelines
can be fed with a hierarchy of semigeneral purpose cache
such as the 3D-AP cache [3]. The resulting architecture
makes a better use of memory bandwidth than general
purpose CPUs and GP-GPU.

The first parts of this paper present the use of the
3D BP algorithm and different solutions to accelerate it.
Next, we present the memory bottleneck of a classical
implementation of 3D BP to overcome. From this study,
an efficient architecture is proposed: the pipelined, prefetch,
and parallelized architecture for 3D PET BP (3PA-PET). The
quality, complexity, and timing performance of the 3PA-PET
architecture are also presented. Measures on its prototyping
on a SoPC allow a comparison with the implementation of
BP on CPU and GP-GPU.

2. 3DBPIN TOMOGRAPHY RECONSTRUCTION

In this section, we will first show that 3D PET BP and the
3D CT BP using, respectively, a parallel and a cone beam
geometry are close algorithms. Then, we will present some
related works on acceleration of these two BPs on several
architectures.

2.1. BPalgorithms

2.1.1. 3D parallel beam BP for PET

The detectors of a PET scanner are usually paving a cylinder
and stacked in a set of rings of detectors [1]. The y rays
issued from the disintegration of a radiotracer particle are
detected by a pair of sensors facing each other. The line which
connects two sensors is called a line of response (LOR) and
the coincidence events counted on one LOR are stored in a
bin. All the bins are stored in a sinogram as illustrated in
Figure 1. The reconstruction process attempts to estimate the
image of the radiotracer distribution f that has produced the
sinogram.

The sinogram ppgr is a 4D space along (A, v, uy, v)).
The coordinates (A,v)) represent a couple of rings: A is
the axial distance between the two rings (segment number)
and vy is the mean axial coordinate of the two rings (plane
number). The coordinates (v,) represent one particular
LOR between two rings: v is the azimuthal angle and u is
the tangential coordinate (bin number).

Image space
z

Projection space

Detectors rings

(plane number)

u|| (bin number)

Segment A of the 4D sinogram

FiGure 1: The acquired data are stored in a 4D sinogram, a
sinogram bin corresponding to one particular LOR. To reconstruct
one voxel, the data needed by the BP algorithm draw a 3D sinusoid
in each segment A.

For each voxel (VOlume piXEL) of coordinate r =
(x, y,2), the BP algorithm sums up all the sinogram bins
corresponding to that voxel projection as follows:

fokr (1) = HPPET(A, vou (v, 1), v (v, A, 1)) Jady dA,
(1)

Ja is a Jacobian and the parallel beam coordinates (1, v||) are
computed as

uy(w,7) = x cosy + y siny + offset,

(2)
vi(y, A1) = %-(x siny — y cosy) + z + offset.
Using a;;(y, A) coefficients, we get
uy (v, 1) = agx + ao1y + o3,
(3)

vi(v, A7) = ajpx +any + anz +as.

2.1.2. Cone beam BP for CT

The cone beam BP used in CT imaging modalities uses a
similar algorithm [4]. In CT, the data is the X-ray intensity
reaching an X camera that rotates around the observed
volume. It measures the attenuation due to the density of
tissues. The density fZ(r) is computed from the measured
data pcr following:

f&(r) = JPCT(a,uv(a,f),vv(a,F))-w(a,F)z-da, (4)

where « is the trajectory parameter of the camera. The cone
beam coordinates (u., vy) are computed as

uy (o, 1) = (coox + co1y + conz + co3) - w(a, 1),

(5)

v (o r) = (crox + ey +cnz+as)-wlar),

Nicolas GAC et al.

where ¢;; depends on « (i.e., ¢;j = ¢;j(«)) and

o 1
w(a,r) = : (6)
€0 Xty tenz+ts3

2.1.3. Comparison of CT and PET

Although the CT BP is more complex due to the perspec-
tive transformation (6), these algorithms are quite similar.
Indeed, the summation over a (trajectory parameter) for
CT BP is equivalent to the summation over ¥ and A for
PET BP. Moreover, in these loops, both these BPs compute
very similar projection coordinates (u),v)) and (uy,vy).
Nevertheless, the computation of the projection coordinates
for CT BP needs a division by a distance weight w(a,7).
Thus, the CT BP kernel has more arithmetic operations than
PET BP has.

Supposing that one is able to design a pipeline that
computes a sum update at each clock cycle, both for CT
and PET BP, then the challenge is to fetch data along a
complex path (a 3D sinusoid) in the acquired data (3D CT
data or 4D PET sinogram). The method presented in this
paper for solving the case of PET BP (parallel beam) could
be transposed to solve the CT BP (cone beam).

2.2. Acceleration of reconstruction

Different computer architectures coupled with dedicated
memory access strategies are used to accelerate the BP step
of an analytic or iterative reconstruction, including general
purpose processors [5-7], graphical processors [8—14], the
cell processor [4, 15], or ASIC/FPGA architectures [16-20].
While most of these works have investigated cone beam BP,
only a few of them have investigated 3D parallel] beam BP
[2,5,8,9].

The parallelization of reconstruction algorithms on
shared memory parallel general purpose computer [5]
stays efficient only up to 4 processing units, because of
conflictual accesses on the memory bus. Considering clusters
of heterogeneous PCs [6, 7], efficiency of parallelization
drops down quickly because of the costly communication
between PCs. After 10 PCs, parallelization is not worthy. Yet
on a distributed memory parallel computer, parallelization
works very well. for 3D PET iterative reconstruction, Jones et
al. [2] succeeded to get an acceleration factor of about 30 with
32 processors. Ni et al. [21] achieved an excellent acceleration
factor of 300, when they parallelized the Katsevich algorithm,
an exact cone beam BP with 300 CPUs.

Besides parallelization on several nodes of general pur-
pose processors, more efficient engines such as the graphical
processing unit (GPU) or the IBM Cell can be used. Current
GPUs can be used either as a graphical pipeline, which is
originally designed for [8-10], or as a multiprocessor chip
thanks to the CUDA interface from Nvidia [10, 12—-15]. For
both options, the acceleration factor of GPU is high, about
an order of magnitude for cone beam BP. Xu and Mueller
[10] have observed that an implementation of the cone beam
BP using the graphic pipeline is 3 times faster than the one
made with the CUDA interface. Kachelrie8 et al. [4] and

Scherl et al. [15] present good result of acceleration of cone
beam BP using the Cell processor. With its 1 + 8 cores,
this architecture is an intermediate solution between general
purpose parallel processors and GPU. The 8 vector engines
have to be specifically programed. Nevertheless, Scherl et al.
[11] have measured that a GPU with CUDA is 3 times faster
than the Cell for the BP alone.

FPGA technology is an alternative to processors, allowing
designers to make a customized architecture. Most often,
it is used to prototype ASIC implementations. In this
context, FPGA implementations of 2D parallel beam BP
[16] and 3D cone beam BP [17-19] have been investigated.
These architectures are made of several pipelines working
in parallel. Moreover, like the image Pro by Siemens [18],
several FPGA chips can be used in a single board to raise the
computational power.

Two memory access strategies have been applied for
all these architectures. In case the processor already has
a memory cache, developers rely on it to optimize the
external memory accesses. Otherwise, developers set up
custom memory strategies in order to hide the memory
access time. The most common approach is to use double
buffering: the next required projection data is loaded from
external memory, meanwhile the ongoing loaded projection
data are back-projected. In this case, CPU and GPU memory
strategies are based on an extensive use of the cache. For
example Yang et al. [13] have observed that enabling a GPU
cache is more competitive than software prefetching. On the
other hand, the Cell and FPGA memory strategies have to be
taken in charge by the software designers.

3. OVERCOMING THE MEMORY BOTTLENECK

In this section, we focus our study on finding out the best
appropriate memory strategy to get the best fit between the
3D BP algorithm and a hardware architecture.

3.1. Memory access strategy

As the sinogram is kept in an SDRAM-like external memory,
we need an efficient memory management to overcome its
latency and allow a high level of parallelism. The main
difficulty is to deal with the high strides of addresses due to
the sinusoidal pattern of references in the 4D space. A cache
would help to hide the high latency of the external memory
despite these strides. Standard caches therefore are inefficient
as they exploit temporal and address locality of references.
Hence they are used at their best when the references follow a
1D linear pattern as a cache line is loaded when a miss occurs.

Indeed, as shown earlier, the reconstruction of a single
voxel f(x) needs to follow a 3D sinusoid in the 4D sinogram.
Such a pattern is of poor address locality but has a high
index locality. Moreover, because of the vj dimension, the
memory accesses for 3D BP have higher strides and are more
distributed in the memory space than in the 2D BP case [22].
The challenge is to speed up these memory accesses in a 4D
data structure.

EURASIP Journal on Embedded Systems

for n = 0 to M.y do
for Delta = 0 to Delta,,,x do
for psi = 0 to psi,, do
for 1 = fimin (1) t0 Fmax(n) do
£ (#)+ = bin(psi, Delta, u (psi, r'), v (psi, x))

ArLgoriTHM 1: The loop reordering of the 3D BP improves spatial
and temporal locality.

Therefore, a new cache mechanism is needed. Estimating
which bins would be referenced would help the cache to
download the needed bins during the computing process.

3.2. Improvement of spatial and temporal locality

A reconstruction with the voxel-driven bilinear interpolation
(VBI) standard BP is made of three loops, as described in
Algorithm 1: the first loop is on the voxels 7, the second
on the segments (Delta), and the third on the angles (psi).
Since voxels can be reconstructed independently, the loop
on voxels can be split into two parts: one loop on blocks
of voxels (0,...,nmax) and the other loop on the voxels of a
block #(7min (1), . . ., Fmax(1)).

A loop reordering increases the temporal and spatial
locality of memory accesses. Indeed, for given psi and Delta
values, the data bin(psi,r) will be used several times for
different voxels since the projection of a 3D block of voxels
is a 2D plane in the 4D space of the sinogram.

Figure 2 shows that the proposed loop reordering allows
to cache a part of the sinogram. The BP of a block of voxels
makes the references follow a coherent 3D sinusoid in the
sinogram along the time.

3.3. Mean bin reuse rate (MBRR)

To give a theoretical estimation of the best achievable cache
efficiency, the mean bin reuse rate (MBRR) is defined as the
ratio between the number of bins accessed in cache memory
by the processing units and the number of bins loaded in
cache memory from the external memory. The ideal MBRR
can be computed analytically. It depends on the shape of the
block of reconstructed voxels. Figure 3 presents this optimal
MBRR computed for each segment versus the size of the
block.

4. A 3P ARCHITECTURE FOR PET

In this section, we present the pipelined, prefetched, and
parallelized architecture for PET (3PA-PET). The 3PA-
PET architecture is made of a high-performance pipeline
connected to a 3D adaptive and predictive cache (3D-AP
cache). It allows to perform an update of a voxel value up to
1 operation per clock cycle (100% pipeline utilization), even
for high latency memories.

4.1. Pipelined architecture

The pipeline in Figure 4 implements the different steps of
the VBI standard BP: the computation of u(psi,r) and
v (psi,), the bilinear interpolation of the bin, and finally the
accumulation of the voxel value. The forward flow control is
done by packets passing through each stage of the pipeline.
The 4 bins needed for the bilinear interpolation are
fetched through the memory bridge. This bridge controls the
3D-AP cache and can freeze (or not) the pipeline depending
on the requested data availability. A backward flow control
synchronizes the pipeline and the 3D-AP cache.

4.2. Prefetch architecture

The 3D-AP cache [3] masks the latency of the external
memory so that the pipeline is no more systematically stalled.
The memory bridge gets four bins from the cache at each
clock cycle.

The 3D-AP cache is a semigeneric cache memory
mechanism that prefetches references following a continuous
path into a 3D memory space. It was originally designed as
a cache for a computer vision lip tracking application [3]
but it targets a large class of multidimensional processing
algorithms. In the 3PA-PET architecture, the 3D-AP cache is
tuned to follow the references needed to reconstruct a block
of voxels, as shown in Figure 5. The pipeline issues spatial
coordinates of the requested bin, here (psi, v, v), to the 3D-
AP cache. A part of the sinogram, namely, the cached zone,
is copied in an embedded memory. A tracking mechanism
tries to maintain the center of the cached zone in the mean
coordinate of the referenced data.

The 3D-AP cache estimates dynamically which data is
likely to be requested in the future. This is done by a
statistical analysis on each axis of the previous references.
Moreover, the 3D-AP cache masks the data transfer between
the external memory and the internal cache memory. In
the mean time, the cache grabs new data from the external
memory, the data shared by the old and the new cached zone
stay available for the processing unit.

The 3D-AP cache parameters have to be set beforehand
by the user. In this study, we set for each dimension the value
of the following five parameters.

(i) Cut off and sampling frequencies: the mean coordinate
is computed by a first-order low-pass IIR filter
configured by these two frequencies.

(ii) Cached zone size: this zone is notified to the memory
bridge to be available in cache. In this study, this size
is a static parameter.

(iii) Guard zone size when the mean coordinate is out of
this zone, the cache zone is updated.

(iv) Cache speed: it has to be set according to the speed
of the data accesses performed by the application on
each spatial dimension.

The cache is customized to allow four concurrent accesses to
the bins needed to perform a bilinear interpolation. Figure 6
gives a simplified view of the 3D-AP cache to illustrate the

Nicolas GAC et al.

SoPC: system on programmable chip

Coordinate

Latency
1 cycle

Data Latency

SDRAM
(128 Mo—1 Go)

4-10 cycles

Access time

FIGURE 2: The memory access strategy is based on a fast and small cache memory inside the SoPC. The cache predicts the needs of the 3D
BP unit and therefore succeeds to mask the high latency (4-10 cycles at 200 Mhz) of the slower and bigger external SDRAM memory.

Mean bin reuse rate

0 \ \ \ \
0 200 400 600 800 1000

Block size (number of voxels)

— Segment 0
--- Segment 1
'''''' Segment 2

FIGURE 3: Mean bin reuse rate (MBRR) estimated for a 3D BP
without bilinear interpolation versus the size of reconstructed
blocks of voxels for each segment of a Siemens HR+ sinogram (span
9 with 96 angles of projection).

involved memory architecture. The cache control unit grabs
data from the external memory and splits the incoming
data words to the different embedded memories. The cache
control unit also manages the cache misses that could occur
for some requested bins.

4.3. Parallelized architecture

To increase the computing power, several pipelines are
parallelized. A hierarchical cache reduces the memory bus
occupation, when BP units work in parallel. In this hierar-
chical design, one leaf cache is associated to one 3D BP unit
while a root cache is feeding each of these leaf caches.

The spatial locality of the references of the pipelines is
enabled by reconstructing a set of neighbor blocs. A pipeline
reconstructs one bloc of voxels and all the pipelines share a
loop over psi. Some of the sinogram data are shared by the
pipelines in the same way they are shared to reconstruct one
bloc of data. The bins needed during the reconstruction of a
set of blocs draw a 3D sinusoid. The cache concept presented
previously with one unit applies here in the same manner.
Each leaf cache stores a 3D sinusoid needed to reconstruct a
bloc. A higher level cache stores the union of these sinusoids
as presented in Figure 7.

5. 3PA-PET PERFORMANCES
5.1. Accuracy of reconstruction

The implemented VBI standard BP is a fixed-point version
of the original algorithm. Moreover, the sinogram data is
converted in float to short integer (16 bits). The accuracy of
reconstruction of 3PA-PET is measured between a reference
reconstruction software and a software bit-true model of
3PA-PET.

EURASIP Journal on Embedded Systems

6
(x, ¥,2) FSM
[4o v
i u(y,r) = ®] cos >
oxxcos(y) 7 cos(y) RAM g
o : :
! y* sin(y) H =
! Coordinate I::l ©) X g
1 computation [| 5
>y,) £
(1, v) g
FIFO (u+1,y,v) g
(u,y,v+1)
__________ Ll (u+1,y,v+1)
r - :/ Memor 3
Ubin(y,7) = (W [0 mory
: . ™| bridge [“3| 3D-AP
\ Coo *blnoo : cache
! +
: Co1 *binm :
Y !
: Cio *bil’l]o 1
1 + :
I Crixbing; i
I
i Interpolation |
Interpolated bin(y,)
flxp,2)

Control flow
data flow

—— Coordinate

FiGUre 4: Pipeline of 3PA-PET.

— Bin

—— Reconstructed voxel

(D Cache memory
\® Cached zone

~(3) Guard zone

@ Cache center

U

F1GURE 5: 3A-AP cache zones.

The reference dataset used is a sinogram of a 3D Shepp-
Logan volume of 128 x 128 X 63 voxels. This phantom
is a standard volume used in tomography to measure
the accuracy of reconstruction. The sinogram is obtained
from the STIR open source tool kit [23]. The volumes

TaBLE 1: Accuracy of reconstruction and compared reconstructions
for the Shepp-Logan phantom.

Compared volumes Data MAPE PSNR
Accuracy of reconstruction
STIR/original Float 3.89% 10.5dB
VBI-Flt/original Float 3.88% 10.5dB
VBI-Fix/original Float 3.88% 10.5dB
VBI-Flt/original Int16 3.97% 10.5 dB
VBI-Fix/original Int16 3.97% 10.5dB
Compared reconstructions
STIR/VBI-Flt Float 0.35% 21.5dB
VBI-Fix/VBI-Flt Float 0.13% 26.2dB
VBI-Fix/VBI-Flt Int16 0.13% 23.0dB
VBI-Fix/VBI-Flt Int16/flt 1.1% 19.0dB

reconstructed by STIR and by 3PA-PET are shown on Figures
8 and 9.

The accuracy of reconstruction of the 3PA-PET BP is
measured with two metrics: the mean absolute percentage
error (MAPE) and the peak signal-to-noise ratio (PSNR).
Both compare a volume f; with a volume of reference fir.
The PSNR corresponds to the ratio between the maximum
of frer (dynamic range) and the mean squared error (MSE)
of fi compared to fref,

max (fref)
MSE(feet> f1)

In Table 1, we compared the reference volume and
the volumes reconstructed with STIR, with VBI floating-
point arithmetic (VBI-flt) or with VBI fixed-point arith-
metic (VBI-fix). All of the reconstruction methods have
an intrinsic error around 3.9% with a PSNR of 10.5dB
when compared with the original volume. The floating-
point and the fixed-point implementations have an MAPE
of 0.13% and a PSNR of 23 dB. With different data types
(short int versus float), the MAPE is about 1.1% and the
PSNR of 19dB. Thus we can conclude that the 3PA-PET
implementation of the VBI BP is an accurate reconstruction
system.

PSNR = 20-log,, (7)

5.2. 3PA-PET complexity

The hardware resources used by the 3PA-PET architecture are
presented in Table 2. The main BP FSM and the root cache
control are shared between all of the units of the 3PA-PET
architecture. Therefore, the cost of an additional pipeline is
only 800 slices. The sizes of a leaf and the root caches are,
respectively, 2 KB and 18 KB. Hence, 9 BP units fit in a Xilinx
Virtex 2 Pro VP30 chip and 16 units in a virtex 4 FX100.

5.3. Efficiency of reconstruction

In order to assess the efficiency of the 3PA-PET architecture,
we have measured the BP time on an Avnet development
board connected to a PC host through a PCI interface

Nicolas GAC et al.

Cache 3D-AP cache
control
Miss arbiter |
(u, yyv) T D @5
5 l;«(_
J‘Q) =
16 §§
‘e
+ 1, v,]
(u+1,y,v) D@H A
.7
Memory § =
bridge 16 Oz
(t, y,|v +1)
(u+1,y,v+1)

(a) Customized concurrent 3D-AP cache architecture

(b) Mapping of bins to memory buffers

FIGURE 6: Memory architecture for bilinear interpolation.

Memory bus

Root cache

Leaf caches [

3D-BP
unit 4

3D-BP
unit 3

= = Data accessed by 3D-BP units

FiGure 7: Each leaf cache is fed by the root cache.

(see Figure 10). The board contains an external SDRAM
memory and a Xilinx system on programmable chip (SoPC).
In order to investigate the 3PA-PET behavior with respect
to the memory features, we have plugged it with a fake

TaBLE 2: Hardware resources used by the 3PA-PET on a Xilinx
Virtex 2 Pro VP30.

1 unit 4 units 9 units
3D BP
CLB slices 573 1817 3924
(4.2%) (13.3%) (28.6%)
Multipliers 12 48 108
(9%) (35%) (79%)
3D-AP cache
CLB slices 672 2830 4804
(4.9%) (20.6%) (35.1%)
RAMSs 2 kB 24 kB 36 kB
(0.6%) (7.8%) (11.7%)
3D BP + 3D-AP cache
CLB slices 1245 4637 8728
(9.1%) (32.9%) (63.7%)

memory bus which could be set with different values of
memory latency (Imem) and memory bandwidth (BWem)-
The memory simulator estimates the time to access Niine lines
of Siine bytes following the relationship
Stine — 1)
mem = Mine* | lmem + 7 |-
tmem = Ning: (I + e (8)

The times of reconstruction presented in this section are
in clock cycles and scaled to one operation. An operation
corresponds to one update of a voxel. The number of voxel’s

8 EURASIP Journal on Embedded Systems
STIR 3PA-PET
(a) (b)
FI1GURE 8: A slice of the 3D Shepp-Logan phantom reconstructed by STIR and 3PA-PET BP.
1.4 T T T T T T
1.2+ 1 RS232 Host PC
5 ' 1
8 08 PCI Avnet evaluation board
s
5 SDRAM T
% 0.6 I 1 bridge [33| SRAM
— T
‘E 0.4 i g 132
g (- [Switch | Virtex II pro
021 . 1 Ctl ci ci
0 b)’ s interupt SRAM SDRAM BRAM
|OPB|_| | | PLB |
~02 32 L | 64
0 20 40 60 80 100 120 140
L 3D-AP
x YART| loemH Ppc [Hpocm
—— Shepp Logan phantom
--- STIR
3PA-PET

Ficure 9: Profile of the 3D Shepp-Logan phantom slices corre-
sponding to the lines on Figure 8.

updates is equal to the number of voxels multiplied by the
number of segments times the number of angles.

The results presented in Figure 11 are achieved with one
BP unit for the segment +2 which represents the worse
case because the memory accesses draw the most incurvated
3D sinusoid. 3PA-PET is robust to high latencies and low
bandwidth: the pipeline computes a voxel update in about
1 clock cycle, even for a memory latency of 30 cycles. This
shows that the 3D-AP cache succeeds to take advantage of
the high spatial and temporal locality of the BP algorithm
presented in Section 3. The 3D-AP cache follows the 3D
memory path drawn during the BP process rather well. The
cache miss rate stays low (about 0.05% with lyem = 5 cycles
and BWem 8 bytes/cycle) which means that the 3D-
AP cache prediction is satisfactory and manages to hide the
external memory latency.

F1GURE 10: Evaluation system.

As illustrated in Figure 12, the parallel 3PA-PET perfor-
mances are not plenty satisfactory. Indeed, the efficiency of
parallelization decreases with the number of BP units. For
instance, with a memory latency of 5 and for a complete
BP, 4 units allow an acceleration of 3.2 (1.25 cycle/op per
pipeline) and 8 units allow an acceleration of 4.7 (1.7
cycle/op per pipeline). Because the more units are working
in parallel, the more busy the memory bus is. However, the
hierarchical cache allows to make parallelization a little bit
more efficient thanks to the exploitation of the spatial and
temporal locality existing between the data retrieved by each
BP unit. Moreover, the measured MBRR for 8 units between
the leaf loads and the leaf requests stays close to the MBRR
measured for a single unit. This MBRR is about 8 for 8 units
and 9 for 1 unit.

Nicolas GAC et al.

1.9

18} R

L7+ |

Computational efficiency (cycles/op)

0 5 10 15 20 25 30
Memory latency (cycles)
—— BW = 8bytes/cycle
--- BW = 4bytes/cycle
--- BW = 2bytes/cycle
BW = 1bytes/cycle
BW = 0.5 bytes/cycle

BW = 0.25 bytes/cycle
== Optimal efficiency

FiGure 11: Cycles per operation for one unit of BP with respect to
the latency and bandwidth (BW) of the external memory.

6. COMPARISON WITH GENERAL PURPOSE AND
GRAPHICS PROCESSORS

In Table 3, the 3PA-PET execution times are compared with
STIR and the ones from software VBI BP on a desktop PC, a
workstation and a GPU.

6.1. CPUimplementation

Different software versions of BP, nonoptimized (v1), and
optimized (v2 and v3) have been tested and compared to
the STIR one on a Pentium 4 and on a bi-Xeon dual core.
Two techniques of optimization have been applied with an
extensive use of the cache memory and a reduction of the
arithmetical operations.

First, an acceleration factor of 3 is obtained due to the
reconstruction through blocks of voxels. This software loop
reordering increases the use of the L1 cache (16 Ko). Indeed,
the time of reconstruction with and without introduction
of data locality, is, respectively, 54.7 seconds (v1) and 17.4
seconds (v2).

Secondly, the reduction of the arithmetic operations to
compute the projection coordinates allows an acceleration
by a factor 7 (software v3/software v2 in Table 3). Indeed,
the time performance is improved by a factor 2 due to
an incremental computation of the coordinates as done by

25¢ -

Computational efficiency per processing element (cycles/op/PE)

0 5 10 15 20 25 30
Memory latency (cycles)

— 1 unit
-~~~ 4 units
8 units
— Optimal efficiency

F1GURE 12: Cycles per operation per processing units for 1, 4, and 8
units of BP with respect to the latency and bandwidth of the external
memory.

for n = 0 to Nyay do
for delta = 0 to delta,,, do
for psi = 0 to psi,, do
Uy = xhg* COSY + yng- siny
for xn = xny to X1y do
U = u| +cosy
for yn = yng to ynm. do
up =u) +sin1//
for zn = zny to zny. do
f(xn, yn,zn)+ = bin(delta, psi, u, v))

ALGORrITHM 2: Reduction of operations to compute u; (same
techniques used for vy).

Kachelrief3 et al. [4] and again by a factor 3.5 when the inner
loop is over z. The optimized code (VBI-flt(v3)) is presented
in Algorithm 2.

Finally, this code has been parallelized using the pthread
C-library to use the four cores of a bi-Xeon dual core
workstation. One thread is associated to the reconstruction
of one block.

6.2. GPUimplementation

Current GPUs are cost effective solutions for the implemen-
tation of 3D tomography reconstruction because of their

10

EURASIP Journal on Embedded Systems

TaBLE 3: Compared time performance for the 3D PET BP of a 128 X 128 x 63 volume from a Siemens HR+ sinogram (5 segments, span 9,
96 angles of projection). Throughput of reconstruction (cycles per voxel update) is presented for the global architecture and per processing

element (PE).

3D-BP algorithm PE (threads) Time Cycles/Op
/PE total
Desktop PC: Pentium 4

(core frequency = 3.2 Ghz, BWnem = 64 GB/s)
STIR! 1 11.13s 70.4 70.4
VBI-flt(v1) 1 54.7 s 355 355
VBI-flt(v2) 1 17.4s 113 113
VBI-flt(v3) 1 2.5s 16 16

Workstation: bi-Xeon dual core

(core frequency = 3 Ghz, BWpem = 10.6 GB/s)
STIR! 1(1) 5.74s 34.5 34.5
VBI-flt(v3) 1(1) 1.17s 7.1 7.1
VBI-flt(v3) 2(2) 583 ms 7.06 3.53
VBI-flt(v3) 4(4) 294 ms 7.12 1.78

GPU: GTS8800
(shader frequency = 1.2 Ghz, BWpem = 64 GB/s)

VBI-flt(v4) 96 (192) 99 ms 25.9 0.27
VBI-flt(v5) 96 (192) 50 ms 13.0 0.14
FPGA?: virtex 4
(frequency = 200 Mhz, BWem = 0.8 GB/s, Imem = 25 nanoseconds)

VBI-fix 1 258 1 1
VBI-fix 4 774 ms 1.25 0.31
VBI-fix 8 526 ms 1.7 0.21
ASIC?: one memory bank
(frequency = 1.2 Ghz, BW em = 4.8 GB/s, Imem = 25 nanoseconds)
VBI-fix 1 499 ms 1.21 1.21
VBI-fix 4 214 ms 2.07 0.517
VBI-fix 8 135ms 2.62 0.328
ASIC?: five memory banks
(frequency = 1.2 Ghz, BWyem = 24 GB/s, lyem = 25 nanoseconds)
VBI-fix 40 27 ms 2.62 0.065

' Time normalized to a 128% 128%63 volume. (STIR reconstructs 642763 cylindrical volumes).

235 Mhz results scaled to 200 Mhz (Imem = 5 cycles).
335 Mhz results scaled to 1,2 Ghz (Imem = 30 cycles).

high level of parallelism. Moreover, the Nvidia GPUs are effi-
ciently and easily programed with the CUDA environment.
The Nvidia Geforce 8880 family has 2 to 16 vector
processors (12 in our case), each one having 8 stream
processors. It is programmable using standard C language
with a few extensions without any knowledge about graphics
pipeline. A nonincremental code is parallelized to run
efficiently on these 12 x 8 multithreaded stream processors.
One thread is associated to one voxel reconstruction. Threads
are grouped in blocks (16 X 16 in our case) which are
scheduled at runtime, one block per vector processor. Each
couple of vector processors are associated with an 8 KB L1 2D
texture read-only cache memory with 1D and 2D hard-wired
interpolation. Moreover, the GPU offers a high memory
bandwidth (BWyem = 64GB/s) and uses floating-point

computation. This makes it possible to efficiently parallelize
the BP loops, as blocks of voxels correspond to 2D blocks of
threads having access to the read-only sinogram organized in
2D arrays through the 2D cache memory. The voxels are also
organized in 2D arrays, each divided in 64 16 x 16 blocks
associated to a grid of 64 16 x 16 blocks of threads. Thus each
thread is responsible of 63 voxels considering a 63 x 128 x 128
volume.

Two versions of thread code have been implemented. In
the VBI-flt(v4) thread code, the loop over vy is the inner
loop, while in VBI-flt(v5) thread code, the loop over z is the
inner loop as it is done for the VBI-flt(v3) CPU code. This
allows a reduction of the number of projection coordinate
computation. A speedup factor of 2 is obtained with this code
optimization (see Table 3).

Nicolas GAC et al.

11

1000 [
E‘\" 100 b X [1 PEnon opt.]
8
(S}
I % [2 PE non opt.]
oy
g X [1PE opt.]
-3 10
E
L
= * [2 PE opt.]
=
.8
= u[1PE]
2 lfnreg
g | ® (4 PE]
3 | m[8 PE]
= T [4 PE] 0O[96 PE nonopt.]
":g 0.1 8 PE] O[96 PE opt]
U .
e 1 = (48 PE]
\
\
A[48 PE]
0.09 &_A[96 PE]

0 10 20 30 40 50 60 70 80 90
Available memory thoughput (GB/s)

Pentium 4 (3.2 Ghz)
Xeon (3 Ghz)
GPU (1.2 Ghz)
® 3PA-PET (1.2 Ghz)
-4~ Optimal architecture (1.2 Ghz)

O ¥ X

Ficure 13: Memory throughput exploitation by CPU (optimized
and nonoptimized code), GPU (optimized and nonoptimized
code), and 3PA-PET implementations. 3PA-PET and optimal
architecture results are obtained with /e, = 25 nanoseconds.

6.3. Discussion

The reconstruction times and efficiencies, global and per
processing element (PE), are presented in Table 3 for CPU,
GPU, and our 3PA-PET. To fairly compare our architecture
with other technologies, the time measured on a Virtex 2 Pro
has been scaled to a virtex 4. Indeed, this technology is the
same generation as the CPU and GPU used in this study.
We have scaled the 35 MHz results to the GPU frequency
(1.2 GHz) as well. This higher frequency could be reached
through the design of a customized integrated circuit like an
ASIC. Moreover, as Nvidia GTS 8800 GPU has five memory
banks, we also present a prospective ASIC architecture
which would have also five memory banks coupled with 5
processing blocks of 8 BP units each.

For the 200 MHz and the 1.2 GHz 3PA-PET, a memory
latency (Imem) of 25 nanoseconds has been used for the
simulated memory bus. It corresponds, respectively, to a
latency of 5 and 30 clock cycles.

On one hand, the GPU is the fastest hardware solution
with a final reconstruction time of 50 milliseconds. The ratio
of computation over memory access is high enough for the
GPU to allow the automatic overlapping of memory accesses
with computations by the thread scheduling mechanism.
Thus, due to its greatest computational power (96 PEs
and hard-wired interpolation), Nvidia 8800 GTS graphic

processor is 10 times faster than 3PA-PET mapped on a virtex
4, 10 times faster than a Xeon dual core, and 50 times faster
than a Pentium 4.

On the other hand, 3PA-PET is the most efficient
architecture with a computational efficiency per processing
element (PE) of about 2 cycles per operation for a processing
block made of 8 units coupled with one memory bank.
Because of the fewer available computational and memory
resources, the FPGA technology does not allow to have an
efficient 3PA-PET system compared to GPU. Nevertheless,
considering that a market would exist to justify it, an ASIC
with five memory banks and five units of 3PA-PET (8
pipelines each) running at 1.2 Ghz would be twice faster
than the Nvidia GPU, 20 times than a Xeon dual core, and
100 times than a Pentium 4. Furthermore, a better tuning
of the 3D-AP cache would allow to increase the available
parallelism and again increase the speedup. Also, an ASIC
implementation would be likely to have a lower consumption
than a GPU (Nvidia 8800 GTS needs 130 Watts).

All the studied architectures succeed to benefit from
the spatial and temporal localities without any developer
effort to set a double buffering memory strategy. This is
only possible because of their own memory cache (1D cache
for CPU, 2D texture cache for GPU, and the semigeneral
purpose 3D-AP cache for 3PA-PET). Nevertheless, 3PA-
PET is the one that best exploits the memory throughput,
as illustrated in Figure 13. In this figure, all the 3D BP
implementations are placed according to their computa-
tional efficiency (cycles/op) and to their available memory
throughput (GB/s). The “optimal architecture” in this figure
corresponds to a hardware architecture that would have an
optimal balance between its computational and memory
throughputs. Each PE of this optimal architecture computes
one operation per cycle and its prefetching memory strategy
only loads the necessary data in cache and delivers it in
time to the processing units. Of course, the more PEs it
has, the greater the memory throughput has to be. As one
can observe, 3PA-PET is the architecture with a cache-based
memory strategy that is the closest to the optimal one. This
makes 3PA-PET the architecture with the best potential of
acceleration.

7. CONCLUSION

This paper presents several ways to speed up the BP algo-
rithm on different target architectures: general purpose CPU,
GPU, and FPGA/ASIC. These solutions exploit the temporal
and 3D spatial locality that can be found in the BP algorithm.
A suitable loop reordering shows to be efficient despite the
high nonlinearity of the algorithm. The 3PA-PET (prefetched
and parallelized architecture for PET) architecture is the one
that makes the best use of this locality and allows a high level
of parallelization with a high computational throughput.
Thanks to the 3D-AP cache together with a loop
reordering, 3PA-PET architecture proves to be an efficient
parallel architecture that overcomes the memory bottleneck.
Indeed, as it has been measured on an SoPC prototype,
the pipelines are seldom stalled and the high latency and
low bandwidth of memories can be overcome. Moreover,

12

EURASIP Journal on Embedded Systems

the comparison between the 3PA-PET architecture with a
general purpose processor and a GPU highlights 3PA-PET
efficiency. On one hand, the GPU has the best reconstruction
time on a wall clock (followed by 3PA-PET and the CPU), on
the other hand 3PA-PET makes the best use of the pipeline
and clock cycles. An ASIC implementation with the same
technological resources than of GPU would be of lower
power consumption and would be faster: it would be twice
faster than today’s GPUs and 20 times faster than CPUs.

To conclude, the method of loop reordering and the

use of an appropriate cache could be extended to other
algorithms. The architecture principles presented in this
article could be applied for the cone beam BP needed in CT
reconstruction.

REFERENCES

(1]

(2

(3]

©

[10]

(11]

P. E. Kinahan, M. Defrise, and R. Clackdoyle, “Analytic
image reconstruction methods,” in Emission Tomography:
The Fundamentals of PET and SPECT, pp. 421-442, Elsevier
Academic Press, San Diego, Calif, USA, 2004.

J. P. Jones, A. Rahmim, M. Sibomana, et al., “Data processing
methods for a high throughput brain imaging PET research
center,” in Proceedings of the IEEE Nuclear Science Symposium
(NSS °06), vol. 4, pp. 2224-2228, San Diego, Calif, USA,
October-November 2006.

S. Mancini and N. Eveno, “An IIR based 2D adaptive and
predictive cache for image processing,” in Proceedings of the
19th Conference on Design of Circuits and Integrated Systems
(DCIS ’04), p. 85, Bordeaux, France, November 2004.

M. Kachelriefy, M. Knaup, and O. Bockenbach, “Hyperfast
parallel-beam and cone-beam backprojection using the cell
general purpose hardware,” Medical Physics, vol. 34, no. 4, pp.
1474-1486, 2007.

M. Schellmann, T. Kosters, and S. Gorlatch, “Parallelization
and runtime prediction of the Listmode OSEM algorithm for
3D PET reconstruction,” in Proceedings of the IEEE Nuclear
Science Symposium (NSS °06), vol. 4, pp. 2190-2195, San
Diego, Calif, USA, October-November 2006.

D. W. Shattuck, J. Rapela, E. Asma, A. Chatzioannou, J. Qi, and
R. M. Leahy, “Internet2-based 3D PET image recontruction
using a PC cluster,” Physics in Medicine and Biology, vol. 47,
no. 15, pp. 2785-2795, 2002.

T. He, J. Ni, and G. Wang, “A heterogeneous windows cluster
system for medical image reconstruction,” in Proceedings of
the 1st International Multi-Symposiums on Computer and
Computational Sciences (IMSCCS °06), vol. 1, pp. 410-415,
Zhejiang, China, June 2006.

K. Chidlow and T. Moller, “Rapid emission tomography
reconstruction,” in Proceedings of the 3rd Eurographics/IEEE
TVCG Intenational Workshop on Volume Graphics (VG ’03),
vol. 45, pp. 15-26, Tokyo, Japan, July 2003.

G. Pratx, G. Chinn, F. Habte, P. Olcott, and C. Levin, “Fully 3-
D list-mode OSEM accelerated by graphics processing units,”
in Proceedings of the IEEE Nuclear Science Symposium (NSS
’06), vol. 4, pp. 21962202, San Diego, Calif, USA, October-
November 2006.

E Xu and K. Mueller, “Real-time 3D computed tomographic
reconstruction using commodity graphics hardware,” Physics
in Medicine and Biology, vol. 52, no. 12, pp. 3405-3419, 2007.

H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast
GPU-based CT reconstruction using the Common Unified

[16]

Device Architecture (CUDA),” in Proceedings of the IEEE
Nuclear Science Symposium and Medical Imaging Conference
(NSS-MIC °07), vol. 6, pp. 4464-4466, Honolulu, Hawaii,
USA, October-November 2007.

T. Schiwietz, S. Bose, J. Maltz, and R. Westermann, “A fast
and high-quality cone beam reconstruction pipeline using the
GPU,” in Medical Imaging 2007: Physics of Medical Imaging,
vol. 6510 of Proceedings of SPIE, San Diego, Calif, USA,
February 2007.

H. Yang, M. Li, K. Koizumi, and H. Kudo, “Accelerating
backprojections via CUDA architecture,” in Proceedings of the
9th International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, pp. 52-55,
Lindau, Germany, July 2007.

D. Riabkov, X. Xue, D. Tubbs, and A. Cheryauka, “Accelerated
cone-beam backprojection using GPU-CPU hardware,” in
Proceedings of the 9th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, pp. 68-71, Lindau, Germany, July 2007.

H. Scherl, S. Hoppe, E Dennerlein, et al, “On-the-fly-
reconstruction in exact cone-beam CT using the cell broad-
band engine architecture,” in Proceedings of the 9th Interna-
tional Meeting on Fully Three-Dimensional Iimage Reconstriic-
tion in Radiology and Nuclear Medicine, pp. 29-32, Lindau,
Germany, July 2007.

M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier,
“Parallel-beam backprojection: an FPGA implementation
optimized for medical imaging,” The Journal of VLSI Signal
Processing, vol. 39, no. 3, pp. 295-311, 2005.

X. Li, T. He, S. Wang, G. Wang, and J. Ni, “P2P-enhanced
distributed computing in EM medical image reconstruction,”
in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA
’04), vol. 2, pp. 822-828, Las Vegas, Nev, USA, June 2004.

B. Heigl and M. Kowarschik, “High-speed reconstruction
for C-arm computed tomography,” in Proceedings of the
9th International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, pp. 25-28,
Lindau, Germany, July 2007.

I. Goddard and M. Trepanier, “High-speed cone-beam recon-
struction: an embedded systems approach,” in Medical Imag-
ing 2002: Visualization, Image-Guided Procedures, and Display,
vol. 4681 of Proceedings of SPIE, pp. 483—491, San Diego, Calif,
USA, February 2002.

Terarecon, http://www.terarecon.com.

J. Ni, J. Deng, H. Yu, T. He, and G. Wang, “Analysis of perfor-
mance evaluation of parallel Katsevich algorithm for 3-D CT
image reconstruction,” in Proceedings of the Ist International
Multi-Symposiums on Computer and Computational Sciences
(IMSCCS °06), vol. 1, pp. 258-265, Zhejiang, China, June
2006.

N. Gac, S. Mancini, and M. Desvignes, “Hardware/software
2D-3D backprojection on a SoPC platform,” in Proceedings of
the ACM Symposium on Applied Computing (SAC *06), vol. 1,
pp. 222-228, Dijon, France, April 2006.

K. Thielemans, S. Mustafovic, and C. Tsoumpas, “STIR:
software for tomographic image reconstruction release 2,”
in Proceedings of the IEEE Nuclear Science Symposium (NSS
’06), vol. 4, pp. 2174-2176, San Diego, Calif, USA, October-
November 2006.

	1. INTRODUCTION
	2. 3D BP IN TOMOGRAPHY RECONSTRUCTION
	2.1. BP algorithms
	2.1.1. 3D parallel beam BP for PET
	2.1.2. Cone beam BP for CT
	2.1.3. Comparison of CT and PET

	2.2. Acceleration of reconstruction

	3. OVERCOMING THE MEMORY BOTTLENECK
	3.1. Memory access strategy
	3.2. Improvement of spatial and temporal locality
	3.3. Mean bin reuse rate (MBRR)

	4. A 3P ARCHITECTURE FOR PET
	4.1. Pipelined architecture
	4.2. Prefetch architecture
	4.3. Parallelized architecture

	5. 3PA-PET PERFORMANCES
	5.1. Accuracy of reconstruction
	5.2. 3PA-PET complexity
	5.3. Efficiency of reconstruction

	6. COMPARISON WITH GENERAL PURPOSE AND GRAPHICS PROCESSORS
	6.1. CPU implementation
	6.2. GPU implementation
	6.3. Discussion

	7. CONCLUSION
	REFERENCES

