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Digital signal processing (DSP) applications are nowadays widely used and their complexity is ever growing. The design of
dedicated hardware accelerators is thus still needed in system-on-chip and embedded systems. Realistic hardware implementation
requires first to convert the floating-point data of the initial specification into arbitrary length data (finite-precision) while keeping
an acceptable computation accuracy. Next, an optimized hardware architecture has to be designed. Considering uniform bit-width
specification allows to use traditional automated design flow. However, it leads to oversized design. On the other hand, considering
non uniform bit-width specification allows to get a smaller circuit but requires complex design tasks. In this paper, we propose
an approach that inputs a C/C++ specification. The design flow, based on high-level synthesis (HLS) techniques, automatically
generates a potentially pipeline RTL architecture described in VHDL. Both bitaccurate integer and fixed-point data types can be
used in the input specification. The generated architecture uses components (operator, register, etc.) that have different widths.
The design constraints are the clock period and the throughput of the application. The proposed approach considers data word-
length information in all the synthesis steps by using dedicated algorithms. We show in this paper the effectiveness of the proposed
approach through several design experiments in the DSP domain.
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1. INTRODUCTION

Electronic devices are more and more oriented towards
multimedia and communication applications. The design of
system-on-chip (SoC) is currently achieved by using system
level description, electronic system level (ESL) tools, and by
reusing predesigned IP-cores. Typical MPSoC architectures
include several processors, memories, I/O devices, commu-
nication media (bus, network-on-chip), and dedicated HW
accelerators. Indeed, the increasing complexity, the low-
power design constraints, and the growing data rates of
applications from the digital signal processing (DSP) domain
still often require hardwired implementation to be used as
a dedicated accelerator in the final SoC. Due to both the
complexity of today’s DSP applications and the shrinking
time-to-market, designers need a more direct path from the
functionality down to the silicon. Layered design flow and
associated CAD tools to manage DSP system complexity in a
shorten time are thus needed. This led to the development of
environments that can help the designer to explore the design
space thoroughly and to find optimized designs rapidly.

Typically, the design of a DSP application begins by a
high-level specification capture of the desired functional-
ity using MATLAB-/Simulink-like environment [1] and/or
C/C++ language. This first step consists thus in writing
an algorithmic specification with a purely transformational
semantics, that is, a function consumes all its input data
simultaneously, performs all of computations without any
particular timing behavior, and provides all its output data
at the same time. At this abstraction level, variables are
purely functional (structure, array, etc.), and the data types
(typically floating point and/or 16, 32, or 64 bits integer)
are not related to the hardware design domain (bit, bit
vector). Realistic hardware implementation thus requires
the following: (1) to convert the floating-point data types
into arbitrary length data types (fixed-precision) while
keeping acceptable computation accuracy and (2) to design
an optimized hardware architecture starting from this bit-
accurate algorithmic specification.

Word-length determination has been early addressed in
the literature (see, e.g., [2—4]). This complex and major task
in the design flow of DSP applications can be done by using
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the following approaches [5-10] when targeting hardware
components (DSP, ASIC/FPGA, etc.). Next, the design flow
has to take into account bit-width information (i.e., data and
operation word-length) in order to carry out an optimized
architecture. The design can be done by hand or by using
high-level synthesis (HLS) tool. As to be mentioned in
Section 2, combining word-length optimization and high-
level synthesis allows the hardware implementation cost
reduction. This assumes that efficient bit-width aware HLS
tools are provided.

In this paper, we present a high-level synthesis approach
that inputs specification of digital signal processing applica-
tion using both bit-accurate integers and fixed point integers.
Our approach optimizes area of hardware architectures by
taking into account the bit-width information during all the
HLS steps. This paper is organized as follows: first, Section 2
presents related work around bit-width aware design steps;
Section 3 introduces the general design flow we propose and
details the design steps that allow synthesizing optimized
multiple word-length architecture; finally, Section 4 shows
the effectiveness of our methodology and tool through
several experiments in the DSP domain.

2. RELATED WORK

A lot of high-level synthesis work has been presented for two
decades [11-13]. However, conventional techniques usually
rely on uniform bit-width specification. The works that
address the design of multiple bit-width architectures often
focus on particular steps of the synthesis flow (see Figure 1).
Moreover, to our knowledge, no work has been published
on the HLS of fixed-point specification: only bit-accurate
integer data type is considered in the literature even if the
term “fixed-point” is used.

When the word-length determination is partial, the bit-
width refinement, which is the first step of HLS flow,
determines bit-width requirements for all integer variables
and operations which sizes have not been defined in the
input specification. In [14], a forward and a backward
propagations are used to infer the minimum bits required.

Next, in order to keep scheduling and binding bit-width
unaware (and thus use traditional HLS flows), a clustering is
realized. This clustering step groups the operations according
to their characteristics into clusters. Two operations that
belong to the same cluster will be able to share an operator
if they are not scheduled in the same control step. In order
to cluster operations, works from [9, 14, 15] use greedy
heuristics while an iterative approach is proposed in [16].
In [14], a bit-width unaware iterative modulo scheduling is
performed, afterwards, to satisfy a throughput constraint.

These approaches consider both computational function
and area as partitioning criteria and assume latency of opera-
tors to be uniform. Unfortunately, larger bit-width operators
have longer latency than smaller bit-width operators (see
Figure 3): the longest latency will be assigned to all the
compatible operations. This can lead to oversized parallel
architecture when latency or throughput constraints are
considered.
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Figure 1: High-level synthesis flow and multiple word-length
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In [10, 16, 17], the word-length optimization is coupled
with the high-level synthesis to minimize the hardware
implementation cost. In [16], the operations are list-
scheduled by decreasing order of timing mobility and no
detail on the binding algorithm is provided. Work from
[10, 17] is based on a bit-width aware high-level synthesis. A
list-scheduling and a register binding algorithm based on the
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FIGURE 3: Propagation time and area of multiplier and adder according to the size of their inputs.

clique partitioning are described in [10]. The ready operation
list with the largest word-length has the highest priority, and
the largest scheduled operations are bound first. In [17],
an ILP-based approach and a heuristic are presented. Both
proposed methods are introduced to perform scheduling
with incomplete word-length information and to combine
binding and word-length selection. The refinement of word-
length information is based on the critical path analysis.

Work from [18] proposes a bit-width aware HLS flow
which does not involve clustering step. Authors first compute
an estimated area lower-bound to next schedule and bind
operation under latency constraint.

Finally, in [19], authors only propose to resize the
operators. They first use an HLS tool which does not
take into account bit-width information. The proposed
optimization step is done after both the scheduling and
the binding tasks. To resize the operators and the registers,
a forward propagation of the value range of variables is
realized.

To our knowledge, none of the previous works jointly

(i) develop a fully automated design flow that inputs
specification mixing both bit-accurate integer and
fixed-point variables;

(ii) analyze the specification by combining both bit-
width and value range bidirectional propagation;

(iii) use propagation time of operators to cluster multiple
word-length operations;

(iv) propose bit-width aware scheduling and binding
algorithms;

(v) automate operator reusing between bit-accurate inte-
ger and fixed-point operations;

(vi) support operator chaining;

(vii) resize operators to optimize the logic synthesis to
generate a multiple-word length architecture.

3. BIT-WIDTH AWARE DESIGN FLOW

The proposed high-level synthesis flow is presented in
Figure 2. Starting from a purely functional specification,
a technological library and both a throughput (iteration

period) and a clock period constraints, our tool extracts the
potential parallelism before clustering, allocating, schedul-
ing, and assigning operations. It generates a potentially
pipelined architecture composed of a processing unit, a
memory unit, a communication and multiplexing unit
with a globally asynchronous locally synchronous/latency
insensitive system (GALS/LIS) interface (see [20] for more
details).

The following subsections detail each step of the bit-
width aware HLS flow we propose.

3.1. Compilation and bit-width analysis

The input description is a C/C++ function wherein Algorith-
mic C™ class library from Mentor Graphics [21] is used.
This allows the designer to specify signed and unsigned bit-
accurate integer and fixed-point variables by using ac_int
and ac_fixed data types. This library, like SystemC [22],
hence provides fixed-point data-types that supply all the
arithmetic operations and built-in quantization (rounding,
truncation, etc.) and overflow (saturation, wrap-around,
etc.) functionality. For example, an ac_fixed (5, 2, true,
AC_RND, AC_SA) is a signed fixed-point number of the form
bb.bbb (5 bits of width, 2 bits integer) and with quantization
mode set to rounding and overflow mode set to saturation.

The role of the compiler is to transform this initial
specification into a formal representation which exhibits the
data dependencies between the operations. The front end of
our tool derives GCC 4.2 [23] to extract a data flow graph
(DFG) representation of the application annotated with the
bit-width information. The code optimizations (such as
dead-code elimination, false data-dependency elimination,
loop transformations, etc.) performed by the compiler will
not be presented in this paper. For the quantization/overflow
functionality of a fixed-point variable, the compiler generates
dedicated operation nodes into the DFG. As described later
in Section 3.4, this allows to share (i.e., reuse) (1) arithmetic
operators between bit-accurate integer operations and fixed-
point operations and (2) quantization/overflow operators
between fixed-point operations. Timing performance opti-
mization is addressed through the operator chaining (see
Section 3.4).
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Inputs:

Output:

A scheduled DFG
Begin

c-step = 0;

While there are RO

End if
End if
Else

Else

End if
End if
End while

c-step++;
End

DFG, timing constraint IT and resource allocation

Repeat until the last node is scheduled
Determine the ready operations RO;
Compute the operation mobility;

If there are available resources avail(OPR)
Schedule the operation ops with the highest priority;
Remove resource opr from available resource set;
If the current operation ops belongs to a chaining pattern
Update the ready operations RO;
If there are available resources
Schedule the operations corresponding to the pattern;
Remove resources from available resource set;

If the operations can be delayed
Delay the operations;

Allocate resources();
Schedule the operations;

Bind all the scheduled operations;

ArGoriTHM 1: Pseudocode of the scheduling algorithm.

The starting point of the proposed design flow is an
already refined specification (the floating-point to fixed-
point conversion is not addressed in this paper). However,
even if the specification has been already refined (by using
existing approaches like [5-10], etc.) the sizes of some
variables and constants (#define, int, etc.) and/or variable
DFG nodes automatically inferred by the compiler can
remain undefined. In order to define the size of such data,
the bit-width analysis has been proposed. This step operates
on the DFG the two following tasks.

(i) Constant bit-width definition: the compiler carries
out a DFG representation wherein the constants are
represented by nodes with a 16, 32, or 64 bit sizes.
This first analysis step defines for each integer (fixed
point) constant the exact number of bits needed
to represent its value (integer part). We use the
following formula for unsigned and signed values:

Number of bits = |log, | Value(Cst_X) | |

(1)
+ 1 + Signed (Cst_X),

where Value(Cst_X) is the numeric value of the
constant Cst_X and Signed(Cst_X) is set to “1” when
Cst_X is signed and set to “0” otherwise.

(ii) Bit-width and value range propagation infers the bit-
width of each variable of the specification by coupling
work from [14, 19]. A bit-width analysis is hence
performed to optimize the word-length of both the
operations and the variables. This step performs a
forward and a backward propagation of both the
value ranges and the bit-width information to figure
out the minimum bits required.

3.2. Library characterization and clustering

Library characterization uses a DFG, a technological library,
and a target technology (typically the FPGA model). This
fully automated step, based on commercial logic synthesis
tools like ISE from Xilinx [24] and Quartus from Altera
[25], carries out a library of time characterized operators
to be used during the following HLS steps. The techno-
logical library provides the VHDL behavioral description
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of operators and the DFG provides the set of operation
to be characterized with their bit-width information. The
characterization step synthesizes each operator from the
technological library which is able to realize one operation
of the DFG. It next retrieves synthesis results in terms of
logical cell number and propagation time to generate a
characterized operator library (see Figure 3).

For clustering operations, we propose to combine the
computational function and the operation delay. This allows
considering indirectly operation’s bit-width since the propa-
gation time of an operator depends on its input size. In order
to maximize the use of operator, one operation that belongs
to a cluster C1 with a propagation time t1 can be assigned to
operators allocated for a cluster C2 if the propagation time t2
is greater than t1.

3.3. Resource allocation

Allocation next defines the number of selected operators
needed to satisfy the design constraints. In our approach,
in order to respect the throughput requirement specified by
the designer, allocation is done for each a priori pipeline
stage. The number of a priori pipeline stage is computed as
the ratio between the minimum latency of the DFG Latency
(i.e., the longest data dependency path in the graph) and the
iteration interval II (i.e., the period at which the application
has to iterate): [Latency/II]. Thus, we compute the average
parallelism of the application extracted from the DFG dated
by a as soon as possible ASAP scheduling [11]. The average
parallelism is calculated separately for each type of operation
and for each pipeline stage s of the DFG, comprising the set
of the date operations belonging to [s - II, (s + 1) - II].

This first allocation is considered as a lower bound. Thus
during the scheduling phase, supplementary resources can be
allocated and pipeline slices may be created if necessary, sub-
sequent to operation scheduling on the previously allocated
operators.

3.4. Operation scheduling

The classical list-scheduling algorithm relies on heuristics
in which ready operations (operations to be scheduled) are
listed by priority order. An operation can be scheduled if the
current cycle is greater than its earliest time. Whenever two
ready operations need to access the same resource (this is a
so-called resource conflict), the operation with the highest
priority is scheduled. The other is postponed.

Traditionally, bit-width information is not considered
and the priority function depends on the mobility only. The
operation mobility (mobility in the following formula) is
thus only defined as the difference between the as-late-as
possible (ALAP as late as possible) time and the current c-
step (see Algorithm 1).

In order to optimize the final architecture area, we
modified the classical priority function to take into account
the operation bit-width in addition to its mobility. Hence
the priority of an operation ops, priority(ops;), is a weighted
sum of (1) the inverse of its mobility mobility(ops;) (i.e.,
its timing priority) and (2) the inverse of the overcost

inferred by the pseudoassignment of the largest available
and compatible operator opr; with the operation ops;. The
operator opr; is returned by the maxsize(avail(OPR, ops;))
function, where OPR is the set of allocated operators and
avail(X, y) is a function that returns from the set of operators
X, the set of available operators compatible with at least one
of the operations y is as follows:

o -«
+
mobility(ops;) ~ overcost(ops;, opr;)

priority(ops;) =

opr; = maxsize(avail(OPR), ops;)

overcost(ops;, opr;)

_ Min { (0prj,m1 ~ OPSiint

OPIjin2 — Opsi,in2>

OPTIjin1 OPT~jin2
(Oprj,inz — OPSi,inl N OPTj,in1 — OPSi,in2 ) }
b

OPTj,in2 OPTj,ini

(2)

where ops; ink (0pT; ink) is the bit-width of the kth input of the
operation ops; (operator opr;).

The overcost function returns the lowest sum of the
gradients of operation input’s bit-width and of operator
input’s bit-width. This means that for a same mobility, the
priority will be given to the operation that best minimizes
the overcost. For different mobility, the user defined factor
o allows to increase the priority of an operation ops; having
more mobility than an operation opsy if overcost(ops;, opr;)
is less than overcost(opsi, opr;). In the overcost compu-
tation, the reuse of an operator (already used) is avoided
through a pseudoassignment made during the scheduling. A
pseudoassignment is a preliminary binding which allows to
remove the largest operator from the available resource set.
Once the operations can be no more scheduled in the current
cycle, the resource binding is performed.

Operation chaining

To respect the specified throughput and clock constraints
while optimizing the final area, operator chaining can
be used. In our approach, the candidates for chaining
are identified by using templates in a library. Through a
dedicated specification language (see Figure 4), the user
defines chaining patterns with their respective maximum
delays. The latency constraint is expressed in number of
clock cycles which allows to be bit-width independent in the
pattern specification.

In order to automate arithmetic operators sharing
between bit-accurate and/or fixed-point operations from
a specification using the Algorithmic C™ from Men-
tor Graphics [21], our compiler generates for fixed-point
operations two nodes in the DFG (see Section 3.1): one
node for the arithmetic operation and one other for the
quantization/overflow functionality. Indeed, the difference
between integer and fixed point comes from the oper-
ator implementation. Hardware operators have the same
architecture and the same area only if one considers the
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pattern(resize) {
sources add;
targets trnsat;

cycle 1;
}

FIGURE 4: Chaining pattern specification language.

computation part. However, for fixed-point, quantization
(rounding, truncation, etc.) and overflow (saturation, wrap-
around, etc.) operations can be specified. Of course, the
quantization/overflow operations can be part of all the
operators (integer and fixed-point). But, this would affect
the latency of all the operators and thus the overall latency
of the final architecture. This would also increase the
overall area. In order to share the computation part only,
the compiler has to generate specific operation nodes in
the internal representation for the quantization/overflow
operations. This allows improving both the area and the
timing performance of the final area.

Figure 5(a) depicts a fixed-point dedicated operator,
where computational part is merged with the quantiza-
tion/overflow functionality. This kind of operator architec-
ture allows sharing neither the arithmetic logic nor quanti-
zation/overflow part between bit-accurate and/or fixed-point
operations.

Figure 5(b) shows the resulting architecture when the
compiler generates dedicated nodes for a fixed-point oper-
ation and that chaining is not used.

Figure 5(c) presents an architecture wherein the arith-
metic part and the quantization/overflow functionality have
been chained by coupling both the compiler results and
fixed-point templates.

3.5. Resource binding

The assignment of an available operator with a candidate
operation has to respond to the minimization of inter-
connections (steering logic) between operators and to the
minimization of the operator’s size (see Figure 3 and [18]).
Given the set of allocated operators, our binding algorithm
assigns all the scheduled operations of the current step
(see Algorithm 1). The pipeline control of each operator is
managed by a complementary priority on assignment. When
an operator is allocated, but not yet used, its priority for
assignment is primarily inferior to that of an operator already
utilized.

The first step consists in constructing a bipartite weighted
graph G = (U, avail(OPR, U), E) with:

(i) U, the set of operations in c-step S of the DFG;

(ii) avail(OPR, U) is a function that retruns from the
set of operators OPR, the set of available operators
compatible with the operations from U;

(iii) E, the set of weighted edges (U, avail(OPR)) between
a pair of an operation ops; € U and an operator
opr; € avail(OPR, U);

The edge weight wops,ops; is given by the following
equation:

Wops,opr; = B*con(ops;, opr;) + (1 — B)*dis(ops;, opr;),

(3)
where

(i) con(ops;, oprj) is a weighted summation of the
maximum number of existing connections between
opr; and each operator assigned to the predecessors
of ops;, and a possible future connection with an
operator that could be assigned to the successors of
ops; (i.e., operation/operator compatibility);

(i) dis(ops;, opr;) is the reciprocal of the positive differ-
ence between bit-widths of ops; and opr; inputs;

(iii) B is user defined factor which allows minimizing
either steering logic area or computational area.

The second step consists in finding the maximal weighted
edge subset by using the maximal bipartite weighted match-
ing (MBWM) algorithm described in [26].

Let us now consider the following example.

Assuming

(i) the scheduling and binding of the operations of the
DFG in Figure 6(a) on c-stepl and c-step2 have been
already done,

(ii) the operations ops; and opss have been scheduled in
c-step3,

(iii) allocated operators are opry, opr,, and oprs,
(iv) opsy, ops7 have been bound to opry,

(v) opss, opsp have been bound to oprs,

we will focus on ops; and opss binding. Our algorithm first
constructs the bipartite weighted graph (Figure 6(b)) taking
3 equal to 1 for the sake of simplicity (i.e., only steering logic
is considered). Afterwards, the MBWM algorithm is applied
to identify the best edges. Thus operation ops; is assigned
to opr; thanks to the edge weight 3 in Figure 6(b). Edges
connected to opr; node are then removed (see Figure 6(c)).
In other word, connection between oprs; (FU implementing
the ops; predecessor) and opr; is maximized. Thereby,
the creation of multiplexers is avoided, and thus the final
architecture has been optimized.

3.6. Operator sizing

In this design step, the operators have to be sized according
to the operations which have been assigned on. In order
to get correct computing results, the width of the operator
inputs/outputs have to be greater or equal to the width of the
operation variables.

In the available literature, the input’s width of an
operator is used to be the maximum of all its inputs (see [14,
18], e.g.). This computing method increases considerably the
final area (see Figures 3, 7, and [16]). However, an operator
can have different input width. Thus operator sizing task



Philippe Coussy et al. 7
ol ’}
+
x x
l " I J ’
| Register ‘
+
+ J
o Quantization —|
Quantization — Quantization]  Quantization —| o
izati uantization
Overflow —| Quantization Overflow —> Overlon ) Q
zd z], z],

()

(b)

(c)

F1Gure 5: (a) Monolithic fixed-point operator, (b) “unchained” fixed-point operator, and (c) chained fixed-point operator.

c-stepl

c-step2

c-step3

c-step4

(a)

oprp

opr

opry

opr;

FIGURE 6: (a) DFG example, (b) bipartite weighted graph, and (c) maximal-weighted edge matching.

9 9 8 9 9 4
* * *
Max (8,4, 3,9) Max (ing, iny) Best (ing, iny)
40 slices 34 slices 24 slices

(a) (b) (c)

FIGURE 7: Sizing results.

can optimize the final operator area by (1) computing the
maximum width for each input, respectively, (Figure 7(b)) or
(2) computing the optimal size for each input by considering
commutativity (Figure 7(c)). However, swapping inputs can
infer steering logic.

Let us consider a multiplier that executes two operations
ops: and ops,. Their respective input widths are (in; = 8,
in, = 4) and (in; = 3, in; = 9) and output width is 12.

Figure 7 shows, respectively, for each approach the
synthesis results obtained by using a Xilinx Virtex2 xc2v8000

FPGA device and the ISE 8.2 logic synthesis tool. Con-
sidering different widths for each input can thus reduce
considerably the operator area.

4. EXPERIMENTS

To show the effectiveness of our approach and its associated
high-level synthesis tool [20], several experiments with some
well-known DSP applications have been made. All the
experiments have been realized on Xilinx Virtex2 xc2v8000-
4 FPGA device using ISE 8.2 logic synthesis tool. All
the algorithmic specifications have been done using the C
language and the Algorithmic C class library from Mentor
Graphics [21]. All the syntheses have been realized using a
10 nanoseconds clock period constraint. Experiments have
been done using a 2.59 GHz AMD Opteron Processor 252,
with 3G RAM and running Windows XP. The execution time
of each synthesis using our tool was less than 2 minutes for
the considered examples. The RTL descriptions have been
simulated using Modeltech’s ModelSim6.1b simulator and
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the functional validation has been completed by comparing
RTL results to the C/Algorithmic C model ones.

These experiments objective is to present the interest of
the full bit-aware HLS flow presented in this paper. First, we
show the effectiveness of our bit-width aware synthesis flow
with only our resizing step. For this purpose, comparisons
have been made against bit-width unaware flows. Second,
we highlight the interest of our proposed “bit-width aware”
binding and scheduling algorithms, as well as the benefit of
the combination of all the synthesis steps. Finally, the last
experiment outlines the usefulness of arithmetic operators
sharing between bit-accurate and/or fixed-point operations.

4.1. The proposed operator resizing approach

In this first experiment, we compare the three following
methodologies:

(i) a pure C ANSI specification with a classical HLS flow.
All the variables and the constants have thus been
defined as integers, that is, their size depends only
on the compiler and on the technological library.
Standard integer widths have thus been considered,
that is, 16 and 32 bits;

(ii) a C/C++ specification using bit-accurate integers
(through the Algorithmic C™ class library) with a
uniform HLS approach that does not consider word-
length information. The uniform synthesis approach
generates thus an oversized architecture where all
the components (logical and arithmetic operators,
registers, multiplexers, etc.) have the same width, that
is, the width of the largest data of the specification;

(iii) a C/C++ specification using bit-accurate integers
(through the Algorithmic C™ class library) with
the proposed bit-width aware HLS approach applying
only the resizing step (i.e., the proposed bit-with
aware scheduling and binding steps have not been
used in this first experiment).

In the classical approach, the specification was written by
using ANSI C, where the data were of type int. Each data has
thus been represented with 16 bits in the DFG. In the uniform
synthesis, we set (by using the Algorithmic C data types) the
width of all the variables equal to the width of the largest data
of the input specification. For this purpose, we used the bit-
width analysis tool presented in Section 3.1 to infer output
data widths by propagating the input data bit-widths.

Figure 8 presents the results provided by the three
approaches previously described through three well known
DSP applications. The first application is a low-pass video
line filter. The filter has five nonzero taps with symmetric
coefficients, 96 pixels and the image is padded with the
boundary pixels. The dataflow graph provided by the
compilation step contains 1354 nodes (725 data and 629
operations) with a width varying from 4 to 16 bits. From the
figure, standard 16 bits architecture obtained with classical
flow and uniform one (set to 16 bits to respect the computing
dynamic of the example) have obviously the same area cost.

In contrast, bit-accurate architecture is almost two-thirds and
thus achieves 27% area reduction (see Figure 8(a)).

The second application is an elliptic filter with 25
operation nodes and 35 data nodes. Data bit-width varies
between 4 and 15. Uniform architecture is slightly smaller
than classical 16 bits one, saving only 4.5% amount of area
whereas our bit-accurate architecture exploits data word-
length to reach 40% area saving (see Figure 8(b)).

For the third application (Figure 8(c)), we chose a four
taps infinite impulse response IIR filter containing 23 data
nodes and 8 operation nodes shared between addition and
multiplication operations. Data width varies from 2 up to
14 bits. This experiment shows that wuniform approach is
sometimes unprofitable and leads to an architecture larger
than the 16bits classical one. This is due to the fact that
the logic synthesis tool uses, for standard widths, optimized
hardwired resources [24]. Using our bit-accurate approach
reduces noticeably the total area which is two times smaller
than the classical 16 bits architecture (i.e., 50% area saving).

When using a compiler that considers the integers as
32bits data, the classical approach generates obviously a
32 bit-width architecture. In this case, area waste is con-
siderable. The final area obtained for the line filter and
elliptical filter examples is almost three times lager than bit-
accurate area (area reduction ratio is around 70%). The most
noticeable area reduction occurs for the IIR filter where area
is reduced to the fifth reaching 80% area saving. However,
when at least one data requires more than 16 bits, the 32-bits
compiler has to be used with the classical approach.

We synthesized a 16-taps finite impulse response FIR
filter where 28-bits data were needed. Figure9 shows,
respectively, 82% and 80% of area reduction obtained by
the proposed bit-accurate approach compared to the 32-bits
classical and uniform (28 bits) approach.

This first experiment set has shown the interest of
the resizing algorithm, we proposed in this paper, which
provides alone a large area reduction. Further optimizations
can be obtained by using scheduling and binding bit-width
aware algorithms as presented in Section 4.2.

4.2. Proposed scheduling and binding algorithms

The scheduling step is a list-scheduling algorithm with a
priority criterion combining both mobility and operation
overcost (see Section 3.4). A parameter « controls the impact
of operation overcost in the operation selection. The binding
step has to respond to the minimization of interconnections
(steering logic) and to the minimization of the components
size (operators and registers). As described in Section 3.5,
our binding algorithm provides a parameter S to find a
tradeoft between the computation and the routing area.
The following experiments were performed with « set to
0.3, meaning that the mobility has greater impact than the
operation overcost on the scheduling priority. 5 has been set
to 0.6, meaning that routing area has a greater priority than
the combinatorial area. These values were chosen out from a
dozen of experiments and outcome, in average, the best area
results.
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This second experiment set shows the interest of consid-
ering bit-width information during synthesis steps through
tree DSP applications; (1) 96 pixels line filter, described
previously; (2) Volterra which consists in first order, nonlin-
ear, differential equations; and (3) a 32 points fast Fourier
transform FFT. Figure 10 shows the synthesis results of the
presented applications at different throughput constraints.

The line filter design was kept in this set of experiments
in order to highlight the interest of optimization algorithms.
Actually, the reduction ratio obtained in the first experiment,
that is, 70% (see Section 4.1) is improved. The proposed
clustering algorithm performs an extra reduction by 6%. The
most optimization ratio, 9% is obtained by combining all
steps. Thus total area saving is 76.3%.

The Volterra design was synthesized under two different
throughputs constraints; 50 Mb/s and 10 Mb/s which leads,
respectively, to a 2-stage pipeline architecture and a non-
pipeline one. When throughput is equal to 50 Mb/s, area
reduction reaches 25% by combing the proposed clustering
and binding algorithms. Otherwise, the binding algorithm
alone improves area cost by 14% and the clustering algorithm
provides an improvement about 18%. Under low throughput
constraints, that is, 10 Mb/s, operators are hardly shared.
Scheduling and binding algorithms have no effect on total
area. Only clustering algorithm manages to reduce area by
10%.

From the 32 points FFT design, we notice that the
classical clustering (which does not take into account the

flow “bit-width aware” allows to optimize the circuit area.
Actually, the area obtained with an HLS flow which only
resizes the operators is reduced utmost by 25% for the
Volterra application. Furthermore, a mean reduction of 13%
is observed.

4.3. Operator reusing between bit-accurate integer
and fixed-point operations

Decoupling the arithmetic part and the quantization/over-
flow functionality (see Section 3.1) for fixed point operators
allows the resources sharing as described in Section 3.4.
Performance optimizations are addressed through the oper-
ator chaining. In this subsection, efficiency of operator
reusing is shown through the synthesis of a 32 taps least
mean squares (LMSs) filter. This application consists of two
distinct computations (1) adaptive coefficient computation
which is described with fixed-point data types (ac_fixed) and
(2) filtered sample computation specified with bit-accurate
integer data types (ac_int).

Figure 11 compares total area of designs produced by
the traditionalapproaches and the proposed one. The tra-
ditionalapproaches consider fixed-point operator as mono-
lithic. Thus they generate an architecture composed by one
integer and one fixed-point subpart which cannot share
the operators. Otherwise, the proposed approach leads to
a unified circuit where operators are shared between bit-
accurate integer and fixed-point operations. The proposed
approach hence provides a reduction ratio of 10%.

5. CONCLUSION

We have presented in this paper a high-level synthesis
flow, which allows the design of multiple word-length
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