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We propose an alternative to the well-known multicarrier code-division multiple access (MC-CDMA) technique for downlink
transmission by replacing the conventional cyclic-prefix orthogonal frequency division multiplexing (OFDM) modulation by an
advanced filterbank-based multicarrier system (OFDM/OQAM). Indeed, on one hand, MC-CDMA has already proved its ability
to fight against frequency-selective channels thanks to the use of the OFDM modulation and its high flexibility in multiple access
thanks to the CDMA component. On the other hand, OFDM/OQAM modulation confers a theoretically optimal spectral effi-
ciency as it operates without guard interval. However, its orthogonality is limited to the real field. In this paper, we propose an
orthogonally multiplex quadrature amplitude modulation (OQAM-) CDMA combination that permits a perfect reconstruction
of the complex symbols transmitted over a distortion-free channel. The validity and efficiency of our theoretical scheme are illus-
trated by means of a comparison, using realistic channel models, with conventional MC-CDMA and also with an OQAM-CDMA
combination conveying real symbols.
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1. INTRODUCTION

Multicarrier code-division multiple access (MC-CDMA) sys-
tems have been initially proposed in [1, 2]. This technique
constitutes a popular way to combine CDMA and orthogo-
nal frequency division multiplexing (OFDM) with cyclic pre-
fix (CP). Nowadays, MC-CDMA is considered as one of the
possible candidates for the downlink of B3G communica-
tion systems. Indeed, on one hand, this technique proposes a
good way to fight against frequency-selective channels thanks
to the OFDM modulation and, on the other hand, it has a
high flexibility in the multiple access scheme thanks to the
CDMA component. However, the insertion of the CP leads
to spectral efficiency loss since this “redundant” symbol part
does not carry useful data information. In addition, the con-
ventional OFDM modulation is based on a rectangular win-
dowing in the time domain which leads to a poor (sinc(x))
behavior in the frequency domain. Thus, CP-OFDM gives
rise to 2 drawbacks: loss of spectral efficiency and sensitiv-
ity to frequency dispersion (e.g., Doppler spread). Both of
them can be counteracted using a variant of OFDM intro-
duced in [3, 4] known as orthogonally multiplex quadra-
ture amplitude modulation (OQAM) [5] or more recently
as OFDM/OQAM [6], where OQAM then stands for Offset

QAM. Here for concision, we will call it the OQAM modula-
tion.

OQAM has many common features with OFDM. Indeed,
in OQAM, the basic principle is also to divide the total trans-
mission bandwidth into a large number of uniform sub-
bands. As for OFDM systems, the transmitter and receiver
implementations can also benefit of fast Fourier transform
(FFT) algorithms. However, instead of a single FFT or in-
verse fast Fourier transform (IFFT), a uniform filter bank is
used. So, one can get a better frequency separation between
subchannels, reducing the intercarrier interference (ICI) in
the presence of frequency shifts. It is also of interest to exam-
ine if these attractive features can also be efficiently exploited
when OQAM is used in combination with spread spectrum
techniques and also if this combination leads to some new
advantages.

If a CDMA spreading is applied to OQAM in the fre-
quency domain, leading to OQAM-CDMA, we get a trans-
mission scheme similar to MC-CDMA, both being of a par-
ticular interest in a multiuser downlink transmission context.
It is shown in [7] that, not surprisingly, we can keep the in-
herent advantage of OQAM over CP-OFDM of a better spec-
tral efficiency. Furthermore, as for OQAM, the orthogonality
only holds in the real field, that is, for the transmission of real
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symbols, it is suggested in [7], instead of simply discarding
them, to use the imaginary parts of the demodulated and de-
spread signals for resynchronization. In [8] it is also shown,
with a wavelet-based OFDM-CDMA system, that a pulse-
shaped CDMA multicarrier system can also bring improve-
ments with respect to the multiuser interference. In [7, 8],
the data symbols transmitted over each subcarrier are real-
valued. In this paper, we show that for OQAM-CDMA, a
transmission of complex-valued data symbols, keeping the
same symbol rate, is possible if the spreading codes are ap-
propriately selected.

The mathematical foundations of the OQAM scheme
with spread spectrum are presented in Section 2. Then, in the
following sections, we analyze for a distortion-free channel
the OQAM-CDMA scheme considering Walsh-Hadamard
(W-H) codes. An analysis of the imaginary component, in
the single user case, is provided in Section 3. In Section 4, we
present a construction rule about the W-H spreading code
selection that in the multiuser case leads to a perfect can-
cellation of the imaginary interference created by the trans-
mission of complex-valued data with OQAM. Section 5 pro-
vides a global analysis of the main features of the complex
version of OQAM-CDMA with respect to the real version
and to MC-CDMA. Finally, in Section 6, some comparisons
in terms of bit error rate (BER) and regarding to the sys-
tems load are carried out, using realistic channel models, be-
tween the real and complex version of OQAM-CDMA and
also with MC-CDMA.

2. PROBLEM STATEMENT

We can write the baseband equivalent of a continuous-time
multicarrier OQAM signal as follows [6]:

s(t) =
M−1∑

m=0

∑

n∈Z

am,ng
(
t − nτ0

)
e j2πmF0tνm,n︸ ︷︷ ︸

gm,n(t)

(1)

with M = 2N an even number of subcarriers, F0 = 1/T0 =
1/2τ0 the subcarrier spacing, g the pulse shape, and νm,n

an additional phase term. Here, as in [9], we set νm,n =
jm+n(−1)mn. The prototype filter g is real-valued and we also
assume that its length is a multiple of M such that L = bM =
2bN , with b an integer. The transmitted data symbols am,n

are real-valued. They are obtained from a 22K -QAM constel-
lation, taking the real and imaginary parts of these complex-
valued symbols of duration T0 = 2τ0, where τ0 denotes the
time offset between the two parts [5, 6, 9, 10].

Assuming a distortion-free channel, the perfect recon-
struction of the real data symbols is obtained owing to the
following real orthogonality condition:

R
{〈
gm,n | gp,q

〉} = R

{∫
gm,n(t)g∗p,q(t)dt

}
= δm,pδn,q, (2)

where δm,p = 1 if m = p, and δm,p = 0 if m�=p. To express
the complex inner product, it may be convenient to use the
ambiguity function Ag of the prototype function g. Defining
it as follows:

Ag(n,m) =
∫∞

−∞
g
(
u− nτ0

)
g(u)e2 jπmF0udu (3)

and taking into account the limited duration of g with the
indicating function I|n−n0|<2b, equal to 1 if |n− n0| < 2b and
0 elsewhere, it can be easily shown that

〈
gm,n, gp,n0

〉 = δm−p,n−n0 + jγ(p,n0)
m,n I|n−n0|<2b, (4)

where γ
(p,n0)
m,n is given by

γ(p,n0)
m,n = I

{
(−1)m(n+n0) jm+n−p−n0Ag(n− n0,m− p)

}
. (5)

The block diagram illustrating the OQAM transmission
scheme is depicted in Figure 1. Compared to conventional
CP-OFDM, real-data symbols are transmitted via an OQAM
modulator involving an IFFT operation followed by a filter-
ing operation polyphase with the polyphase components of
g [9, 10]. At the receiver side, the dual operations are car-
ried out; and thanks to the real orthogonality demodulation,
followed by one-tap equalization, the data symbols are re-
covered. Different kinds of prototype functions can be im-
plemented as the isotropic orthogonal transform algorithm
(IOTA) prototype [6] or some other prototypes directly opti-
mized in discrete time using the time-frequency localization
(TFL) criterion [11].

Let us now present the CDMA component of the pro-
posed transmission scheme. We denote by Nc the length of
the CDMA code used and assume that N0 = M/Nc is an
integer number. Let us denote by cu = [c0,u · · · cNc−1,u]

t

the code used by the uth user. Then, for a user u0 at a
given time n0, N0 different data are transmitted denoted by
du0,n0,0,du0,n0,1, . . . ,du0,n0,N0−1. Then by spreading with the cu
codes, we get the real symbol am0,n0 transmitted at frequency
m0 and time n0 by

am0,n0 =
U−1∑

u=0

cm0/Nc ,udu,n0,�m0/Nc�, (6)

where U is the number of users, / the modulo operator, and
�·� the floor operator. From the am0,n0 term, the reconstruc-
tion of du,n0,p (for p ∈ [0,N0 − 1]) is insured thanks to the
orthogonality of the code, that is, cTu1cu2 = δu1,u2 (see [12] for
more details). Therefore, the despreading operator leads to

du,n0,p =
Nc−1∑

m=0

cm,uapNC+m,n0 . (7)

In [7], it is shown that, thanks to the real orthogonality
of the OQAM modulation, the transmission of these spread
real data (du,n0,p) can be insured at a symbol rate which
is more than twice the one used for transmitting complex
MC-CDMA data as no CP is inserted. Figure 2 depicts the
real OQAM-CDMA transmission scheme where after the de-
spreading operation, only the real part of the symbol is kept
whereas the imaginary component is not detected.

We now propose to consider the transmission of com-
plex data, denoted by d(c)

n,u,p, using U well-chosen Walsh-
Hadamard codes. In order to establish the theoretical features
of this complex OQAM-CDMA scheme, we suppose that the
transmission channel is free of any type of distortion. Also
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Figure 1: Conventional OQAM transmission scheme.
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Figure 2: Real OQAM-CDMA transmission scheme.

for simplicity reasons, we assume a maximum frequency di-

versity, M = 2N = Nc. Then we can denote by d(c)
n,u the trans-

mitted complex data and by a(c)
m,n,u = cm,ud

(c)
n,u the complex

symbol transmitted at time nτ0 over the carrier m and for the
code u. As usual, the length of the W-H codes are supposed
to be a power of 2, M = 2N= 2q with q an integer.

The corresponding transmission scheme is depicted in
Figure 3. This complex OQAM-CDMA transmission case
has similarities with the MC-CDMA one. However, the mod-
ulation and demodulation operations include a specific map-
ping and demapping in relation to the time offset of OQAM
and also a pulse shaping. Furthermore, the subsets of W-H
codes have to be appropriately selected (see Sections 3 and
4). The baseband equivalent of the transmitted signal can be
written as

s(t) =
∑

n∈Z

2N−1∑

m=0

xm,ngm,n(t) with xm,n =
U−1∑

u=0

a(c)
m,n,u. (8)

As the channel is distortion-free, the received signal is y(t) =
s(t) and the demodulated symbols are obtained as follows:

y(c)
m0,n0 =

〈
y, gm0,n0

〉
. (9)

Then, the despreading operation gives us the despread
data for any code, for example, for u0, we get

z(c)
n0,u0

=
2N−1∑

p=0

cp,u0 y
(c)
p,n0 =

2N−1∑

p=0

cp,u0

∑

n∈Z

2N−1∑

m=0

xm,n
〈
gm,n, gp,n0

〉
.

(10)

Replacing xm,n and 〈gm,n, gp,n0〉 by their expression given
in (8) and (4), respectively, we get

z(c)
n0,u0

=
2N−1∑

p=0

cp,u0

2b−1∑

n=−2b+1

2N−1∑

m=0

×
U−1∑

u=0

cm,ud
(c)
n+n0,u

(
δm−p,n−n0 + jγ

(p,n0)
m,n+n0

)
.

(11)

Then, splitting the summation over n in two parts, with n
equal or not to 0, (11) can be rewritten as

z(c)
n0,u0

=
U−1∑

u=0

d(c)
n0,u

2N−1∑

p=0

cp,u0cp,u

+ j

⎛
⎜⎜⎝
U−1∑

u=0

2b−1∑

n=−2b+1
n�=0

d(c)
n+n0,u

(2N−1∑

p=0

2N−1∑

m=0

cp,u0cm,uγ
(p,n0)
m,n+n0

)
⎞
⎟⎟⎠ .

(12)

The W-H codes being orthogonal, that is,

2N−1∑

p=0

cp,u0cp,u =
{

1 if u = u0,

0 if u�=u0,
(13)

we finally obtain:

z(c)
n0,u0

=d(c)
n0,u0

+ j

⎛
⎜⎜⎝
U−1∑

u=0

2b−1∑

n=−2b+1
n�=0

d(c)
n+n0,u

(2N−1∑

p=0

2N−1∑

m=0

cp,u0cm,uγ
(p,n0)
m,n+n0

)
⎞
⎟⎟⎠ .

(14)

The aim now is to show that, when U ≤ M/2, for an appro-
priate choice of the U codes we can get z(c)

n0,u0 = d(c)
n0,u0 . Let us

first examine the single user case.
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Figure 3: Complex OQAM-CDMA transmission scheme.

3. SINGLE USER CASEU = 1

As the channel is assumed to be distortion-free if there is only
one single user, the demodulated and despread signal is the
one obtained in (14) setting, for one user u0, U = 1. Then by
splitting the summations over m and p in two parts, one for
m = p and the other one for m�=p, we get

z(c)
n0,u0 = d(c)

n0,u0 + j

(
∑

n�=0

d(c)
n+n0,u0

(
s1(n) + s2(n)

)
)

, (15)

with

s1(n) =
2N−1∑

p=0

cp,u0cp,u0I
{

(−1)pn jnAg(n, 0)
}

,

s2(n) =
2N−1∑

p=0

p−1∑

m=0

cp,u0cm,u0

[
I
{

(−1)mn jm+n−pAg(n,m− p)
}

+I
{
(−1)pn j p+n−mAg(n, p−m)

}]
.

(16)

For W-H codes, we have, ∀n : cp,u0cp,u0 = 1/2N and the
prototype filter g being real-valued, Ag(n, 0), see (3), is also
real-valued. Then, it is straightforward to show that for every
n, s1(n) = 0.

Let us now look at

s2(n) =
2N−1∑

p=0

p−1∑

m=0

cp,u0cm,u0

[
I
{

(−1)mn jm+n−pAg(n,m− p)
}

+I
{
(−1)pn j p+n−mAg(n, p−m)

}]
.

(17)

With g being a real function, then Ag(n,m) = A∗g (n,−m),
thus the imaginary terms in (17) are such that

SI = I
{

(−1)mn jm+n−pAg(n,m− p)
}

+ I
{

(−1)pn j p+n−mAg(n, p −m)
}

= I
{

(−1)mn jm+n−pAg(n,m− p)

+ (−1)pn j p+n−mA∗g (n,m− p)
}
.

(18)

It can be easily seen that for n even, SI = 0, while for n odd,
the result depends upon the parity of m and p being given by

SI=

⎧
⎪⎪⎨
⎪⎪⎩

−2(−1)mn jn+1R
{
jm−pAg(n,m−p)

} if m and p have

the same parity

0 otherwise.
(19)

Then, the computation of (15) can be restricted to the terms
obtained for odd values of n with p and m being of identical
parity. After some computations, setting v = m− p, it can be
shown that

z(c)
n0,u0

= d(c)
n0,u0

+ 2

⎛
⎜⎜⎝

b−1∑

n=−b
n�=0

d(c)
n0+2n+1,u0

j2n+1
N∑

v=0

R

×
{
Ag(2n + 1, 2v)

2N−1−2v∑

k=0

(−1)kck+2v,u0ck,u0

}
⎞
⎟⎟⎠ .

(20)

With a first property of the W-H codes shown in Appendix A:

k∑

m=0

(−1)kck+2v,u0ck,u0 = 0 for v = 0, . . . ,N ;

k = 0, . . . , 2N − 1− 2v,

(21)

(20) becomes

∀n0,u0, z(c)
n0,u0 = d(c)

n0,u0 . (22)

This last equality is the result of a straightforward deriva-
tion of the demodulated and despread signal. It leads us to
a property that a priori could not be easily intuitively appre-
hended. Nevertheless, we can attempt to justify it a posteri-
ori. Let us notice, firstly, that if instead of complex data, we
transmit real data over a distortion-free channel, thanks to
the real orthogonality of the OQAM modulation scheme, we
exactly recover these real data by taking the real part in (20).
Again using (20), it can then be seen that to cancel the imag-
inary part, the interference, the condition (21) on the W-H
CDMA codes is essential. Therefore, in the one user case, us-
ing the system linearity, we can transmit complex data and
recover them perfectly at the receiver.
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4. MULTIUSER CASEWITHU ≤M/2

In order to generalize the relation (22) to a multiuser case,
we propose in this section a selection mode for the subsets of
W-H codes. Then, the generalization can be carried out step
by step, considering firstly a two-user OQAM-CDMA system
and secondly a U-user system with U ≤M/2.

4.1. Selection of theU codes

For a Walsh-Hadamard matrice of size M = 2N= 2n, there
are two subsets of column indices, Sn1 and Sn2 , with cardinal
equal to M/2 making a partition of all the index set. We pro-
pose a recurrent rule of construction for these two subsets
that can guarantee the absence of interference between users.

For n0 = 1, each subset is initialized setting S1
1 = {0} and

S1
2 = {1}.

Let us now assume that, for a given integer n = n0, the
two subsets contain the following list of indices:

Sn0
1 = {i1,1, i1,2, i1,3, . . . , i1,2n0−1

}
,

Sn0
2 = {i2,1, i2,2, i2,3, . . . , i2,2n0−1

}
.

(23)

These subsets are afterwards used to build new subsets of
identical size such that

S
n0

1 = {i2,1 + 2n0 , i2,2 + 2n0 , i2,3 + 2n0 , . . . , i2,2n0−1 + 2n0
}

,

S
n0

2 = {i1,1 + 2n0 , i1,2 + 2n0 , i1,3 + 2n0 , . . . , i1,2n0−1 + 2n0
}
.

(24)

Then, we get the subsets of higher size, n = n0 + 1, as follows:

Sn0+1
1 = Sn0

1 ∪ S
n0

1 , Sn0+1
2 = Sn0

2 ∪ S
n0

2 . (25)

4.2. Case of two users in the same subset (U = 2)

In the second step of our proof, we want to show now that,
again for W-H codes such that M = 2N= 2n, if two users
u0 and u1 take their codes into the same subset, for example,
all in Sn1 or all in Sn2, there in no interference between these 2
users, z(c)

n,u0 = d(c)
n,u0 and z(c)

n,u1 = d(c)
n,u1 .

Let us show at first that for u0 and u1 ∈ Sn1 (resp., Sn2),
z(c)
n0,u0 = d(c)

n0,u0 . Indeed, setting U = 2 in (14), for two given
users u0 and u1 ∈ Sn1 (resp., Sn2), we get

z(c)
n0,u0

= d(c)
n0,u0

+ j

⎛
⎜⎜⎝

2b−1∑

n=−2b+1
n�=0

d(c)
n+n0,u0

(2N−1∑

p=0

2N−1∑

m=0

cp,u0cm,u0γ
(p,n0)
m,n+n0

)
⎞
⎟⎟⎠

+ j

⎛
⎜⎜⎝

2b−1∑

n=−2b+1
n�=0

d(c)
n+n0,u1

(2N−1∑

p=0

2N−1∑

m=0

cp,u0cm,u1γ
(p,n0)
m,n+n0

)
⎞
⎟⎟⎠ .

(26)

As it has been shown for one user that z(c)
n0,u0 = d(c)

n0,u0 ,
based on (20), we can deduce that at the right-hand side the
second term is zero.

Then, by splitting again the summation over m in two
parts, one for m = p and the second one for m�=p, we get

z(c)
n0,u0

= d(c)
n0,u0

+ j

⎛
⎜⎜⎝

2b−1∑

n=−2b+1
n�=0

d(c)
n+n0,u1

(
w(n) + Tg

(
n,u0,u1

)

⎞
⎟⎟⎠ ,

(27)

with w(n) containing the terms obtained for p = m and
Tg(n,u0,u1), the ones for m�=p leading to

w(n) =
2N−1∑

p=0

cp,u0cp,u1I
{

(−1)pn jnAg(n, 0)
}

,

Tg
(
n,u0,u1

)

=
2N−1∑

p=0

p−1∑

m=0

(
cp,u0cm,u1I

{
(−1)mn jm+n−pAg(n,m− p)

}

+cp,u1cm,u0I
{

(−1)pn j p+n−mAg(n, p−m)
})

,
(28)

respectively.
Ag(n, 0) being real-valued, it is obvious that w(n) = 0 for

n even. For n odd, it is shown in Appendix B that

2N−1∑

p=0

(−1)pc(n)
p,u0c

(n)
p,u1 = 0 for u0,u1 ∈ Sn1 (resp., Sn2), (29)

which leads again to w(n) = 0. Thus for every n,w(n) = 0.
The expression of Tg can be rewritten introducing a new

variable u = p − m and using the fact that Ag(n,−u) =
A∗g (n,u), thus we obtain

Tg
(
n,u0,u1

)

=
2N−1∑

u=1

I

{2N−1−u∑

m=0

(−1)mn jn−ucm+u,u0cm,u1A
∗
g (n,u)

+
2N−1−u∑

m=0

(−1)mn+uncm+u,u1cm,u0 j
n+uAg(n,u)

}
.

(30)

For n even (n = 2k), we get

Tg
(
2k,u0,u1

)

=
2N−1∑

u=1

(−1)kI

{2N−1−u∑

m=0

cm+u,u0cm,u1 j
−uA∗g (n,u)

+
2N−1−u∑

m=0

cm+u,u1cm,u0 j
uAg(n,u)

}
.

(31)

In Appendix C, it is shown that for s > 0, and for any W-
H matrix of order n, that is, a size M= 2n, the corresponding

codes c(n)
m,u0 are such that

2n−1−s∑

m=0

c(n)
m,u0

c(n)
m+s,u1

=
2n−1−s∑

m=0

c(n)
m,u1

c(n)
m+s,u0 , for u0,u1 ∈ Sn1

(
resp., Sn2

)
.

(32)
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Then as Tg(2k,u0,u1) is the imaginary part of the sum of two
conjugate quantities, we have

Tg
(
2k,u0,u1

) = 0. (33)

The same lines of arguments can be applied to show that if n
is odd (n = 2k + 1), we get Tg(2k + 1,u0,u1) = 0.

The computation for n odd uses the following properties
of Walsh-Hadamard codes:

2n−1−2s∑

m=0

(−1)mc(n)
m,u0

c(n)
m+2s,u1

= −
2n−1−2s∑

m=0

(−1)mc(n)
m,u1

c(n)
m+2s,u0

for u0,u1 ∈ Sn1
(
resp., Sn2

)
,

2n−2−2s∑

m=0

(−1)mc(n)
m,u0

c(n)
m+2s+1,u1

=
2n−2−2s∑

m=0

(−1)mc(n)
m,u1

c(n)
m+2s+1,u0

for u0,u1 ∈ Sn1
(
resp., Sn2

)
.

(34)

The proof of these properties, not reported here to avoid
another lengthy mathematical derivation, is quite similar to
the one used to get by recurrence the result presented in
Appendix B.

Finally, as

Tg
(
n,u0,u1

) = 0 for u0,u1 ∈ Sn1
(
resp., Sn2

)
, (35)

we get

∀n0,u0, z(c)
n0,u0 = d(c)

n0,u0 . (36)

As in the one-user case, this last equality is the result of a
straightforward derivation of the demodulated and despread
signal and it could not be so easily intuitively apprehended.
However in this case, based on our previous study of OQAM-
CDMA systems for real-data transmission [7], it was clear
that to cancel the imaginary part, some specific conditions
on W-H codes were required. Indeed looking at [7, Figures
4 and 5], it is clear that whatever the orthogonal pulse shape
g(t) being used, the imaginary part is zero only for some pairs
of codes. What we show here is that these pairs of W-H codes
can be grouped in two subsets, forming a partition of the set
of all codes (see Section 4.1), where they satisfy the essential
relations (29), (32), (34). So using again the system linearity,
we can transmit complex data and recover them perfectly at
the receiver.

4.3. Case ofU users in the same subset (U ≤M/2)

Now let us consider the case U ≤M/2 where the U codes are
all chosen either in Sn1 or in Sn2 . Setting U ≤ M/2 in (14) for
U given users ∈ Sn1 (resp., Sn2), we get

z(c)
n0,u0 = d(c)

n0,u0 + j
U−1∑

u=0

X
(
u0,u

)
, (37)

where

X
(
u0,u

) =
2b−1∑

n=−2b+1
n�=0

d(c)
n+n0,u

2N−1∑

p=0

2N−1∑

m=0

cp,u0cm,uγ
(p,n0)
m,n+n0 . (38)

It has been shown for one user, with u = u0 (see (15) in
Section 3), and afterwards for 2 users, with u0 and u1 ∈ Sn1
(resp., Sn2) (see (26) in Section 4.2), that X(u0,u) = 0. There-
fore, if the U codes are all chosen in ∈ Sn1 (resp., Sn2), we get

∀n0,u0, z(c)
n0,u0 = d(c)

n0,u0 . (39)

So, in this last and more general case the result can be
a posteriori justified using the same lines of arguments we
developed previously for the one- and two-user case.

5. ANALYSIS OF COMPLEX OQAM-CDMA

In MC-CDMA, and CP taking apart, the transmitted data
are complex and the full load is obtained when using all the
codes of the W-H matrix (U = M). When considering the
full diversity, that is, one spread symbol transmitted over
all modulated carriers, the maximum spectral efficiency (full
load) is obtained for M complex data symbols transmitted at
every T0 symbol duration.

In OQAM-CDMA with real-data symbol transmission,
the full load is again obtained when U = M. Therefore,
we obtain the maximum spectral efficiency when M real-
data symbols are transmitted at every T0/2 symbol duration,
which is equivalent to the transmission of M complex-data
symbols at T0.

In the proposed OQAM-CDMA scheme with complex
data symbol transmission, the system guarantees a complex
orthogonality up to a number of users U = M/2 which cor-
responds to the maximum load. As for the complex OQAM-
CDMA system, M/2 complex-data symbols are transmitted
at every T0/2 symbol duration, this scenario is equivalent to
the one where M complex-data symbols are transmitted ev-
ery T0 duration.

So, these 3 scenarios lead to the same spectral efficiency,
without taking into account the CP, but consider different
number of spreading codes to reach this spectral efficiency.
Since the number of spreading codes used directly impacts
on the multiple access interference (MAI) [13, 14], a first
analysis of the different systems shows that using less spread-
ing codes may lead to better performance results. Indeed,
if U increases, the MAI term also increases. As an illustra-
tion of the reduction of the MAI, we can notice that when
there is only one user in the OQAM-CDMA complex trans-
mission scheme, that is, no MAI, the same spectral effi-
ciency is obtained either in MC-CDMA or in OQAM-CDMA
real-transmission schemes, with the use of 2 W-H spread-
ing codes, with a nonzero MAI term. So, the OQAM-CDMA
with complex symbol transmission should outperform the
two other systems as it uses twice less spreading codes to
achieve the same spectral efficiency. Some simulation results
will also confirm this analysis in the following section.
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6. SYSTEM PARAMETERS AND SIMULATION RESULTS

This section gives the main parameters used in simulations
and provides an evaluation of the 3-transmission schemes:
MC-CDMA, OQAM-CDMA with real symbols transmis-
sion, and the new proposed OQAM-CDMA with complex-
symbol transmission. This evaluation leads to a fair compar-
ison between the 3 systems either in terms of BER or in per-
centage of load.

6.1. System parameters

The static propagation channel is modelled by a 3-tap delay
profile having the following characteristics.

(i) Delay (μs): 0 0.2527 0.32.
(ii) Powers (in dB): −0 − 3 − 2.2204.

The other main parameters of the uncoded system are the
following.

(i) Carrier frequency: fc = 1000 MHz.
(ii) FFT size = 32.

(iii) Sampling frequency = 10 MHz.
(iv) Symbol duration, τ0 (T0): 1.6 μs (3.2 μs).
(v) Cyclic prefix = 0.5 μs for MC-CDMA.

(vi) Walsh-Hadamard spreading codes of length 32.
(vii) One-tap MMSE (minimum mean squared error)

equalization.
(viii) For OFDM/OQAM, either the IOTA prototype filter-

ing of length 128, b = 4, or TFL prototype of length
32, b = 1, is implemented.

When considering the MC-CDMA technique, the perfor-
mance results are given by taking into account the loss in
power (10 log10(T0/(T0+CP) = 0.63 dB) induces by the cyclic
prefix insertion. For the OQAM-CDMA with complex sym-
bol transmission, the W-H codes are issued from the first
subset S5

1. In MC-CDMA and OQAM-CDMA with real sym-
bol transmission, when S5

1 is not sufficient to achieve the tar-
geted spectral efficiency (use of more than M/2 codes), then
the spreading codes from the S5

2 subset are selected.

6.2. Simulation results

Figure 4 shows the performance results obtained at 1/16 of
the maximum system spectral efficiency. To achieve this spec-
tral efficiency, the MC-CDMA and real OQAM-CDMA tech-
niques use 2 W-H spreading codes, whereas the complex
OQAM-CDMA system uses only one W-H code. It is shown
that the OQAM-CDMA with real symbols outperforms the
MC-CDMA technique of the gain induced by the absence
of the CP insertion. When comparing both OQAM-CDMA
schemes, we can note that the complex-symbol transmission
system provides around a 2 dB gain at BER= 10−2 compared
to the real-symbol transmission. This gain shows that using
only one W-H code (complex-symbol transmission) instead
of 2 (real-symbol transmission) allows to reduce the MAI
term and so to obtain better performance.

Figure 5 shows the performance results obtained at the
maximum system spectral efficiency. To achieve this spectral
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Figure 4: BER performance results of the 3-transmission schemes
at 1/16 of the maximum spectral efficiency.
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Figure 5: BER performance results of the 3-transmission schemes
at the maximum spectral efficiency.

efficiency, the MC-CDMA and the real-OQAM-CDMA tech-
niques use the 32 W-H spreading codes, whereas the complex
OQAM-CDMA system uses 16 W-H codes corresponding to
the whole S5

1 subset. It is shown that both OQAM-CDMA
systems have the same performance results and outperform
the MC-CDMA system as no CP is required. In that case, we
note that the MAI term does not provide any gain in favour
of the OQAM-CDMA with complex symbol transmission.

In Figure 5, it can also be noted that the OQAM and
OFDM curves merge around Eb/N0 = 13 dB. Indeed, in this
context, where we assume a perfect channel knowledge and a
one-tap MMSE equalization, the OQAM system, which has
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Figure 6: BER performance result regarding to the system’s load for
the 3-transmission schemes.

no guard interval, suffers from ISI in the presence of a time
dispersive channel. So for Eb/N0 beyond 13 dB the curves
cross. This phenomenon, named intrinsic interference, is ex-
plained in details in [15, 16]. As also shown in [17], if the
delay spread is not too long, less than 1/8 of τ0, a one tap
equalization may be enough. For larger delay spread, as is the
case here (being 20% of τ0), a more complex equalization
procedure should be used.

To quantify the impact of the MAI term, we have plot-
ted in Figure 6, the performance with regard to the system
load at fixed Eb/N0 (a fixed Eb/N0 ratio leads to a lower BER
in OQAM systems compared to MC-CDMA since the CP is
taken into account). This Eb/N0 is the same for the 3 systems
and is equal to 10 dB that corresponds approximatively to a
BER= 10−2 at full load. For OQAM-CDMA systems, we have
either considered the IOTA prototype function or the TFL
one. Figure 6 shows that OQAM-CDMA systems give better
performance results than the MC-CDMA whatever the load.
This gain is always provided by the no-CP insertion. When
comparing OQAM-CDMA systems, Figure 6 shows that un-
til 35% of the load, the OQAM-CDMA with complex sym-
bol transmission outperforms the OQAM-CDMA with real-
symbol transmission. These results illustrate the impact of
the MAI term on the performance results, showing the ad-
vantage of using the OQAM-CDMA complex-symbol trans-
mission. Now, if we compare the results with regard to the
prototype function, we can comment that the TFL proto-
type provides better performance results than the IOTA one
in real-symbol transmission and for 2 W-H codes. For the
complex OQAM-CDMA transmission, both prototypes have
almost the same performance. Note also that, for complex-
ity implementation, TFL prototype is more suitable than the
IOTA one since its length is 4 times less.

7. CONCLUSION

In this paper, we have proposed an OQAM-CDMA system
with complex-data symbol transmission, which allows a re-
duction of the MAI term while keeping the same spectral
efficiency as in MC-CDMA (CP taking apart) or OQAM-
CDMA with real-data symbol transmission. We have proved
that the transmission of complex symbols in OQAM-CDMA
requires a judicious selection of the W-H spreading codes
to guarantee the complex orthogonality, that is, in theory
limited to the real field in OQAM. The performance results
obtained in the considered system have shown that OQAM-
CDMA with complex symbol transmission outperforms the
MC-CDMA technique whatever the system load thanks to
the no-CP insertion and to the lower number of spreading
codes used. Compared to OQAM-CDMA with real-symbol
transmission, owing to the reduction of the MAI term, our
proposed technique gives better performance results up to
35% of the system load. The choice of the prototype function
in OQAM-CDMA has no major impact on the performance
results in our studied system. However, the TFL prototype
function has an advantage with regard to the implementa-
tion.

In future work, we will investigate the potential uti-
lization of more than M/2 codes in OQAM-CDMA system
transmitting complex-data symbols in order to increase the
system spectral efficiency and exceed the theoretical MC-
CDMA and OQAM-CDMA transmitting real-data symbol
systems.

APPENDICES

A. A FIRST PROPERTY OFW-H CODES

We denote by A(n) = [c(n)
1 , c(n)

2 , . . . , c(n)
M−1] the W-H matrix of

order n of size M ×M with M= 2n, and with a kth column
given by c(n)

k = [c(n)
0,k , c(n)

1,k , . . . , c(n)
M−1,k]T for k = 0, 1, . . . ,M − 1.

In this appendix, we show that for any positive integer n
and any code of index k, that is, for the kth column of A(n),
we have

2n−1−2p∑

m=0

(−1)mc(n)
m+2p,kc

(n)
m,k = 0 for p = 0, 1, . . . , 2n−1,

m = 0, 1, . . . , 2n − 1− 2p.
(A.1)

The proof is carried out in 2 steps.

Step 1. We first show by recurrence that

c(n)
2m,kc

(n)
2p,k = c(n)

2m+1,kc
(n)
2p+1,k for n = 1, 2, . . . ,∞;

m = 0, 1, . . . , 2(n−1) − 1; p = 0, 1, . . . , 2(n−1) − 1.
(A.2)

Case n = 1

The W-H matrix being such that

A(1) = 1√
2

(
1 1
1 −1

)
, (A.3)



Chrislin Lélé et al. 9

it can be easily checked that c(1)
0,0c

(1)
0,0 = c(1)

1,0c
(1)
1,0 and c(1)

0,1c
(1)
0,1 =

c(1)
1,1c

(1)
1,1 , which shows that the property is true for n = 1.

Case n = n0

We assume that the property is true for n = n0,

c(n0)
2m,kc

(n0)
2p,k = c(n0)

2m+1,kc
(n0)
2p+1,k, for p = 0, 1, . . . , 2(n0−1) − 1;

m = 0, 1, . . . , 2(n0−1) − 1− 2p.
(A.4)

Case n = n0 + 1

Let us show that the property is therefore true for n = n0 + 1.
As

A(n0+1) =
(
A(n0) A(n0)

A(n0) −A(n0)

)
, (A.5)

we also have

c(n+1)
k =

⎧
⎪⎨
⎪⎩

(
c(n)
k , c(n)

k

)T
if k < 2n0 ,

(
c(n)
k−2n ,−c(n)

k−2n

)T
if k > 2n0 − 1.

(A.6)

Let us now only consider the case (k > 2n0 − 1) knowing that
the computation principle is similar for the case (k < 2n0−1).
For m = 0, 1, . . . , 2n0 −1 and p = 0, 1, . . . , 2n0 −1, we have the
following set of equalities:

c(n0+1)
2m,k = c(n0)

2m,k−2n ; c(n0+1)
2p,k = c(n0)

2p,k−2n

c(n0+1)
2m+1,k = c(n0)

2m+1,k−2n ; c(n0+1)
2p+1,k = c(n0)

2p,k−2n

if 2m < 2n0 − 1, 2p < 2n0 − 1,

c(n0+1)
2m,k = c(n0)

2m,k−2n ; c(n0+1)
2p,k = −c(n0)

2p,k−2n

c(n0+1)
2m+1,k = c(n0)

2m+1,k−2n ; c(n0+1)
2p+1,k = −c(n0)

2p,k−2n

if 2m < 2n0 − 1, 2p > 2n0 − 1,

c(n0+1)
2m,k = −c(n0)

2m,k−2n ; c(n0+1)
2p,k = −c(n0)

2p,k−2n

c(n0+1)
2m+1,k = −c(n0)

2m+1,k−2n ; c(n0+1)
2p+1,k = −c(n0)

2p,k−2n

if 2m > 2n0 − 1, 2p > 2n0 − 1.

(A.7)

As the case 2m > 2n0 − 1 and 2p < 2n0 − 1 can be directly
derived, exchanging m and p, from the one where 2m < 2n0−
1 and 2p > 2n0 − 1, we always get

c(n0+1)
2m,k c(n0+1)

2p,k = c(n0)
2m,k−2n c

(n0)
2p,k−2n ,

c(n0+1)
2m+1,kc

(n0+1)
2p+1,k = c(n0)

2m+1,k−2n c
(n0)
2p+1,k−2n .

(A.8)

Then using the recurrence assumption for n = n0 given in
(A.4), we get

c(n)
2m,kc

(n)
2p,k = c(n)

2m+1,kc
(n)
2p+1,k for n = 1, 2, . . . ,∞,

m = 0, 1, . . . , 2(n−1) − 1, p = 0, 1, . . . , 2(n−1) − 1.
(A.9)

Step 2. Let us simply notice that for a given m and p, we have

2n−1−2p∑

m=0

(−1)mc(n)
m+2p,kc

(n)
m,k

=
2n−1−1−p∑

u=0

(
c(n)

2u+2p,kc
(n)
2u,k − c(n)

2p+2u+1,kc
(n)
2u+1,k

)
.

(A.10)

Then, with the result proved in Step 1, we conclude that

2n−1−2p∑

m=0

c(n)
m+2p,kc

(n)
m,k(−1)m = 0. (A.11)

B. A SECOND PROPERTY OFW-H CODES

Keeping the same notations as in Appendix A and using the
definitions of the subsets Sn1 , Sn2 , S

n0

1 , and S
n0

2 presented in
Section 4.1, we can also show that

2n−1∑

p=0

(−1)pc(n)
p,u0c

(n)
p,u1 = 0 for u0,u1 ∈ Sn1 (resp., Sn2). (B.1)

The proof is established by recurrence on n, starting by
n = 2.

Case n = 2

The W-H matrix is given by

A(2) = 1√
4

⎛
⎜⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎟⎠ . (B.2)

It can be easily checked, testing the different possible cases
when u0,u1 ∈ S2

1 = {0, 3}: u0 = u1 = 0 or 3, u0 = 0 and
u1 = 3, similarly for u0,u1 ∈ S2

2 = {1, 2} that the property
(B.1) is true for n = 2.

Case n = n0

We now assume the property (B.1) is true for n = n0. Other-
wise, for the sets Sn0

1 and Sn0
2 , see (23) and u0,u1, . . . , we have

2n0−1∑

p=0

(−1)pc(n0)
p,u0c

(n0)
p,u1 = 0. (B.3)

Case n = n0 + 1

Let us show that (B.3) also holds true for n = n0 + 1.
For n = n0 + 1, (B.3) can be rewritten as

2n0+1−1∑

p=0

(−1)pc(n0+1)
p,u0 c(n0+1)

p,u1

=
2n0−1∑

p=0

(−1)pc(n0+1)
p,u0 c(n0+1)

p,u1 +
2n0−1∑

p=0

(−1)pc(n0+1)
p+2n0 ,u0

c(n0+1)
p+2n0 ,u1

,

(B.4)
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where the second summation results from a substitution of p
by p − 2n0 .

Let us consider the 3 possible cases
(1) u0,u1 ∈ Sn0

1 (resp., ∈ Sn0
2 ). Then for p < 2n0 , we get

c(n0+1)
p+2n0 ,u0

= c(n0)
p,u0 ; c(n0+1)

p,u0 = c(n0)
p,u0 ;

c(n0+1)
p+2n0 ,u1

= c(n0)
p,u1 ; c(n0+1)

p,u1 = c(n0)
p,u1 .

(B.5)

Based on (B.4) and (B.3), we get

2n0+1−1∑

p=0

(−1)pc(n0)
p,u0c

(n0)
p,u1 = 2

2n0−1∑

p=0

(−1)pc(n0)
p,u0c

(n0)
p,u1 = 0. (B.6)

(2) u0,u1 ∈ S
n0

1 (resp., S
n0

2 ).
For p < 2n0 , based on the same principles of computa-

tion, we now obtain

c(n0+1)
p+2n0 ,u0

= −c(n0)
p,u0−2n0

; c(n0+1)
p,u0 = c(n0)

p,u0−2n0
;

c(n0+1)
p+2n0 ,u1

= −c(n0)
p,u1−2n0

; c(n0+1)
p,u1 = c(n0)

p,u1−2n0
.

(B.7)

Then using relation (B.4) and noting that by the substitution
v0 = u0 − 2n0 and v1 = u1 − 2n0 v0, v1 ∈ Sn0

2 (resp., ∈ Sn0
1 ),

then taking the recurrence relation (B.3) into account, we
get

2n0+1−1∑

p=0

(−1)pc(n0+1)
p,u0 c(n0+1)

p,u1 = 2
2n0−1∑

p=0

(−1)pc(n0)
p,v0 c

(n0)
p,v1 = 0. (B.8)

(3) u0 ∈ Sn0
1 (resp., Sn0

2 ) and u1 ∈ S
n0

1 (resp., S
n0

2 )
For p < 2n0 , the recurrence relation between the columns

of Hadamard matrices of successive order leads to

c(n0+1)
p+2n0 ,u0

= c(n0)
p,u0 ; c(n0+1)

p,u0 = c(n0)
p,u0 ;

c(n0+1)
p+2n0 ,u1

= −c(n0)
p,u1−2n0 ; c(n0+1)

p,u1 = c(n0)
p,u1−2n0 .

(B.9)

Then, we find

2n0+1−1∑

p=0

(−1)pc(n0+1)
p,u0 c(n0+1)

p,u1

=
2n0−1∑

p=0

(−1)pc(n0)
p,u0c

(n0)
p,u1−2n0 −

2n0−1∑

p=0

(−1)pc(n0)
p,u0c

(n0)
p,u1−2n0 = 0.

(B.10)

To conclude, for any integer n, there are two subsets, Sn1
and Sn2, which give a partition of all the index set such that
for u0,u1 ∈ Sn1 (resp., Sn2) the property (B.1) is satisfied.

C. THIRD PROPERTY OFW-H CODES

Using again the notations introduced in Appendix A and in
Section 4, we are going to show that for 0 < s < 2n − 1, the
W-H codes satisfy the following properties:

2n−1−s∑

m=0

c(n)
m,u0

c(n)
m+s,u1

=
2n−1−s∑

m=0

c(n)
m,u1

c(n)
m+s,u0 for u0,u1 ∈ Sn1(resp., Sn2),

(C.1)

2n−1−s∑

m=0

c(n)
m,u0

c(n)
m+s,u1

= −
2n−1−s∑

m=0

c(n)
m,u1

c(n)
m+s,u0 for u0 ∈ Sn1 , u1 ∈ Sn2 .

(C.2)

As in the previous appendices, we use a recurrence on n.

Case n = 1

For the W-H matrix of order 1

A(1) = 1√
2

(
1 1
1 −1

)
, (C.3)

it can be checked with the partition S1
1 = {0} and S1

2 = {1}
that for s = 1, the relations (C.1) are (C.2) are true.

Case n = n0

Let us now assume that these relations are also true for n =
n0, that is, for 0 < s < 2n0 − 1, we have

2n0−1−s∑

m=0

c(n0)
m,u0

c(n0)
m+s,u1

=
2n0−1−s∑

m=0

c(n0)
m,u1

c(n0)
m+s,u0 for u0,u1 ∈ Sn0

1

(
resp., Sn0

2

)
,

(C.4)
2n0−1−s∑

m=0

c(n0)
m,u0

c(n0)
m+s,u1

= −
2n0−1−s∑

m=0

c(n0)
m,u1

c(n0)
m+s,u0 for u0 ∈ Sn0

1 , u1 ∈ Sn0
2 .

(C.5)

Case n = n0 + 1

To show that these properties are also true for n = n0 + 1, the
seven different cases have to be considered

(1) u0,u1 ∈ Sn0+1
1 (resp., Sn0+1

2 ) and u0,u1 ∈ Sn0
1 (resp.,

Sn0
2 ).

(2) u0,u1 ∈ Sn0+1
1 (resp., Sn0+1

2 ) and u0,u1 �∈ Sn0
1 (resp.,

Sn0
2 ).

(3) u0, u1 ∈ Sn0+1
1 (resp., ∈ Sn0+1

1 ) and u1 ∈ Sn0
1 (resp., Sn0

2 )
and u0 �∈ Sn0

1 (resp., Sn0
2 ).

(4) u0 ∈ Sn0+1
1 , u1 ∈ Sn0+1

2 and u0 ∈ Sn0
1 , and u1 ∈ Sn0

2 .
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(5) u0 ∈ Sn0+1
1 , u1 ∈ Sn0+1

2 and u0 ∈ Sn0
1 , and u1 �∈ Sn0

2 .
(6) u0 ∈ Sn0+1

1 , u1 ∈ Sn0+1
2 and u0 �∈ Sn0

1 , and u1 �∈ Sn0
2 .

(7) u0 ∈ Sn0+1
1 , u1 ∈ Sn0+1

2 and u0 �∈ Sn0
1 , and u1 ∈ Sn0

2 .

As the proofs are quite similar for these different cases in this
appendix, as a matter of example, we only provide the proofs
for the first 2 cases.

(1) u0,u1 ∈ Sn0+1
1 (resp., Sn0+1

2 ) and u0,u1 ∈ Sn0
1 (resp.,

Sn0
2 ). We split the interval of analysis for 0 < s < 2n0+1−1 into

two subcases.

Subcase 0 < s < 2n0 − 1

Let SL denote the left-hand side in relation (C.1), it can be
split into three terms:

SL =
2n0−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 +

2n0−1∑

m=2n0−s
c(n0+1)
m,u0

c(n0+1)
m+s,u1

+
2n0+1−1−s∑

m=2n0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 .

(C.6)

Making a substitution by m→m − 2n0 + s and m→m − 2n0

in the second and third summations, respectively, then using
in the first and third summations the relation of recurrence
between the columns of W-H matrices of consecutive order,
we get

SL =
2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0

= 2
2n0−1−s∑

m=0

c(n0)
m,u1

c(n0)
m+s,u0 +

2n0−ŝ−1∑

m=0

c(n0)
m,u0

c(n0)
m+ŝ,u1

(C.7)

with ŝ = 2n0 − s.
Then using the recurrence hypothesis (C.4), we have

2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0 =

2n0+1−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 (C.8)

Subcase 2n0 < s

Then we can write

SL =
2n0+1−1−s∑

m=0

c(n0)
m,u0

c(n0)
m+s−2n0 ,u1

=
2n0+1−2n0−1−(s−2n0 )∑

m=0

c(n0)
m,u0

c(n0)
m+s−2n0 ,u1

=
2n0−1−ŝ∑

m=0

c(n0)
m,u0

c(n0)
m+ŝ,u1

(C.9)

with again ŝ = s−2n0 . From the recurrence hypothesis (C.4),
we have

2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0 =

2n0+1−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 . (C.10)

(2) u0,u1 ∈ Sn0+1
1 (resp., Sn0+1

2 ) and u0,u1 �∈ Sn0
1 (resp.,

Sn0
2 ).

To prove the properties for 0 < s < 2n0+1 − 1, we proceed
as in the first case, splitting the analysis into two 2 intervals
for s.

Case 0 < s < 2n0 − 1

SL, the left-hand side in relation (C.1), can again be split into
three terms:

SL =
2n0−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 +

2n0−1∑

m=2n0−s
c(n0+1)
m,u0

c(n0+1)
m+s,u1

+
2n0+1−1−s∑

m=2n0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 .

(C.11)

Making a substitution by m→m− 2n0 + s and m→m− 2n0 in
the second and third summations, respectively, then using,
in the first and third summations, the relation of recurrence
between the columns of W-H matrices of consecutive order,
we get

SL =
2n0+1−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1

= 2
2n0−1−s∑

m=0

c(n0)
m,v0

c(n0)
m+s,v1 −

2n0−ŝ−1∑

m=0

c(n0)
m,v1

c(n0)
m+ŝ,v0

(C.12)

with ŝ = 2n0 − s, v1 = u1 − 2n, v0 = u0 − 2n, and v0, v1 ∈ Sn0
2

(resp., Sn0
1 ). In the same manner, we get

2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0

= 2
2n0−1−s∑

m=0

c(n0)
m,v1

c(n0)
m+s,v0 −

2n0−ŝ−1∑

m=0

c(n0)
m,v0

c(n0)
m+ŝ,v1

.

(C.13)

From the recurrence hypothesis (C.4), we have

2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0 =

2n0+1−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 (C.14)

Case 2n0 < s

SL =
2n0+1−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1

= −
2n0+1−1−s∑

m=0

c(n0)
m,u0−2n0 c

(n0)
m+s−2n0 ,u1−2n0

= −
2n0+1−2n0−1−(s−2n0 )∑

m=0

c(n0)
m,v0

c(n0)
m+s−2n0 ,v1

= −
2n0−1−ŝ∑

m=0

c(n0)
m,v0

c(n0)
m+ŝ,v1

(C.15)
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with ŝ = 2n0 − s, v1 = u1 − 2n, v0 = u0 − 2n and v0, v1 ∈ Sn0
2

(resp., Sn0
1 ). In the same manner, we get

2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0 = −

2n0−1−ŝ∑

m=0

c(n0)
m,v1

c(n0)
m+ŝ,v0

. (C.16)

From the recurrence hypothesis (C.4), we have

2n0+1−1−s∑

m=0

c(n0+1)
m,u1

c(n0+1)
m+s,u0 =

2n0+1−1−s∑

m=0

c(n0+1)
m,u0

c(n0+1)
m+s,u1 . (C.17)

To conclude, for any integer n, there are two subsets, Sn1 and
Sn2 , which give a partition of all the index set such that for
u0,u1 ∈ Sn1 (resp., Sn2), the property (C.1) is satisfied and for
u0 ∈ Sn1 (resp., Sn2) and u1 ∈ Sn2 (resp., Sn1), the property (C.2)
is satisfied.
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[17] C. Lélé, J.-P. Javaudin, R. Legouable, A. Skrzypczak, and P.
Siohan, “Channel estimation methods for preamble-based
OFDM/OQAM modulations,” in European Wireless, Paris,
France, April 2007.


	1. INTRODUCTION
	2. PROBLEM STATEMENT
	3. SINGLE USER CASE U = 1
	4. MULTIUSER CASEWITH U ≤ M/2
	4.1. Selection of the U codes
	4.2. Case of two users in the same subset (U = 2)
	4.3. Case of U users in the same subset (U ≤ M/2)

	5. ANALYSIS OF COMPLEX OQAM-CDMA
	6. SYSTEM PARAMETERS AND SIMULATION RESULTS
	6.1. System parameters
	6.2. Simulation results

	7. CONCLUSION
	APPENDICES
	A. A FIRST PROPERTY OF W-H CODES
	B. A SECOND PROPERTY OF W-H CODES
	C. THIRD PROPERTY OF W-H CODES

	REFERENCES

