
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 428036, 10 pages
doi:10.1155/2008/428036

Research Article
A Comparison of Detection Performance for Several
Track-before-Detect Algorithms

Samuel J. Davey, Mark G. Rutten, and Brian Cheung

Intelligence Surveillance and Reconnaissance Division, Defence Science and Technology Organisation, P.O. Box 1500,
Edinburgh, SA 5111, Australia

Correspondence should be addressed to Samuel J. Davey, samuel.davey@dsto.defence.gov.au

Received 30 March 2007; Revised 20 August 2007; Accepted 8 October 2007

Recommended by Yvo Boers

A typical sensor data processing sequence uses a detection algorithm prior to tracking to extract point measurements from the
observed sensor data. Track before detect (TBD) is a paradigm which combines target detection and estimation by removing the
detection algorithm and supplying the sensor data directly to the tracker. Various different approaches exist for tackling the TBD
problem. This article compares the ability of several different approaches to detect low amplitude targets. The following algorithms
are considered in this comparison: Bayesian estimation over a discrete grid, dynamic programming, particle filtering methods, and
the histogram probabilistic multihypothesis tracker. Algorithms are compared on the basis of detection performance and compu-
tation resource requirements.

Copyright © 2008 Samuel J. Davey et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Traditional tracking algorithms are designed assuming that
the sensor provides a set of point measurements at each scan.
The tracking algorithm links measurements across time and
estimates parameters of interest. However, a practical sensor
may provide a data image, where each pixel corresponds to
the received power in a particular spatial location (e.g., range
bins and azimuth beams). In this case, the common approach
is to apply a threshold to the data and to treat those cells that
exceed the threshold as point measurements, perhaps using
interpolation methods to improve accuracy. This is accept-
able if the signal-to-noise ratio (SNR) is high. For low SNR
targets the threshold must be low to allow sufficient proba-
bility of target detection. A low threshold also gives a high
rate of false detections which cause the tracker to form false
tracks. An alternative approach, referred to as track-before-
detect (TBD), is to supply the tracker with all of the sensor
data without applying a threshold. This improves track accu-
racy and allows the tracker to follow low SNR targets.

The main difficulty in the TBD problem is that the mea-
surement, which is the whole sensor image, is a highly non-
linear function of the target state. Typically, the target state

describes the kinematic evolution of the target, and may also
include its amplitude. However, the sensor provides a map
of received scatterer power, which may have a relatively high-
intensity response in the location corresponding to the tar-
get. One way to deal with this nonlinearity is to discretise the
state space. When the state is discrete, then linearity is irrel-
evant, and estimation techniques such as the hidden Markov
model (Baum-Welsh) filter or smoother [1] and the Viterbi
algorithm [2] can be applied. Several approaches for TBD
have been developed using this method [3–7]. The problem
with using a discrete-state space is that it leads to high com-
putation and memory resource requirements.

An alternative to discretising the state is to use a parti-
cle filter to solve the nonlinear estimation problem [8–10].
The particle filter uses Monte Carlo techniques to solve the
estimation integrals that are analytically intractable. Particle
filtering has been used by a number of authors for TBD, for
example, [11–13]. It is a numerical approximation technique
that uses randomly placed samples instead of fixed samples as
is the case for a discretised state space. Particle filtering may
be able to achieve similar estimation performance for lower
cost by using less sampling points than would be required for
a discrete grid.

2 EURASIP Journal on Advances in Signal Processing

Another alternative approach is the histogram proba-
bilistic multihypothesis tracker, H-PMHT [14, 15]. A key dif-
ference between H-PMHT and the algorithms above is that
it uses a parametric representation of the target pdf rather
than a numerical one. This reduces the computation load of
the algorithm significantly. H-PMHT assumes the superpo-
sition of power from the scattering sources and probabilisti-
cally associates the received power in each sensor pixel with
the target and clutter models. After the association phase it
can exploit the estimation algorithms for point measurement
tracking. H-PMHT is naturally a multitarget algorithm.

Rather than using the whole sensor image, maximum
likelihood probabilistic data association (ML-PDA) reduces
the threshold to a low level and then applies a grid-based
state model for estimation [16–19]. The association of the
high number of measurements is handled using PDA. An al-
ternative version using PMHT for data association has also
been used [20]. This algorithm will not be considered in this
paper, which instead focuses on algorithms that use the sen-
sor image directly.

In addition to estimating the target state, the TBD algo-
rithm needs to detect the presence or absence of targets. A
simple method for this is to extend the state space to include
a null state corresponding to the case that there is no target,
for example, [6, 11, 21]. In this case, a target is detected when
any state other than the null state has the highest probability.
A closely related concept is to use a separate Markov chain for
the presence or absence of a target as originally introduced
for PDA in [22]. This approach has been used for the particle
filter [13] and a generalised version was applied to PMHT in
[23].

Although there are numerous algorithms for solving the
TBD problem, there is currently no TBD benchmark, and
existing comparisons between the competing algorithms are
limited. The purpose of this article is to compare a num-
ber of existing TBD algorithms and to investigate their per-
formance in terms of detection capability, estimation error,
and required computation resource. Reference [11] com-
pared the RMS error of a particle-based TBD algorithm with
a grid-based Baum-Welsh algorithm. However, that compar-
ison used a single initial target speed (with almost constant
velocity) and a single amplitude. A preliminary comparison
of the particle filter and H-PMHT algorithms was presented
in [24]. This article extends that comparison by including a
broader set of algorithms, by using a more realistic measure-
ment model ([24] used Gaussian measurement noise), and
by adding diversity in the target behaviour.

This article compares the performance of four TBD algo-
rithms on a radar-like simulation problem as a function of
target speed and target amplitude. The target is assumed to
be well approximated by a point scatterer, and its contribu-
tion to the received sensor image is via a known point-spread
function. Although the specific point-spread function used
here is the response of Fourier transform windows, prob-
lems with extended targets (where the sensor resolution is
relatively high) could easily be explored by instead using an
appropriate target template, such as in [11].

The algorithms compared are the optimal Bayesian es-
timator for a discrete-state space, detailed in [6], a Viterbi

algorithm, much like that of [4], the particle filter of Rutten
et al. [13], and the H-PMHT [14]. The first two algorithms
represent maximum a posteriori and maximum likelihood
estimation over a fixed grid, the particle filter is a random
sampling numerical approximation, and H-PMHT is a para-
metric approach.

This article is arranged as follows. Section 2 defines the
TBD problem, and outlines the target and measurement
models used by the various algorithms. Section 3 reviews the
different algorithms under test. The performance of the al-
gorithms is investigated via simulations of low SNR targets
in Section 4 and Section 5 concludes.

2. PROBLEMDEFINITION

As in [10, Chapter 11], consider a sensor that collects a se-
quence of two-dimensional images. When present, a target
moves in the plane according to a known statistical process.
The algorithms use two different kinds of target model: the
Bayesian and Viterbi algorithms use a discrete-valued state
space, whereas the particle and H-PMHT algorithms use a
continuous valued-state space. The true target state, which
is used to generate data for simulation analysis, follows the
latter model.

2.1. Targetmodel

For simplicity of notation, assume a discrete time model,
with a fixed sampling period, T . The target state at time k,
xk, consists of position and velocity in the plane and the in-
tensity of the returned signal, that is,

xk =
[
xk ẋk yk ẏk Ik

]T
. (1)

The evolution of the state is modelled by the linear stochastic
process

xk = Fxk−1 + vk, (2)

where vk is a noise process and the transition matrix is given
by

F =
⎡
⎢⎣
Fs 0 0
0 Fs 0
0 0 1

⎤
⎥⎦ , Fs =

[
1 T
0 1

]
. (3)

The noise process is different for the discrete and
continuous-valued state models.

2.1.1. Discrete-valued state

Let X denote the set of all possible states. Assume that the
states are uniformly sampled so that

xk =
[
Δxq

Δx

T
r Δys

Δy

T
t Ik

]T
, (4)

for some integers q, r, s, and t. The algorithms which use
the discrete state do not estimate the intensity, but rely on
a marginalised likelihood which is described in Section 2.3.

Samuel J. Davey et al. 3

The process noise, vk, must also belong to X. To reduce the
computation overhead, the probability mass function (pmf)
of vk is chosen so that p(vk) = 0 for all vk outside a tight
region centred on the origin. The implementation for this
article restricts vk to a single step in any one dimension (the
pmf is a 81 element matrix).

2.1.2. Continuous-valued state

In this case, the noise process is the usual Gaussian random
variable with covariance Q given by

Q =
⎡
⎢⎣
Qs 0 0
0 Qs 0
0 0 qiT

⎤
⎥⎦ , Qs = qs

[
T3/3 T2/2
T2/2 T

]
, (5)

where qs is the power spectral density of the acceleration
noise in the spatial dimensions and qi is the power spectral
density of the noise in the rate of change of target return in-
tensity.

2.2. Measurementmodel

The measurement at each time is a 2-dimensional image con-
sisting of α cells in the x-dimension and β cells in the y-
dimension. An example of the data used for simulation in
this paper is shown in Figure 1. The measurement in each

pixel of the image at time k, z
(i, j)
k , is assumed to be the mag-

nitude of a windowed complex sinusoid in Gaussian noise,
as in [13]. Thus the pixel value will be Ricean distributed if
there is a target present, or Rayleigh distributed if there is no
target [25]. The measurement pdf is

p
(
z

(i, j)
k | xk

)
= 2z

(i, j)
k

σ2
exp

⎛
⎜⎝−

[
z

(i, j)
k

]2
+ h(i, j)

(
xk
)2

σ2

⎞
⎟⎠

× I0

(
2z

(i, j)
k h(i, j)

(
xk
)

σ2

) (6)

if the target is present or

p
(
z

(i, j)
k

)
= 2z

(i, j)
k

σ2
exp

⎛
⎜⎝−

[
z

(i, j)
k

]2

σ2

⎞
⎟⎠ (7)

if there is no target, where σ2 is the variance of the measure-
ment noise. The term h(i, j)(xk) is the contribution in cell i, j
from the target, which depends on the point spread function
of the windows, the target location, and the target intensity.
I0(·) is the modified Bessel function.

The complete measurement at time k is denoted by zk =
{z(i, j)

k | i = 1, . . . ,α, j = 1, . . . ,β} and the set of all measure-
ments up to time k is denoted by Zk = {zl | l = 1, . . . , k}.

The target peak SNR quantifies the height of the peak of
the target point spread function relative to the noise floor,
and represents a measure of how easy it is to detect the target.
The point spread function is assumed to be normalised such
that the contribution to cell i, j is Ik when the target is located
exactly on the sample point for the cell. Thus the peak SNR
in dB is given by 20 log {Ik/σ2} .

2

4

6

8

10

12

14

16

18

20

Y
ce

ll

2 4 6 8 10 12 14 16 18 20

X cell

Figure 1: Simulated measurement data with a 12 dB target return
at x = 3.5 and y = 3.25.

2.3. Likelihood ratio

In many cases, it is more convenient to deal with the likeli-
hood ratio of the data, rather than the measurement pdf. For
the measurement model described above, the likelihood ratio
for cell (i, j) is

L
(
z

(i, j)
k | xk

)
≡

p
(
z

(i, j)
k | xk

)

p
(
z

(i, j)
k

)

= exp

(−h(i, j)
(
xk
)2

σ2

)
I0

(
2z

(i, j)
k h(i, j)

(
xk
)

σ2

)
.

(8)

Since the pixels are assumed to be conditionally indepen-
dent, the likelihood of the whole image is simply the product
over the pixels

L
(
zk | xk

) =
α∏

i=1

β∏

j=1

L
(
z

(i, j)
k | xk

)
. (9)

If a prior distribution is assumed for the target intensity,
p(Ik), then an intensity independent marginal likelihood is
given by

L
(
zk | xk

) =
∫∞

0
L
(
zk | xk

)
p
(
Ik
)
dIk. (10)

This integral can be approximated by a summation.

3. ALGORITHMS

3.1. Bayesian estimator

The posterior pdf of the target state can be recursively deter-
mined using the well-known Bayesian relationship

p
(
xk | Zk

)∝ p
(
zk | xk

) ∫
p
(
xk | xk−1

)
p
(
xk−1 | Zk−1

)
dxk−1.

(11)

4 EURASIP Journal on Advances in Signal Processing

The Bayesian estimator in this paper is a direct approx-
imation to (11) based on a discretisation of the state space.
Choose a uniformly spaced set of states, X (which is not nec-
essarily related to the discrete measurement function). Equa-
tion (11) can then be approximated by

p
(
xk | Zk

) ≈ KL
(
zk | xk

) ∑

xk−1∈X
p
(
xk | xk−1

)
p
(
xk−1 | Zk−1

)
,

(12)

where K is a normalising constant. The approximation is ex-
act in the limit as X approaches R4. The first term in (12)
is the intensity independent marginal likelihood, defined by
(10).

The discrete-state space is augmented with a null state,
∅, to indicate the possibility that there is no target. Denote
the probability of target death as Pd, and the probability of
target birth as Pb. Then the evolution probability in (12) is
given by

p
(
xk | xk−1

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1− Pb, xk = ∅, xk−1 = ∅,

Pd, xk = ∅, xk−1 �=∅,

Pb/|X|, xk �=∅, xk−1 = ∅,(
1− Pd

)
xk �=∅, xk−1 �=∅,

×p(vk = xk − Fxk−1
)
,

(13)

where |X| is the number of discrete states in X.
The parameters Pb and Pd control the detection perfor-

mance and can be tuned to optimise detection performance.
The selection of the state space, X, is a tradeoff between esti-
mation accuracy, which improves with finer resolution, and
computation requirement, which increases with |X|. The
process noise pmf also affects estimation accuracy, as well as
providing some capacity to handle model mismatch between
the assumed target model and the true target motion. The al-
gorithm is initialised with p(x0 = ∅) = 1 and p(x0) = 0 for
all x0 �=∅.

Once the pdf of the state has been evaluated, a state esti-
mate can be obtained by selecting the state with the highest
probability. In the event that this state is the null state, then
the algorithm reports that there is no target. To account for
the case where the pdf has a peak that is spread over several
grid cells, the implementation used in this article finds the
highest probability nonnull state and accumulates the prob-
ability in the adjacent cells. If the accumulated probability is
higher than the null-state probability, then a detection is re-
ported.

3.2. Dynamic programming

The Bayesian algorithm above is a MAP estimator. It recur-
sively defines the probability of the target occupying a partic-
ular location by the superposition of all of the possible paths
to that position. An alternative is to use a maximum likeli-
hood (ML) estimator. Rather than accumulate the probabil-
ity from alternate paths, an ML estimator selects the single
best path. An ML algorithm for discrete states is the Viterbi
algorithm, which has been applied to TBD in [4]. The Viterbi

algorithm is a batch processor that finds the most likely se-
quence of states. One advantage of this is that it always pro-
duces an estimate consistent with the dynamic model: if the
transition model gives probability zero to the transition from
state 1 to state 3, then the Viterbi estimate will never contain
a transition from 1 to 3. In contrast, a MAP estimate may
contain such a transition. The next algorithm considered is
the Viterbi algorithm. The main difference between the al-
gorithm used here and that of Barniv is the extension of the
state space to include the possibility that there is no target.

The joint posterior probability of the sequence of states
x0 · · · xk is given by

p
(
x0 · · · xk | Zk

)∝ p
(
x0
) k∏

t=1

L
(
zt | xt

)
p
(
xt | xt−1

)
.

(14)

The Viterbi algorithm is a recursive scheme for maximising
the joint pdf above which has linear complexity in time (un-
like the size of the joint-state space, which is |X|k+1). Let
Ck(xk) denote the Viterbi cost metric, which is a normalised
measure of the log-likelihood of the most likely sequence
leading into state xk. As for the Bayesian algorithm, xk = ∅

denotes the case that there is no target. The previous state
in the most likely sequence leading into state xk is denoted
θk−1(xk). The algorithm proceeds as follows.

(1) Initialise C0(∅) = 0 and C0(x0) = −∞ for all other
states.

(2) For each scan k = 1 · · · kmax , the unnormalised cost
of the null state, c0

k , is given by

c0
k = max

xk−1

{
Ck−1

(
xk−1

)
+ log p

(
∅ | xk−1

)}
, (15)

which is used to define the normalised cost for all states

Ck
(
xk
) = logL

(
zt | xt

)

+ max
xk−1

{
Ck−1

(
xk−1

)
+ log p

(
xk | xk−1

)}− c0
k.

(16)

The previous state in the most likely sequence leading
to xk is given by

θk−1
(
xk
) = arg max

{
Ck−1

(
xk−1

)
+ log p

(
xk | xk−1

)}
.

(17)

(3) The estimated state sequence is found by backtracking

x̂k =
{

arg maxCk
(
xk
)
, k = kmax ,

θk
(
x̂k+1

)
, otherwise.

(18)

As for the Bayesian algorithm above, the discrete state
grids, Pd and Pb, are tuning parameters. The span of the state
space includes a null state, so the algorithm reports that no
target is present if the estimated state in (18) is the null state.

3.3. Particle filter

The particle filter used in this paper is based on the algorithm
derived in detail in [13]. Like the grid methods above, the

Samuel J. Davey et al. 5

state space is augmented with a null state to allow for auto-
matic track initiation. This algorithm uses terminology simi-
lar to that used for target detection with the probabilistic data
association filter [22, 26]. That is, a binary existence variable,
Ek, is defined such that Ek = 1→xk �=∅ and Ek = 0→xk = ∅.
The algorithm makes a direct approximation of the target-
state posterior p(xk | Ek = 1,Zk) and the existence probabil-
ity p(Ek | Zk). Reference [27] demonstrated that this model
is significantly more efficient than extending the state vector
with a binary existence state.

The algorithm proceeds by constructing two sets of par-
ticles. The first set, the birth particles, estimates p(xk | Ek =
1, Ek−1 = 0,Zk), that is the case where the target did not exist
in the data at time k−1 but does at time k. The second set, the
continuing particles, estimates p(xk | Ek = 1, Ek−1 = 1,Zk),
which is the case where the target has continued to exist in
the data from time k − 1 to k. Starting with a set of Nc parti-
cles {xik−1 | i = 1 · · ·Nc} describing the posterior target state
at time k − 1 and an estimate of the probability of existence
at time k − 1, P̂k−1, the algorithm consists of the following
steps.

(1) Create a set of Nb birth particles by placing the parti-
cles in the highest intensity cells [27]

x(b)i
k ∼q(xk | xk−1 = ∅, zk

)
. (19)

The unnormalised birth particle weights are calculated
using the likelihood ratio (9) and proposal density (19)

w̃(b)i
k =

L
(
zk | x(b)i

k

)
p
(
x(b)i
k | xk−1 = ∅

)

Nbq
(
x(b)i
k | xk−1 = ∅, zk

) . (20)

(2) Create a set of Nc continuing particles using the system
dynamics (2) as the proposal function, with weights

w̃(c)i
k = 1

Nc
L
(
zk | x(c)i

k

)
. (21)

(3) The mixing probabilities are calculated using sums of
unnormalised weights

M̃b = Pb
[
1− P̂k−1

] Nb∑

i=1

w̃(b)i
k ,

M̃c =
[
1− Pd

]
P̂k−1

Nc∑

i=1

w̃(c)i
k .

(22)

(4) The probability of existence at time k can also be cal-
culated in terms of unnormalised weights

P̂k = M̃b + M̃c

M̃b + M̃c + PdP̂k−1 +
[
1− Pb

][
1− P̂k−1

] . (23)

(5) The particle weights are normalised

ŵ(b)i
k = Pb

[
1− P̂k−1

]

M̃b + M̃c

w̃(b)i
k ,

ŵ(c)i
k =

[
1− Pd

]
P̂k−1

M̃b + M̃c

w̃(c)i
k .

(24)

The two sets of particles can then be combined into
one large set

{(
x(t)i
k , ŵ(t)i

k

)
| i = 1, . . . ,Nt, t = c, b

}
. (25)

(6) Resample from Nb + Nc down to Nc particles.

Thus after completing the above steps the particles, {xik | i =
1 · · ·Nc}, with uniform weights, approximate the posterior
target state density at time k, and P̂k is an estimate of the
probability of target existence.

The algorithm declares a target detected when the exis-
tence probability, that is, 1 − p(xk = ∅), is above a tun-
able threshold. The state estimate is then found by taking the
mean of the state vectors for each particle.

3.4. Histogram PMHT

The algorithms described so far are general numerical ap-
proximation techniques applied to the TBD problem. The fi-
nal algorithm is an approach specifically developed for TBD.
H-PMHT is derived by interpreting the sensor image as a
histogram of observations of an underlying random process.
The received energy in each cell is quantised, and the result-
ing integer is treated as a count of the number of measure-
ments that fell within that cell. The sum over all of the cells
is the total number of measurements taken. The probability
mass function for these discrete measurements is modelled
as a multinomial distribution where the probability mass for
each cell is the superposition of target and noise contribu-
tions. The H-PMHT data association process probabilisti-
cally assigns each individual quantum to the target and noise
models. For each model, the individual quanta and their as-
signment weights are combined to form a single synthetic
measurement and measurement covariance. These are then
used by a point-measurement-based estimator. For the spe-
cial case of linear Gaussian statistics, the synthetic measure-
ment is formed using a weighted arithmetic mean and a
Kalman filter can be used as the estimator. The quantisation
is an artificial process, and is removed by taking the limit as
the quantisation step size approaches zero.

The H-PMHT measurement model is slightly different to
the model in Section 2.2. Whereas Section 2.2 explicitly rep-
resents the target amplitude, H-PMHT uses a relative power
representation. In the H-PMHT model, the mean cell value
is given by

P
(i, j)
k =

M∑

m=0

πkmP
(i, j)
km , (26)

where πkm is the mixing proportion for model m at time k.
Model 0 quantifies the noise contribution, and there are M

targets. The cell contribution of model m, P
(i, j)
km , is the inte-

gral of the model measurement pdf over cell (i, j). The noise

is spatially uniform, so P
(i, j)
k0 = (αβ)−1, that is, one over the

number of cells. The target contribution is approximated as
a normal density function with variance Σ2 in both X and Y,

that is, P
(i, j)
km = N(i; xk,Σ2)N(j; yk,Σ2).

6 EURASIP Journal on Advances in Signal Processing

Existing tracks are updated using a recursive implemen-
tation of the H-PMHT algorithm. H-PMHT is an iterative al-
gorithm which alternates between data association and state
estimation. The state and mixing proportion estimates at the

pth iteration are denoted by x̂
(p)
km and π̂

(p)
km , respectively. The

algorithm is summarised as follows.

(1) Initialise estimates

x̂(0)
km = Fx̂(k−1)m,

π̂(0)
km = π̂(k−1)m.

(27)

(2) Calculate cell probabilities, P
(i, j)
km and P

(i, j)
k .

(3) Calculate cell-centroid, z̃
(i, j)
km = [x̃

(i, j)
km , ỹ

(i, j)
km]T , with

x̃
(i, j)
km = x̂

(p−1)
km + Σ2N

(
i− 1

2
; x̂

(p−1)
km ,Σ2

)

− Σ2N
(
i +

1
2

; x̂
(p−1)
km ,Σ2

)
,

ỹ
(i, j)
km = ŷ

(p−1)
km + Σ2N

(
j − 1

2
; ŷ

(p−1)
km ,Σ2

)

− Σ2N
(
j +

1
2

; ŷ
(p−1)
km ,Σ2

)
.

(28)

(4) Determine synthetic measurements and synthetic
measurement covariances (where I is the identity ma-
trix)

z̃
(p)
km =

∑
i

∑
j

[
z

(i, j)
k

(
P

(i, j)
km /P

(i, j)
k

)]
z̃

(i, j)
km

∑
i

∑
j

[
z

(i, j)
k

(
P

(i, j)
km /P

(i, j)
k

)] ,

R̃
(p)
km =

Σ2

π̂
(p−1)
km

∑
i

∑
j z

(i, j)
k

(
P

(i, j)
km /P

(i, j)
k

) I.
(29)

(5) Estimate mixing proportions

π̂
(p)
tm =

π̂
(p−1)
km

∑
i

∑
j z

(i, j)
k

(
P

(i, j)
km /P

(i, j)
k

)

∑M
l=0π̂

(p−1)
kl

∑
i

∑
j z

(i, j)
k

(
P

(i, j)
kl /P

(i, j)
k

) . (30)

(6) Estimate states using Kalman filters, the synthetic mea-
surements, and covariances.

(7) Repeat 2–6 until convergence.
(8) Estimate intensity

Îkm =
π̂km

∑
i

∑
j z

(i, j)
k

π̂k0
. (31)

Note that the theory demands that the convergence test
be based on the expectation-maximisation auxiliary function
associated with the algorithm (see [14]). However, in prac-
tice this function is costly to evaluate and only required for
the convergence test. Instead it is more practical to test for
convergence based on the estimates themselves. In the im-
plementation used for this paper, convergence is tested by
measuring the change in state estimates from one iteration
to the next.

The H-PMHT algorithm described above updates ex-
isting tracks, but does not provide a means for initiating

new tracks or terminating old tracks. A typical two-stage ap-
proach based on the method in [15] is used for this func-
tion. The tracker maintains two sets of tracks: established
tracks, that the tracker is confident corresponding to targets,
and tentative tracks, that the tracker is not confident in. The
established tracks are updated first, and they vet the sensor
data before it is presented to the tentative tracks. Similarly,
the tentative tracks vet the data before it is passed to a new
tentative track initiation stage. Established tracks are termi-
nated when the estimated intensity drops below a threshold
of −10 dB for two consecutive scans. Tentative tracks are ter-
minated when the estimated intensity drops below 0 dB for
two consecutive scans. Tentative tracks are promoted to es-
tablished tracks if the estimated intensity is greater than 0 dB
for more than three scans.

The tracks vet the sensor data following the method pro-
posed in [15]. This is done by scaling each cell based on the
tracker model

z
′(i, j)
k = z

(i, j)
k

1

αβP
(i, j)
k

. (32)

The result of the vetting process is a sensor image that is sup-
pressed in the location of the existing tracks, but unchanged
in other regions. New tentative tracks are formed by find-
ing peaks in the vetted data. When there are peaks within a
threshold distance in two consecutive scans, a new tentative
track is formed.

3.5. Algorithm tuning

Each of the algorithms has a number of different parame-
ters which need to be selected to ensure good performance.
It is of interest to characterise how algorithm performance
varies with these parameters. However, it is impractical to
investigate these characteristics in this article. For this arti-
cle, each algorithm has been tuned to give approximately the
same false alarm performance, and effort was made to opti-
mise the algorithm code for speed. A more detailed analysis
of algorithm performance as a function of various parame-
ters is currently being undertaken by the authors.

4. DETECTION PERFORMANCE

The performance of the various algorithms was investigated
by simulating a scenario with a single target. Since this study
is concerned with detection performance, only straight line
targets were considered. Various scenarios were constructed
by selecting a particular target speed and intensity. Each
scenario contained 20 scans. Table 1 summarises the differ-
ent parameters considered. For each scenario, one hundred
Monte Carlo trials were performed.

The algorithms which sample the state space on a fixed
grid may be affected by the position of the target relative to
the grid, that is, whether the target is close to a grid point
or mid way between them. In order to average over this po-
tential variation, the initial target position for each Monte
Carlo trial was randomly sampled from the range 2.5–3 inde-
pendently in X and Y. The target heading was also randomly

Samuel J. Davey et al. 7

Table 1: Scenario parameters.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12

speed (pixels/frame) 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

SNR (dB) 12 12 12 12 6 6 6 6 3 3 3 3

0

5

10

15

20

25

Y
p

os
it

io
n

0 5 10 15 20 25

X position

Figure 2: Example scenario, target speed = 1.

sampled from 0 degrees (East) to 45 degrees (North East).
Figure 2 shows an example of 20 Monte Carlo trials with a
speed of 1.

False track performance was quantified using a single re-
alisation of a scenario with no target present and 2000 scans.
The long duration was chosen to test whether the particle fil-
ter algorithm suffered from degeneracy.

Six metrics were used to measure performance as follows.

(1) Overall detection probability was defined as the frac-
tion of Monte Carlo trials for which the target was de-
tectedat any time.

(2) Instantaneous detection probability was defined as the
total fraction of frames for which the target was de-
tected.

(3) RMS position error was averaged over those frames
when the target was detected.

(4) False track count was the number of false tracks formed
in the no-target scenario.

(5) False track length was the average number of frames for
which these false tracks persist.

(6) Computation resource was the total CPU time re-
quired to evaluate all of the scenarios. This figure was
recorded both in seconds, and as a ratio compared
with the fastest algorithm.

The overall detection probability is shown in Figure 3,
the instantaneous detection probability in Figure 4, and the
RMS position error in Figure 5. In each of the figures, the
metric is plotted as a function of scenario number. The hor-
izontal (scenario) axis has two labels: the target speed for the
scenario is shown below the axis, and the SNR for the sce-

0.2

0.4

0.6

0.8

1

O
ve

ra
ll

de
te

ct
io

n
0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

Speed

12 dB 6 dB 3 dBSNR

H-PMHT
Particle

Bayes
Viterbi

Figure 3: Overall detection probability.

0.2

0.4

0.6

0.8

1

Pe
r

sc
an

pr
ob

ab
ili

ty
of

de
te

ct
io

n

0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

Speed

12 dB 6 dB 3 dBSNR

H-PMHT
Particle

Bayes
Viterbi

Figure 4: Average instantaneous detection probability.

nario is shown above the axis. Vertical dotted lines delineate
the scenarios with a particular SNR value.

Table 2 shows the false track count and the computation
resource. For comparison, a probabilistic data association fil-
ter with amplitude information (PDAF-AI) [28–30] was also
run on the false track scenario. PDAF-AI uses point mea-
surements and includes amplitude as a nonkinematic mea-
surement feature. The PDAF-AI algorithm was run assuming

8 EURASIP Journal on Advances in Signal Processing

0.2

0.4

0.6

R
M

S
er

ro
r

0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

Speed

12 dB 6 dB 3 dBSNR

H-PMHT
Particle

Bayes
Viterbi

Figure 5: RMS position estimation error.

a known target SNR and a detection threshold to give ninety
percent probability of detection for that SNR. The false track
performance at the SNR values of interest is shown in Table 2.
The false track performance of the PDAF-AI is clearly unac-
ceptable below 12 dB. For the 3 dB case, the rate of false tracks
is lower because the false tracks persist for much longer. The
other performance metrics were not considered for PDAF-AI
since the false track performance was so poor.

All of the TBD algorithms were able to easily detect tar-
gets at 12 dB, and they all detected every target. The H-
PMHT had a small delay in detecting some of the high speed
(2 pixels per frame) targets. These targets proved to be diffi-
cult for the H-PMHT algorithm because of the track initial-
isation method that it used. The algorithm formed tentative
tracks and then rejected or accepted the tentative tracks based
on the estimated power of the track. For this strategy to work,
the track formation logic must reliably form tentative tracks
close to the true target state. Two consecutive measurements
were used to initialise the tentative tracks, and the approach
gave poor speed initialisation. This degraded the H-PMHT’s
ability to detect high-speed targets.

For the 6 dB targets, in the centre region of Figures 3 and
4, the numerical approximation techniques continued to de-
tect almost all of the targets, but the H-PMHT only detected
about half of the high speed targets. The Viterbi algorithm
gave the best instantaneous detection result because it was
allowed to back-track. The H-PMHT also gave high instan-
taneous detection for the lower speed cases because the ten-
tative track history was included.

At 3 dB, all of the algorithms showed degraded detec-
tion performance and found less than half of the targets.
Again, the H-PMHT performed poorly for high speed tar-
gets. It may be counterintuitive that the Viterbi algorithm
performed generally worse than the other numerical approx-
imations. However, the smoothing it performs does not im-
prove overall detection performance. It improves state esti-

mation when the target is detected and allows the estimator
to back-track once the target has been detected, but it does
not increase the overall number of targets that are found.

The false track performance of all of the algorithms
is comparable, since this was a requirement of the al-
gorithm tuning. Thus, the overall conclusion is that the
numerical approximation techniques considered give sim-
ilar detection performance. If batch processing is accept-
able, then back-tracking can provide some improvement
in the percentage of time that a target is tracked. Note
that for batch processing, the Bayesian filter used here
could be replaced with a Baum-Welsh such as in [11].
The H-PMHT gave worse performance than the numer-
ical approaches when the target had high speed. How-
ever, this may be alleviated with an improved initialisation
scheme.

The RMS estimation error curves shown in Figure 5
shows an obvious trend. The error increases as the target
speed increases and as the amplitude is reduced. For all cases,
the H-PMHT error is significantly lower than particle filter
error, which is in turn better than the grid approximations.
The smoothing used in the Viterbi algorithm reduced the
RMS error a little over the Bayesian filter. As may be expected,
the error from the grid-based algorithms was approximately
half the grid size.

The computation resource required by the different al-
gorithms shows a more marked difference than the detection
performance. As Table 2 shows, the H-PMHT was more than
an order of magnitude faster than the particle filter, and more
than two orders of magnitude faster than the grid-based al-
gorithms. Significant effort was spent in optimising all of the
algorithms. For the H-PMHT, there was no specific compu-
tation bottleneck: both the association and filtering codes
took similar resource. In contrast, the numerical approxi-
mation algorithms were all limited by the likelihood calcula-
tions. These incurred the vast majority of the processing cost,
even though they used external library code. The H-PMHT
was much faster because it does not perform likelihood com-
putations.

In summary, the H-PMHT gave slightly worse detection
results than the other algorithms, but at a fraction of the
computation cost. Given that H-PMHT is already a multi-
target algorithm, whereas the others assume only a single tar-
get, the results here suggest that a robust initialisation scheme
would make it the algorithm of choice.

The results presented in this article have not addressed
some important issues. In particular, the grid spacing for the
Bayesian filter and the Viterbi algorithm was fixed at the sen-
sor resolution. Whether this is the best choice was not thor-
oughly investigated. However, anecdotal trials demonstrated
that doubling the grid resolution gave little improvement in
detection performance and marginal improvement in RMS
estimation error for four times the computation cost. Given
the already high cost for these algorithms, it was decided not
to pursue finer resolution at this stage. The number of parti-
cles in the particle filter is also a parameter that may be var-
ied. This was not explored in this comparison since earlier
work has demonstrated that reducing the number of parti-
cles degrades performance too much [24].

Samuel J. Davey et al. 9

Table 2: Algorithm performance.

Algorithm False number False length cpu time (s) cpu time (ratio)

H-PMHT 0 ∗ 420 1

particle 0 ∗ 16600 39

Bayes 0 ∗ 85600 204

Viterbi 11 2.27 88000 210

PDAF-AI (12 dB) 0 ∗ ∗ ∗
PDAF-AI (6 dB) 1412 145 ∗ ∗
PDAF-AI (3 dB) 1028 185 ∗ ∗

5. CONCLUSION

The detection performance of four alternative track-before-
detect algorithms has been investigated for a range of target
SNR values and speeds. For most of the scenarios the differ-
ence in detection performance was minor, except for targets
with high speed, which were not tracked well by H-PMHT.
Both of the grid-based algorithms were very costly in terms of
computation resource, whereas the particle filter was signif-
icantly faster. The H-PMHT was by far the fastest, requiring
two orders of magnitude less computation resource than the
grid-based algorithms. The difference in computation cost is
largely due to the cost of calculating the likelihood ratio of
the data: H-PMHT does not use the likelihood ratio, and the
particle filter calculates it over fewer points than the grid al-
gorithms.

The comparison also considered the RMS position es-
timation error of the algorithms, for which H-PMHT was
clearly the best. The two grid-based algorithms had an RMS
error approximately double that of H-PMHT, and the parti-
cle filter RMS error was part-way between.

The scenarios considered used only a single target,
whereas many practical situations required the detection of
multiple targets. The H-PMHT is a multitarget algorithm, so
is already capable of handling such a problem, but the other
algorithms require extension to the multitarget problem. Fu-
ture work is planned to consider multitarget detection and
tracking.

REFERENCES

[1] L. Rabiner and B. Jang, “An introduction to hidden markov
models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986.

[2] A. J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Transac-
tions on Information Theory, vol. 13, no. 2, pp. 260–269, 1967.

[3] S. C. Pohlig, “An algorithm for detection of moving optical
targets,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 25, no. 1, pp. 56–63, 1989.

[4] Y. Barniv, “Dynamic programming algorithm for detecting
dim moving targets,” in Multitarget-Multisensor Tracking: Ad-
vanced Applications, Y. Bar-Shalom, Ed., chapter 4, Artech
House, Norwood, Mass, USA, 1990.

[5] S. M. Tonbsen and Y. Bar-Shalom, “Maximum likelihood
track-before-detect with fluctuating target amplitude,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 34, no. 3,
pp. 796–809, 1998.

[6] L. D. Stone, C. A. Barlow, and T. L. Corwin, Bayesian Multiple
Target Tracking, Artech House, Norwood, Mass, USA, 1999.

[7] M. G. S. Bruno and J. M. F. Moura, “Multiframe detec-
tor/tracker: optimal performance,” Transactions on Aerospace
and Electronic Systems, vol. 37, no. 3, pp. 925–945, 2001.

[8] D. J. Salmond and H. Birch, “A particle filter for track-before-
detect,” in In Proceedings of the American Control Conference,
vol. 5, pp. 3755–3760, Arlington, Va, USA, June 2001.

[9] Y. Boers and J. N. Driessen, “Particle filter based detection for
tracking,” in Proceedings of the American Control Conference,
pp. 4393–4397, Arlington, Va, USA, June 2001.

[10] B. Ristic, S. Arulampalam, and N. J. Gordon, Beyond the
Kalman Filter: Particle Filters for Tracking Applications, Artech
House, 2004.

[11] M. G. S. Bruno, “Bayesian methods for multiaspect target
tracking in image sequences,” IEEE Transactions on Signal Pro-
cessing, vol. 52, no. 7, pp. 1848–1861, 2004.

[12] H. Driessen and Y. Boers, “An efficient particle filter for non-
linear jump Markov systems,” in Proceedings of the IEE Sem-
inar on Target Tracking: Algorithms and Applications, Sussex,
UK, March 2004.

[13] M. G. Rutten, N. J. Gordon, and S. Maskell, “Recursive track-
before-detect with target amplitude fluctuations,” IEE Proceed-
ings on Radar, Sonar and Navigation, vol. 152, no. 5, pp. 345–
322, 2005.

[14] R. L. Streit, “Tracking on intensity-modulated data streams,”
Tech. Rep. 11221, NUWC, Newport, RI, USA, May 2000.

[15] R. L. Streit, M. L. Graham, and M. J. Walsh, “Multitarget track-
ing of distributed targets using histogram-PMHT,” Digital Sig-
nal Processing, vol. 12, no. 2-3, pp. 394–404, 2002.

[16] C. Jauffret and Y. Bar-Shalom, “Track formation with bearing
and frequency measurements in clutter,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 26, no. 6, pp. 999–1010,
1990.

[17] T. Kirubarajan and Y. Bar-Shalom, “Low observable target
motion analysis using amplitude information,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 32, no. 4, pp.
1367–1384, 1996.

[18] W. R. Blanding, P. K. Willett, and Y. Bar-Shalom, “Off-line
and real-time methods for ML-PDA track validation,” IEEE
Transactions on Signal Processing, vol. 55, no. 5, pp. 1994–2006,
2007.

[19] W. R. Blanding, P. K. Willett, Y. Bar-Shalom, and R. S. Lynch,
“Directed subspace search ML-PDA with application to active
sonar tracking,” to appear in IEEE Transactions on Aerospace
and Electronic Systems.

[20] P. Willett and S. Coraluppi, “MLPDA and MLPMHT applied
to some MSTWG data,” in Proceedings of the 9th International
Conference on Information Fusion, July 2006.

10 EURASIP Journal on Advances in Signal Processing

[21] R. L. Streit and R. F. Barrett, “Frequency line tracking us-
ing hidden markov models,” IEEE Transactions on Acoustics,
Speach, and Signal Processing, vol. 38, no. 4, pp. 586–598, 1990.

[22] S. B. Colegrove, A. W. Davis, and J. K. Ayliffe, “Track ini-
tiation and nearest neighbours incorporated into probabilis-
tic data association,” Journal of Electrical and Electronics Engi-
neers, Australia, vol. 6, no. 3, pp. 191–198, 1986.

[23] S. J. Davey and D. A. Gray, “Integrated track maintenance
for the pmht via the hysteresis model,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 43, no. 1, pp. 93–111,
2007.

[24] S. J. Davey and M. G. Rutten, “A comparison of three algo-
rithms for tracking dim targets,” in Conference Proceedings of
Information, Decision, and Control (IDC ’07), pp. 342–347,
Adelaide, Australia, February 2007.

[25] M. I. Skolnik, Introduction to Radar Systems, McGraw-Hill,
3rd edition, 2001.

[26] D. Mušicki, R. Evans, and S. Stankovic, “Integrated probabilis-
tic data association,” IEEE Transactions on Automatic Control,
vol. 39, no. 6, pp. 1237–1240, 1994.

[27] M. G. Rutten, B. Ristic, and N. J. Gordon, “A comparison of
particle filters for recursive track-before-detect,” in Proceed-
ings of the 8th International Conference on Information Fusion,
vol. 1, pp. 169–175, Philadelphia, Pa, USA, July 2005.

[28] D. Lerro and Y. Bar-Shalom, “Automatic track formation with
target amplitude information,” in Proceedings of the Oceans
Conference Record (OCEANS ’91), vol. 3, pp. 1460–1467, Oc-
tober 1991.

[29] D. Lerro and Y. Bar-Shalom, “Comparison of tracking/asso-
ciation methods for low SNR targets,” in Proceedings of the
Oceans Conference Record (OCEANS ’92), pp. 443–448, Octo-
ber 1992.

[30] D. Lerro and Y. Bar-Shalom, “Interacting multiple model
tracking with target amplitude feature,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 29, no. 2, pp. 494–509,
1993.

	1. INTRODUCTION
	2. PROBLEM DEFINITION
	2.1. Target model
	2.2. Measurement model
	2.3. Likelihood ratio

	3. ALGORITHMS
	3.1. Bayesian estimator
	3.2. Dynamic programming
	3.3. Particle filter
	3.4. HistogramPMHT
	3.5. Algorithm tuning

	4. DETECTION PERFORMANCE
	5. CONCLUSION
	REFERENCES

