
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 386059, 12 pages
doi:10.1155/2008/386059

Research Article
Flexible Hardware-Based StereoMatching

Karina Ambrosch, 1 Wilfried Kubinger, 1 Martin Humenberger, 1a nd Andreas Steininger 2

1 Austrian Research Centers GmbH-ARC, 1220 Vienna, Austria
2 Institute of Computer Engineering, Vienna University of Technology, 1040 Vienna, Austria

Correspondence should be addressed to Karina Ambrosch, karina.ambrosch@psi.ch

Received 28 February 2008; Revised 5 June 2008; Accepted 20 November 2008

Recommended by Dragomir Milojevic

To enable adaptive stereo vision for hardware-based embedded stereo vision systems, we propose a novel technique for
implementing a flexible block size, disparity range, and frame rate. By reusing existing resources of a static architecture, rather
than dynamic reconfiguration, our technique is compatible with application specific integrated circuit (ASIC) as well as field
programmable gate array (FPGA) implementations. We present the corresponding block diagrams and their implementation in
our hardware-based stereo matching architecture. Furthermore, we show the impact of flexible stereo matching on the generated
disparity maps for the sum of absolute differences (SADs), rank, and census transform algorithms. Finally, we discuss the resource
usage and achievable performance when synthesized for an Altera Stratix II FPGA.

Copyright © 2008 Karina Ambrosch et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The deployment of autonomous systems mainly depends
on their capability to navigate in unfamiliar environments
as well as their object detection and classification abilities.
The main requirement for the implementation of these
two features is the availability of reliable three-dimensional
information.

A technique able to cope with these requirements is
stereo vision. Stereo vision uses two cameras side-by-side
and extracts the displacement of the objects caused by
the cameras’ different viewpoints. The displacement, called
disparity, is directly correlated to the distance of the objects,
which can be calculated easily using triangulation. This
way a three-dimensional depth map can be computed.
Unlike other techniques, the depth map computed by stereo
vision is typically centered on one of the cameras. Thus,
object classification tasks can enhance their recognition
performance by directly matching the depth map against the
intensity image produced by the camera.

Another feature of stereo vision is that in contrast to
other techniques, such as laser range finders, supersonic,
or radar sensors, stereo vision comes along without active
systems or movable mechanical parts.

Applications of stereo vision are not limited to common
robot navigation [1] or distant measures in laproscopic

surgeries [2]. They also include the use on autonomous
vehicles like at the DARPA grand challenge [3] or the deploy-
ment in the NASA/JPL Mars Exploration Rover mission
[4].

The core element of a stereo vision system, the stereo
matching algorithm, has a high computational complexity.
Fortunately, area-based algorithms, and box-filtering algo-
rithms in particular, proved to be very suitable for solutions
using hardware-based parallel processing [5], enabling the
implementation of real-time embedded stereo vision systems
with high frame rates.

Recent works reveal great advances in this field of
research. Woodfill et al. proposed the DeepSea application
specific integrated circuit (ASIC) [3], enabling the processing
of 512 × 480 images at a disparity range of 52 pixels, a
block size of 7 × 7, and a high frame rate of 200 fps. On
the other hand, Lee et al. [6] presented a system processing
640 × 480 images with a disparity range of 64 pixels at
30 fps using field programmable gate arrays (FPGAs), having
a considerably large block size of 32× 32 pixels. Then again,
the FPGA-based stereo vision system proposed by Perri et al.
[7] operates on 512×512 images, having a block size of 3×3,
a frame rate of 25.6 fps, and a large disparity range of 255
pixels.

Given the aforementioned applications, embedded stereo
vision systems are likely to operate in an environment that is

2 EURASIP Journal on Embedded Systems

subject to repeated changes. For instance, in the application
of robot navigation for domestic robots, the environment
of each room can be very different, demanding different
features for the algorithms. A tidy kitchen with unique col-
ored furniture usually has very sparse texture, and requires
a highly increased block size for the algorithm. Otherwise,
a typical teenager’s room can be pretty untidy, including a
high number of small objects spread over the room, which
could be unrecognizably blurred when using the same block
size as for the kitchen. Thus, as soon as the robot enters
this room, a smaller block size would be advisable. As the
robot has to interact with the furniture or handle single
objects, it also has to recognise them at close distances. In
these situations the stereo system should be able to recognise
close objects rather than operate at a high frame rate. On
the other hand, while the robot drives along the hallway,
the application of the stereo system could often be reduced
to collision avoidance. Here, neither the detection of close
objects nor the large block size would be required, rather a
high frame rate for covering distances in a speedy way. In any
case, even if each of the aforementioned systems implements
an algorithm with outstanding features, none of them is
able to adapt its features to the situation. For instance, if
the DeepSea’s high frame of 200 fps is not required for the
moment, there is no possibility for taking advantage of a
reduced frame rate, like an increase in disparity range or
block size.

This is caused by the fact that in contrast to software-
based implementations, hardware-based solutions cannot
easily change their behavior without deactivating parts of
their resources. Jacobi et al. [8] proposed a method to
dynamically reconfigure an FPGA for different block sizes
using a sum of absolute differences (SADs) algorithm.
Dynamically, reconfiguring an FPGA for different behavior
is surely a very elegant method, but it drastically increases
the complexity of the FPGA design and can only be
performed on specific FPGAs. The time needed for the
reconfiguration is related to the size of the reconfigured
chip area. This time span must not be disregarded for
the design of a real-time system that has to meet a hard
deadline.

Therefore, we propose a novel technique to adapt
block size, disparity range, and frame rate for hardware
implementations of area-based stereo matching algorithms.
This technique is suitable for FPGAs as well as ASICs,
that is, it comes along without dynamic reconfiguration,
enabling its implementation on real-time systems with short
deadlines.

In Section 2 we give an overview of stereo matching
algorithms. Section 3 presents our novel flexible hardware-
based stereo matching technique and describes the imple-
mentation for adapting the block size as well as the disparity
range. Then, we describe how a flexible frame rate follows.
The experimental evaluation of our technique is given in
Section 4. Here, we show a detailed presentation of our
hardware-based stereo matching architecture implementing
the proposed technique. Furthermore, we present the exper-
imental results along with a discussion on them. Our final
conclusions are revealed in Section 5.

2. STEREOMATCHING ALGORITHMS

2.1. Overview

Stereo matching algorithms are used to solve the correspon-
dence problem of a pair of camera images. They extract
the displacement of all objects and generate a disparity
map. Therefore, stereo matching algorithms search for the
correspondences in the stereo images using feature-, phase-,
or area-based matching to calculate the disparities in the
images. Feature-based matching searches for characteristics
in the images, like edges or curves [9], and calculates the
best matches according to their similarities. Phase-based
algorithms band pass filter the images and extract their
phase [10]. Area-based algorithms take blocks of pixels from
both images and calculate their matching costs. This can
be done in parallel for all analyzed pixels. When using a
constant block size over the whole image, called box filtering
[11], these algorithms are especially amenable to parallel and
hardware-based solutions.

Color information can be used to improve the matching
performance significantly [12]. However, the required hard-
ware resources for processing color images with area-based
algorithms on embedded real-time systems are still very high.
To keep the focus on algorithms that are suitable for state-of-
the-art hardware, we use gray-scale images only.

Based on the stereo taxonomy by Scharstein and Szeliski
[11], most area-based algorithms start the matching proce-
dure by applying a neighborhood transformation function
T on the primary I1 and secondary I2 stereo image, with a
defined block size st , to achieve better results. When using
x and y for the neighborhood region’s center pixel, the
transformed images’ pixel values t1/2x,y are defined as

t1/2x,y = T
(
I1/2, x, y, st

)
. (1)

Afterwards, the matching costs cx,y,d of the transformed
images are calculated for each pixel x, y using the matching
costs function C. This is performed for all disparity levels d
that are within the disparity range

cx,y,d = C
(
t1x,y , t2x+d,y

)
. (2)

Then, the matching costs are aggregated over a defined block
size sa for each disparity level. The aggregated matching costs
ax,y,d are defined as

ax,y,d =
∑

n

∑

m

cx+m,y+n,d, (3)

where

n,m ∈
[
− sa − 1

2
,
sa − 1

2

]
. (4)

The matching procedure’s total block size sb is the sum
of the transformation function and the aggregation’s block
sizes st and sa. Finally, the most accurate matching costs
have to be searched for. Their position defines the resulting
disparity map’s pixel value dmapx,y

. In our work, this search
is always defined as the search for the absolute minimum

Karina Ambrosch et al. 3

matching costs value, also called the winner takes all (WTA)
algorithm, which has a low complexity when implemented as
a very large scale integration (VLSI) circuit [13]. Here, dmax

is the maximum value of the disparity range and dmin is the
start value for the search, being 0 if the image background is
searched for as well

dmapx,y
= n | ax,y,n

= min
(
ax,y,dmin , ax,y,dmin+1, . . . , ax,y,dmax

)
.

(5)

For easing our descriptions we will assume dmin = 0 in
the following, without loss of generality.

When using area-based matching in poorly textured
environments, the quality of the disparity map depends
mainly on the total block size sb. Otherwise, a large block
size leads to a deformation of the image object edges [14]
and high computational costs. Thus, the quality of the
disparity maps benefits from algorithms that are able to
adapt the block size to the texture coarseness in the images,
for example, by increasing the transformation block size st or
the aggregation’s sa.

For the description and the analysis of our flexible stereo
matching technique, we focus on three stereo matching
algorithms, that are suitable for hardware-based imple-
mentations. These are the SAD, the rank transform, and
the census transform. For these algorithms we examined
the achieved disparity map quality as well as the resource
usage, when implementing the proposed technique using
our hardware-based stereo matching architecture. Other
common algorithms, like the sum of squared differences
(SSDs) or the normalized cross correlation (NCC) are not
analyzed, since they are well known for having too high
resource usage when implemented on hardware [5].

2.2. Sum of absolute differences

SAD [15] is a simple and popular algorithm for FPGA- or
ASIC-based stereo matching. One of the early implementa-
tions is [16], while there exist various recent implementa-
tions as well [8, 17–20].

SAD is an area-based algorithm that gets along without
a transformation function, which reduces its resource usage
when implemented in hardware. Its cost function Cad is the
absolute difference of the pixel values

Cad
(
t1x,y , t2x+d,y

) = ∣∣t1x,y − t2x+d,y

∣
∣. (6)

2.3. Rank transform

The rank transform, originally proposed by Zabih and
Woodfill [21], and more recently used by Banks and
Bennamoun [22], is an algorithm that is very robust to
local brightness variations [23]. It is very suitable for
hardware implementations as shown in [24], where an FPGA
implementation for the application of target tracking is used,
which is quite similar to finding correspondences in stereo
vision. However, it is rarely used for stereo matching. One of
its implementations for stereo matching is shown in [5].

The transformation function of the rank transform Trank

is the number of pixels in a local neighborhood region N ,

having the dimensions of the block size st, with a smaller
intensity value than the center pixel’s value I1/2(x, y)

Trank
(
I1/2, x, y, st

)

= ∥∥{n,m ∈ N | I1/2(n,m) < I1/2(x, y)
}∥∥.

(7)

The cost function is the absolute difference (6) as used in
the SAD algorithm.

2.4. Census transform

The census transform [21], an algorithm with even higher
robustness than the rank transform [25], is often used in
hardware implementations because it offers a good tradeoff
between resource usage and quality. Some of the earlier
implementations on FPGAs are [26, 27]. More recently, the
census transform has been used for ASIC implementations
in [3, 28].

The transformation consists of a comparison function ξ,
which is used to compare the center pixel’s value i1 with the
pixel intensity values i2 in the neighborhood region N ,

ξ
(
i1, i2

) =
⎧
⎨

⎩

1 | i1 > i2,

0 | i1 ≤ i2.
(8)

Its result, 1 if the center pixel is larger, and otherwise
0, is then concatenated (

⊗
) to a bit vector. Thus, the

transformation function Tcensus is defined as

Tcensus
(
I1/2, x, y, st

)

=
�

[n,m]∈N
ξ
[
I1/2(x, y), I1/2(n,m)

]
. (9)

The cost function Ccensus is defined as the hamming
distance over the bit vectors

Ccensus
(
t1x,y , t2x+d,y

) = hdist
(
t1x,y , t2x+d,y

)
. (10)

3. FLEXIBLE HARDWARE-BASED STEREOMATCHING

3.1. Flexible disparity range

To enable the disparity range’s flexible calculation we split
it into r partitions with dr pixels and compute every single
partition separately as depicted in Figure 1. That is, for each
image line, r matching rounds are performed. The position
of the partition’s best match and its aggregated matching
costs are stored in memory. Once all partitions are computed,
the stored results are searched for the partition with the
smallest matching value and its position value is selected as
the resulting disparity. Thus, the disparity search is redefined
as

dmapx,y
= n | ax,y,n

= min
[
min

(
ax,y,0, . . . , ax,y,dr−1

)
, . . . ,

min
(
ax,y,(r−1)·dr , . . . , ax,y,r·dr−1

)]
.

(11)

Using (11) for the disparity search, the maximum
disparity dmax is defined by

dmax = r·dr − 1. (12)

4 EURASIP Journal on Embedded Systems

dmax

dr dr

Valuemin, positionmin · · · · · · valuemin, positionmin

Positionmin

1 1 1 1 1 2 2 2 · · · r − 1 r − 1 r − 1 r r r r r

Figure 1: Disparity range split into r partitions.

Now the flexible disparity range is achieved by varying
the number of calculation rounds r. The highest possible
disparity range is only limited by the memory used to store
the calculation rounds’ interim values, that is, the position
and costs of the best match for each pixel in the current
round.

The key to a well-performing implementation is to
pipeline the whole calculation. Pipelines enable a highly
parallel execution but also require initialization times at
the start of computation. The reason for computing one
line per round, instead of one pixel per round, is to keep
these pipeline initializations to a minimum. The price for
this performance increase is a greater demand for memory,
because the interim values, that is, the partitions’ minimum
values and positions, of the whole line need to be stored
before the global minimum can be searched for.

Figure 2 presents the block diagram for the two-staged
implementation of our round-based calculation technique.

The calculation of the partitions’ interim values forms
the first stage of the circuit. Here, the data of the stereo
images are provided in the chip’s internal memory. The
stereo matching circuit reads the image data from the
memory and calculates the matching costs for the disparity
range partition of the current round only. Then the matching
costs’ minimum value is searched for. The selected minimum
value and its position are stored in the internal memory. For
better support of the memory architecture within FPGAs,
which memory blocks have a fixed size and position on the
chip surface, we use two separate blocks of memory for the
matching costs’ value and position. This way, merging single
memory blocks with different positions on the chip can be
avoided, or at least kept at a minimum. For each calculation
round, the interim values are stored in a different pair of
memory blocks. The current memory block is selected using
a demultiplexer that has the calculation round counter as the
input.

After all r calculation rounds have been performed, the
final disparity value can be searched for by the extraction
stage. Here, the pairs of block memory holding the interim
values are accessed using a multiplexer that has the extraction
round counter as the input. Once the last partition value
has been analyzed, the smallest value’s position is read and
selected as the final disparity value.

For better resource utilization, we suggest duplicating the
interim values’ memory and assigning one set of memory to

each stage, separating the two computations. By switching
the assignment of the memory sets after each computed line,
the disparity can be extracted for the previous line while
the next interim values are calculated for the current line.
This way, the two computations can be performed in parallel,
resulting in a two-staged macropipeline. Figure 3 shows the
pipelined circuit, where the assignment of the memory sets
is performed by connecting it to the calculation stage using
a de-multiplexer and a multiplexer for the extraction stage.
The assignment of the sets is performed using the line
counters’ least significant bit (LSB) and negating it for the
extraction stage.

3.2. Flexible block sizes

For the resource-efficient implementation of a flexible block
size it is necessary to reuse the computation blocks, changing
mostly the interconnects only, rather than switching between
different computation blocks for each block size or deacti-
vating large parts of them. To reuse a computation block for
a larger block size, it is necessary that the computation can
be split into two or more smaller functions similar to the
predefined, using different input parameters. The results of
these functions have to be merged afterwards. For a reuse of
resources it must be guaranteed that the further computation
is performed in the same way as for the smaller block size.

The transformation function (1) has the block size as
a parameter and is therefore suitable for a deeper analysis.
It seems possible to use two transformation functions
and merge the results for the neighboring blocks, but the
transformation function is not defined in general. Examining
our three presented algorithms, for the rank transform an
aggregation would apply as a merging function, while for the
census transform the bitstream had to be merged. The SAD
algorithm does not even have a transformation function.
This leads to the conclusion that it is not possible to define a
generic function for merging the transformation function’s
results and a technique that reuses the transformation
function blocks would be restricted to specific algorithms.

The cost function (2) does not have the block size as a
parameter and therefore does not directly correspond to it.

The aggregation function (3) is similar for all area-based
algorithms [11]. Using a larger block size for the aggregation
function leads directly to a higher number of matching
cost summations. When the larger block size’s number of
summations is a multiple of a smaller one, the aggregation

Karina Ambrosch et al. 5

IM
G

2
IM

G
1

Stereo
matching

Minimum
search

D
E

M
U

X
D

E
M

U
X

C
al

cu
la

ti
on

ro
u

n
d

C
al

cu
la

ti
on

ro
u

n
d

Calculation stage Extraction stage

E
xt

ra
ct

io
n

ro
u

n
d

E
xt

ra
ct

io
n

ro
u

n
d

M
U

X
M

U
X

Minimum
search

Disparity

Partition 1
positions

Partition 1
values

Partition 0
positions

Partition 0
values

Internal memory

Figure 2: Round-based disparity calculation.

IM
G

2
IM

G
2

Calculation
stage

Internal memory

Disparity

Line counter

D
E

M
U

X

M
U

X Extraction
stage

Partition 0
values

Partition 0
values

Partition 0
positions

Partition 0
positions

Memory set A

Memory set B

LSB

...

...

Figure 3: Pipelined disparity calculation.

blocks can be reused, having different input parameters.
Equation (13) shows the new aggregation function for a
horizontal enlargement of the aggregation block size from
sasmall to salarge :

alargex,y,d =
∑

n

∑

m1

cx+m1,y+n,d + · · · +
∑

n

∑

mk

cx+mk ,y+n,d, (13)

where

n ∈
[
− sa − 1

2
,
sa − 1

2

]
,

ml ∈
[
− salarge − 1

2
+ (l − 1)sasmall ,−

salarge − 1

2
+ l·sasmall − 1

]
,

(14)

k is the block size multiplication factor, and alargex,y,d are the
aggregated matching costs when using the enlarged block
size.

As can be seen, the new aggregation function’s sub-
aggregations are similar to the original one in (3), with
the exception that the boundaries are calculated differently.
This results in the requirement for different inputs for the
aggregation blocks.

The input parameters of the aggregation function are
delivered by the cost function. Thus, switching the input
parameters has to be performed before the cost function.

The results of the small aggregation units can be
merged by k − 1 summations, when using the larger block
size. Additionally, the input and output values have to be
switched, except for the input of the primary image for the
first cost function of each larger block, which always stays
the same. This leads to 3·k − 1 required additional k-input
multiplexers.

Figure 4 shows the block diagram for the implementa-
tion, using k = 2. Here, the data of the transformed stereo

6 EURASIP Journal on Embedded Systems

images are supplied in the chip’s registers. These registers
have to be shifted when switching to the next pixel’s compu-
tation. For refilling the resulting emptied registers, the next
pixels’ transformation has to be performed preliminarily.
The inputs of the cost functions and the outputs of the
aggregation blocks are switched using multiplexers, which
have the selected block size as the input.

When the smaller block size is selected, that is, the
multiplexer’s input 0 is selected, the even cost functions and
aggregation blocks are connected, calculating the matching
costs for the even disparity levels. Likewise, the odd cost
functions and their aggregation blocks are connected for
calculating the costs for the odd disparity levels.

As soon as the larger block size is selected, that is,
the multiplexers’ input 1 is selected, the even and the
odd aggregation blocks, as well as the corresponding cost
functions, are combined for calculating the same disparity
level together. Now, the even part is used to calculate the left
part of the larger block and the odd part calculates the right
part. Both aggregation blocks’ results are merged by a single
summation and output as the even aggregation block’s result.
The odd aggregation block does not output a valid result in
this situation. Therefore, its output is set to a higher value
than the maximum achievable matching costs, for example,
the maximum value plus one. This way, the WTA algorithm
is forced to ignore these results, since the even aggregation
block’s valid results are by definition smaller. In any case, the
output position of the WTA algorithm is now scaled by two
and has to be adjusted by cutting off its LSB, dividing it by
two.

The enhancement of the block size goes along with a
reduction of the calculated disparity levels per calculation
round. That is, the partition size dr is divided by k. To ensure
a constant disparity range, the number of calculation rounds
has to be increased by the same factor. This leads to a lower
frame rate of the stereo matching algorithm, when using the
larger block size.

3.3. Flexible frame rate

The flexibility of the frame rate results from using a flexible
disparity range and block size. When the demand for a higher
frame rate exists (e.g., the robot operates at higher speed)
the disparity range and the block size of the stereo matching
algorithm can be reduced to ensure a shorter processing time.

Thus, the present frame rate of the system in fps is
defined as

fps·dmax + 1
dr

∼const, (15)

where

dr = drmax·
1
kakt

, (16)

kakt is the currently selected block size multiplication factor,
and drmax is the achievable disparity per round when kakt = 1.
The constant factor in (15) depends on the processing speed
of the implemented design.

4. EXPERIMENTAL EVALUATION

4.1. Evaluation architecture

To evaluate the performance of our flexible stereo matching
technique, we implemented a generic hardware-based stereo
matching architecture that is suitable for different area-based
matching algorithms.

Our architecture consists of three major pipeline stages as
depicted in Figure 5, which are capable of working in parallel
after a primary initialization and synchronization phase.
These three pipeline stages are the input, the calculation, and
the extraction stage. The interfaces between those stages are
formed by memory blocks, each holding a full image line.

The application of our hardware-based stereo matching
architecture includes robot navigation. This task requires
the constant collection of data about the surrounding
background to enable the localization of the robot’s position.
Thus, for the implementation of our architecture we assume
that the disparity range has a fixed minimum value of dmin =
0 and therefore the background of the images is always
searched for as well.

Furthermore, for the last dmax pixels, there would be
insufficient image data available in the secondary image to
perform the matching for the whole disparity range. Since
this would lead to border effects in the disparity map, we do
not waste resources on the matching of this image region and
simply stop the calculation at this point. Thus, the output
disparity map’s image width is reduced by dmax pixels. Also,
the border regions of the image that would have border
effects caused by the total block size sb are not processed.
These are the first and the last (sb − 1)/2 image lines as well
as the lines’ first and last (sb − 1)/2 pixels.

For a less complex implementation, we assume that the
images used for the matching procedure are rectified [29]
by an additional preprocessing stage. Thus, the search for
correspondences is limited to the image lines.

The first stage of our architecture is the input stage. It
reads the incoming image data from the input port and stores
it in the internal memory. Here, we use one memory block
for each single image line. The number of stored lines is
defined by the total block size sb plus one additional line to
enable the implementation of a cyclic memory. This way, the
input stage can access one memory block in write mode while
the calculation stage reads the others, ensuring maximum
independence of each stage.

The calculation stage performs the round-based match-
ing as soon as the input stage has stored the first sb image
lines. It reads the image data necessary to perform the next
pixel’s matching from the memory. If the algorithm used
consists of a transformation, the pixels are transformed
instantly and stored at the end in the image buffer. This image
buffer holds the transformed values for the following cost
function. It has a height of sa pixels, which is the aggregation
block size, and a width of dr + sa pixels. This image buffer is
shifted by one pixel column after each pixel’s computation,
that is, at each clock cycle. Then our flexible block matching
technique is applied as described in Section 3.2. The resulting
aggregated matching costs of the current disparity partition

Karina Ambrosch et al. 7

MUX
0 1

MUX
0 1

MUX
0 1

MUX
0 1

MUX
0 1

Image 1 transformed Image 2 transformed

Even
aggregation

block
aggregation

block

Cost
function

Cost
function

 Block size Block size

Block

Odd

Registers

size
Block
size

Block
size

2n pixels

+

Result n Result n + 1

Max value +1

Figure 4: Flexible block size using k = 2.

Shift Shift

stage

Internal memory

Image 2 line 2

Image 1 line 2

Image 2 line 1

Image 1 line 1
Input port

Output port

management

Transformation Transformation

Flexible
 block

matching
WTAWTA

positions

Calculation stage Extraction stage

Partition1b
values

Partition1a
values

Partition 0b

Partition 0b

positions
Partition 0a

values

Partition 0a
values

Image buffer 1 Image buffer 2

Registers

Input

Input

management
Image buffer

Figure 5: Evaluation architecture.

are the input for the following WTA algorithm. This WTA
algorithm is implemented as a binary search tree as shown
in Figure 6 and therefore fully pipelined. It outputs the
minimum value and its position. Both are stored in the
interface memory.

The pipelined implementation of the calculation stage
results in a processing time of one clock cycle per pixel as
soon as the pipeline is filled. Depending on the algorithm
implemented and the partition size, this initialization time
tinit−calc varies between 50 and 70 clock cycles for each

calculation round. Thus, the computation time of one image
line is r·(image width− dmax − sb + 1 + tinit-calc) clock cycles.

As described in Section 3.1, the interface between the
calculation and the extraction stage is formed by two sets
of memory blocks, which are switched between the stages.
Hence, there exist two pairs of memory blocks for each
round’s interim values, namely a and b in Figure 5.

The extraction stage reads the results of all matching
rounds and again selects the best match by using the WTA
algorithm. Here, the WTA is implemented in series. Thus,

8 EURASIP Journal on Embedded Systems

Block
sum

Block
sum

Block
sum

Block
sum

Block
sum

Block
sum

Select
smallest

block

Select
smallest

block

Select
smallest

block

Select
smallest

block

Select
smallest

block

Select
smallest

block

Disparity

Position

Position

PositionValue

Value

value, position

Position Value

Value Position Value

xn,d1 xn,d2 xn,d3 xn,d4 xn,dr−1 xn,dr

dn

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

St
ag

e
m

St
ag

e
1

St
ag

e
2

Figure 6: Tree-based WTA.

(a) (b)

(c)

Figure 7: Teddy images from the Middlebury dataset. (a), (b):
camera images; (c): ground truth image.

the value and position of just one round is evaluated per
clock cycle and the minimum value stored in the registers.
When evaluating the pixel’s last round, either the stored

position or the current round’s position is set on the output
port as the resulting disparity. The serial implementation
of the WTA algorithm is more resource aware than the
parallel one of the calculation stage. The extraction stage
needs to be initialized only once per line, in contrast to
the calculation stage, which has to be initialized r times
per line. Furthermore, the pipeline of the extraction stage
is much shorter than that of the calculation stage, having
an initialization time tinit-extr of two to five clock cycles,
depending on the chip’s memory access delay. Thus, the
extraction stage takes tinit-extr +r·(image width−dmax−sb+1)
clock cycles per image line, which is less than the calculation
stage’s computation time.

The total processing time of the architecture is given by
the time to read the first sb image lines, the processing time of
the calculation stage for the following image height − sb + 1
image lines, and the extraction stage for the very last image
line.

4.2. Test configuration

We evaluated our algorithms using the teddy images, illus-
trated in Figure 7, from the Middlebury stereo dataset [30],
since this image set offers high- as well as low-textured
surfaces. This image set has a resolution of 450 × 375, a
maximum disparity of 60 and is converted to 8-bit gray
scale. The ground truth of these images, which is defined as

Karina Ambrosch et al. 9

SA
D

R
an

k
tr

an
sf

or
m

C
en

su
s

tr
an

sf
or

m

Logic elements

106658

9319

71870

Figure 8: Required logic elements of the algorithms.

0

20

40

60

80

100

120

140

D
is

pa
ri

ty
ra

n
ge

(p
ix

el
s)

136 170 227 338 666

Frame rate (fps)

120

96

72

48

24
12

24
36

48
60

9× 9
9× 18/9× 12

Figure 9: Frame rate vesus disparity range for block sizes sb =
9 × 9, 9 × 18 for SAD and 9 × 12 for rank and census transform,
respectively.

the measured reference disparity map, is scaled by factor of
4. Thus, we also scaled our disparity maps this way to ensure
a comparable result.

For the block size multiplication factor we used k = 2,
since we expect that doubling the horizontal block size will
be the most typical application. The disparity range was 120
to avoid distortions caused by a too small disparity range for
both block sizes. We used a round size of 5, resulting in a
partition size of 24 disparity levels per calculation round.

To demonstrate the need for a flexible disparity range,
we also evaluated the image sets using a disparity range of
60. With the larger block size, this resulted in an effective
disparity range of 30, which is half of the maximum disparity
in the image sets.

The SAD algorithm was configured to sb = 9 × 9 for the
smaller and sb = 9 × 18 for the larger block size. The rank
and census transform also used sb = 9 × 9, distributed to
st = 7 × 7 for the transformation and sa = 3 × 3 for the
aggregation, leading to sa = 3 × 6 and sb = 9 × 12 for the
larger block size.

To evaluate the algorithms’ quality, we performed a
left/right consistency check and calculated the root mean
square (RMS) over the deviations to the ground truth image
as well as the found pixels and correct matches, which are
within a maximum deviation of one pixel.

Sum of absolute differences

B
lo

ck
si

ze
9
×

9
B

lo
ck

si
ze

9
×

18

RMS
Matches (%)
Found (%)

82.34

61.12

15.92

82.35

58.09

14.08

Rank transform

B
lo

ck
si

ze
9
×

9
B

lo
ck

si
ze

9
×

12

RMS
Matches (%)
Found (%)

48.92

38.13

28.77

80.24

66.27

14.01

Census transform

B
lo

ck
si

ze
9
×

9
B

lo
ck

si
ze

9
×

12

RMS
Matches (%)
Found (%)

84.42

69.38

11.06

95.99

79.85

9.43

Figure 10: Evaluated algorithm quality for block sizes sb = 9 ×
9, 9 × 18 for SAD, and 9 × 12 for rank and census transform,
respectively.

4.3. Experimental results

We synthesized the implemented algorithms for an Altera
EP2S130 with Altera Quartus II in order to analyze the
algorithm’s resource usage. All of them had a total memory
consumption of 425 984 bits. Here, the image memory
requires 81 920 bits for storing 10 lines for both images.
Furthermore, storing the interim position requires 114 688

10 EURASIP Journal on Embedded Systems

SAD

Rank transform

Census transform

Figure 11: Disparity maps generated from the Middlebury dataset’s
teddy images. Left: block size sb = 9× 9; right: block size 9× 18 for
SAD, and 9× 12 for rank and census transform, respectively.

memory bits and storing the 16-bit matching cost values
requires 229 376 memory bits.

The algorithms’ logic consumption in terms of logic
elements is presented in Figure 8. The results show the
highest values for the SAD algorithm due to its high number
of aggregations, while the census transform requires slightly
less logic. The rank transform has by far the smallest logic
requirements, being 3.7 times smaller than that of the census
transform. This is the reason, why the rank transform is of
special interest for low-cost embedded stereo vision systems,
even if it is well known that the census transform is the more
robust algorithm [25].

Figure 9 reveals the disparity range versus the achieved
frame rate for both block sizes using our flexible technique.
As can be seen, the system is able to select the algorithm’s
features as required out of a disparity range between 12 and
120 pixels, a frame rate ranging from 136 fps to 666 fps, and a
total block size of either 9×9 or 9×18 for SAD and 9×12 for
the rank and census transform. As defined by (15), the frame

SA
D

R
an

k
C

en
su

s

RMS
Matches (%)
Found (%)

80.7

37.87

25.64

48.83

24.24

38.66

40.36

19.77

29.61

Figure 12: Evaluated algorithm quality with d = 30 and block
size 9 × 18 for SAD and 9 × 12 for rank and census transform,
respectively.

(a) (b)

(c)

Figure 13: Disparity maps with d = 30 and block size 9 × 18 for
SAD and 9 × 12 for rank and census transform, respectively. (a):
SAD; (b): rank transform; (c): census transform.

rate times the number of calculation rounds ((dmax + 1)/dr)
is nearly a constant. This shows that the static initialization
times of our architecture, like filling the image memory or
the final examination of the last image line, are negligible
compared to the time required for the computation itself.
Finally, it is illustrated that the disparity range can be easily
doubled by selecting the smaller block size of sb = 9× 9.

Karina Ambrosch et al. 11

Our architecture produces 330×375 disparity maps with
120 disparity levels at 136 fps, which makes a total amount
of about 2 billion disparity calculations per second. The
DeepSea ASIC [31], producing 512 × 480 disparity maps
with 52 disparity levels at 200 fps, has a total of 2.55 billion
disparity calculations per second. Thus, our FPGA-based
stereo architecture is just 22% slower than this ASIC-based
solution, while having a 65% times larger total block size of
9× 9 rather than 7× 7.

Kuon and Rose [32] evaluated the achievable perfor-
mance gain when moving from an FPGA to an ASIC. For
FPGA designs making use of the internal block memory,
they revealed a performance gain factor between 2.8 and 4.3,
being 3.5 on average, when implementing the same design as
an ASIC. This further outlines the potential of our flexible
stereo matching technique, since it would outperform the
DeepSea ASIC implementation by a minimum factor of 2.2
when implemented on the same platform, while offering the
advantages of an adjustable stereo algorithm.

The time span to reconfigure the algorithm to a new
feature set is one clock cycle. This reconfiguration is incor-
porated into the architecture’s state change cycle that takes
place before each frame is processed. Thus, no measurable
reconfiguration time is required for adapting the algorithm’s
features.

The achieved RMS, found pixels, and correct matches
of each algorithm on the teddy images are presented in
Figure 10. The disparity maps are shown in Figure 11.
Image areas, in which our architecture did not calculate
the disparity in order to avoid border effects, are black and
disregarded for the evaluation.

Both, the measurements and the depicted disparity maps
show a great advantage in quality for the disparity maps from
the rank and census transform when using the larger block
size. This shows, that our technique also improves the quality
of the output disparity maps, even if the block size of the
transforms is constant and only the aggregation is enlarged.
The SAD algorithm has an improved RMS at the larger block
size, but the number of correct matches is slightly decreased.
The disparity maps show that in this specific configuration,
the house’s roof in the teddy image contains noticeably more
information for the larger block size, while the deformations
caused by the block size in the rest of the image outweigh this
advantage.

The measured quality for the insufficient disparity range
is presented in Figure 12 and the corresponding disparity
maps in Figure 13. It is noticeable that the reduced disparity
range highly reduces the number of found and correct
matches and increases the RMS. This further emphasizes the
need for a correct adjustment of the disparity range.

5. CONCLUSIONS

The proposed flexible hardware-based stereo matching tech-
nique gives the ability to adapt the algorithm to varying
application driven demands and therefore to ensure a
highly accurate disparity map in real-time embedded stereo
vision systems even under changing conditions. The flexible
disparity range gives the opportunity to dynamically balance

the detection of close objects against the frame rate. The
opportunity to balance the disparity map’s noise against the
frame rate is assured by a flexible block size.

Our experimental evaluation of the presented technique
shows a good response of the increased block size on
low-textured surfaces for all algorithms, even if the trans-
formation block size remains constant. In particular, the
rank transform denotes good performance when a resource-
aware implementation is demanded. Using our hardware-
based stereo matching architecture, the census transform
has the best overall quality. We pointed out that a correct
disparity range is essential for a high-quality disparity
map, which is easily achievable using our novel flexible
technique. Due to the basic principle of our technique,
only small amounts of additional memory, multiplexers, and
summations are required, while remaining consistent with
ASIC implementations by avoiding dynamic reconfigura-
tion.

We compared our flexible stereo matching architecture
with a well-known ASIC implementation, outlining the
high performance of our architecture. Finally, we revealed
the even higher potential of our flexible stereo matching
technique when implemented on ASICs.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Sixth Framework Pro-
gramme (FP6/2003-2006) under Grant agreement no. FP6-
2006-IST-6-045350 (robots@home).

REFERENCES

[1] L. Mingxiang and J. Yunde, “Stereo vision system on pro-
grammable chip (SVSoC) for small robot navigation,” in
Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’06), pp. 1359–1365, Beijing, China,
October 2006.

[2] A. Naoulou, J.-L. Boizard, J. Y. Fourniols, and M. Devy, “A 3D
real-time vision system based on passive stereo vision algo-
rithms: application to laparoscopic surgical manipulations,” in
Proceedings of the 2nd International Conference on Information
and Communication Technologies (ICTTA ’06), vol. 1, pp.
1068–1073, Damascus, Syria, April 2006.

[3] J. I. Woodfill, G. Gordon, and R. Buck, “The Tyzx DeepSea
high speed stereo vision system,” in Proceedings of the Confer-
ence on Computer Vision and Pattern Recoginition Workshop
(CVPR ’04), vol. 3, p. 41, Washington, DC, USA, June-July
2004.

[4] L. Matthies, M. Maimone, A. Johnson, et al., “Computer
vision on Mars,” International Journal of Computer Vision, vol.
75, no. 1, pp. 67–92, 2007.

[5] R. B. Porter and N. W. Bergmann, “A generic implementation
framework for FPGA based stereo matching,” in Proceedings
of IEEE Region 10 Annual International Conference on Speech
and Image Technologies for Computing and Telecommunications
(TENCON ’97), vol. 2, pp. 461–464, Brisbane, Australia,
December 1997.

[6] S. H. Lee, J. Yi, and J. S. Kim, “Real-time stereo vision on a
reconfigurable system,” in Proceedings of the 5th International

12 EURASIP Journal on Embedded Systems

Workshop on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS ’05), vol. 3553 of Lecture Notes
in Computer Science, pp. 299–307, Samos, Greece, July 2005.

[7] S. Perri, D. Colonna, P. Zicari, and P. Corsonello, “SAD-
based stereo matching circuit for FPGAs,” in Proceedings of the
13th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS ’06), pp. 846–849, Nice, France, December
2006.

[8] R. P. Jacobi, R. B. Cardoso, and G. A. Borges, “VoC: a recon-
figurable matrix for stereo vision processing,” in Proceedings
of the 20th International Parallel and Distributed Processing
Symposium (IPDPS ’06), p. 6, Rhodes Island, Greece, April
2006.

[9] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in
computational stereo,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, 2003.

[10] D. J. Fleet, “Disparity from local weighted phase-correlation,”
in Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics (ICSMC ’94), vol. 1, pp. 48–54, San
Antonio, Tex, USA, October 1994.

[11] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” Interna-
tional Journal of Computer Vision, vol. 47, no. 1–3, pp. 7–42,
2002.

[12] A. Koschan, V. Rodehorst, and K. Spiller, “Color stereo vision
using hierarchical block matching and active color illumina-
tion,” in Proceedings of the 13th International Conference on
Pattern Recognition (ICPR ’96), vol. 1, pp. 835–839, Vienna,
Austria, August 1996.

[13] W. Maass, “On the computational power of winner-take-all,”
Neural Computation, vol. 12, no. 11, pp. 2519–2535, 2000.

[14] T. Kanade and M. Okutomi, “A stereo matching algorithm
with an adaptive window: theory and experiment,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
16, no. 9, pp. 920–932, 1994.

[15] J. Banks, M. Bennamoun, and P. Corke, “Non-parametric
techniques for fast and robust stereo matching,” in Proceedings
of IEEE Region 10 Annual International Conference on Speech
and Image Technologies for Computing and Telecommunications
(TENCON ’97), vol. 1, pp. 365–368, Brisbane, Australia,
December 1997.

[16] A. E. Kayaalp and J. L. Eckman, “Near real-time stereo range
detection using a pipeline architecture,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 20, no. 6, pp. 1461–1469,
1990.

[17] C. Cuadrado, A. Zuloaga, J. L. Martı́n, J. Lázaro, and J.
Jiménez, “Real-time stereo vision processing system in a
FPGA,” in Proceedings of the 32nd Annual Conference on
IEEE Industrial Electronics (IECON ’06), pp. 3455–3460, Paris,
France, November 2006.

[18] Y. Jia, M. Li, L. An, and X. Zhang, “Autonomous navigation
of a miniature mobile robot using real-time trinocular stereo
machine,” in Proceedings of the IEEE International Confer-
ence on Robotics, Intelligent Systems and Signal Processing
(RISSP ’03), vol. 1, pp. 417–421, Changsha, China, October
2003.

[19] G. van der Wal, M. Hansen, and M. Piacentino, “The Acadia
vision processor,” in Proceedings of the 5th IEEE International
Workshop on Computer Architectures for Machine Perception
(CAMP ’00), pp. 31–40, Padova, Italy, September 2000.

[20] J. S. Yi, J. S. Kim, L. P. Li, J. Morris, G. Lee, and P.
Leclercq, “Real-time three dimensional vision,” in Proceedings

of the 9th Asia-Pacific Conference on Advances in Computer
Systems Architecture (ACSAC ’04), vol. 3189 of Lecture Notes
in Computer Science, pp. 309–320, Beijing, China, September
2004.

[21] R. Zabih and J. I. Woodfill, “Non-parametric local transforms
for computing visual correspondence,” in Proceedings of the
3rd European Conference on Computer Vision (ECCV ’94), pp.
151–158, Stockholm, Sweden, May 1994.

[22] J. Banks and M. Bennamoun, “Reliability analysis of the rank
transform for stereo matching,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 31, no. 6, pp. 870–880, 2001.

[23] H. Hirschmüller and D. Scharstein, “Evaluation of cost
functions for stereo matching,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’07), pp. 1–8, Minneapolis, Minn, USA,
June 2007.

[24] J. D. Anderson, Semi autonomous vehicle intelligence: real time
target tracking for vision guided autonomous vehicles, M.S.
thesis, Brigham Young University, Provo, Utah, USA, 2007.

[25] B. Cyganek, “Comparison of nonparametric transformations
and bit vector matching for stereo correlation,” in Proceedings
of the 10th International Workshop on Combinatorial Image
Analysis (IWCIA ’04), vol. 3322 of Lecture Notes in Computer
Science, pp. 534–547, Auckland, New Zealand, December
2004.

[26] P. Corke and P. Dunn, “Real-time stereopsis using FPGAs,” in
Proceedings of IEEE Region 10 Annual International Conference
on Speech and Image Technologies for Computing and Telecom-
munications (TENCON ’97), vol. 1, pp. 235–238, Brisbane,
Australia, December 1997.

[27] J. I. Woodfill and B. Von Herzen, “Real-time stereo vision
on the PARTS reconfigurable computer,” in Proceedings of the
5th Annual IEEE Symposium on FPGAs for Custom Computing
Machines (FPGA ’97), pp. 201–210, Napa Valley, Calif, USA,
April 1997.

[28] M. Kuhn, S. Moser, O. Isler, et al., “Efficient ASIC implemen-
tation of a real-time depth mapping stereo vision system,”
in Proceedings of the of the 46th IEEE Midwest International
Symposium on Circuits and Systems (MWSCAS ’03), pp. 1478–
1481, Cairo, Egypt, December 2003.

[29] Z. Zhang, “Determining the epipolar geometry and its uncer-
tainty: a review,” International Journal of Computer Vision, vol.
27, no. 2, pp. 161–195, 1998.

[30] D. Scharstein and R. Szeliski, “High-accuracy stereo depth
maps using structured light,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’03), vol. 1, pp. 195–202, Madison, Wis,
USA, June 2003.

[31] J. I. Woodfill, G. Gordon, D. Jurasek, T. Brown, and R. Buck,
“The Tyzx DeepSea G2 vision aystem, a taskable, embedded
stereo camera,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’06), p. 126,
New York, NY, USA, June 2006.

[32] I. Kuon and J. Rose, “Measuring the gap between FPGAs
and ASICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–215,
2007.

	1. INTRODUCTION
	2. STEREO MATCHING ALGORITHMS
	2.1. Overview
	2.2. Sum of absolute differences
	2.3. Rank transform
	2.4. Census transform

	3. FLEXIBLE HARDWARE-BASED STEREO MATCHING
	3.1. Flexible disparity range
	3.2. Flexible block sizes
	3.3. Flexible frame rate

	4. EXPERIMENTAL EVALUATION
	4.1. Evaluation architecture
	4.2. Test configuration
	4.3. Experimental results

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

	dr:
	dr_2:
	dr_3:
	undefined:
	Extraction stage:
	matching:
	undefined_2:
	Partition 0:
	Partition 1:
	Partition 1_2:
	undefined_3:
	Row1:
	Row1_2:
	stage:
	undefined_4:
	MUX:
	Image 2 transformed:
	Image 1 transformedRow1:
	Image 1 transformedRow1_2:
	undefined_5:
	fill_13:
	Cost functionRow1:
	Cost functionRow1_2:
	Cost functionRow1_3:
	Cost functionRow1_4:
	aggregation block OddRow1:
	0:
	Registers:
	fill_2:
	Extraction stage_2:
	Partition1b:
	Partition 0b:
	Flexible block matching:
	Row1_3:
	Row1_4:
	Row1_5:
	Row1_6:
	Registers_2:
	Block sum xn d1Row1:
	Block sum xn d2Row1:
	Block sum xn d3Row1:
	Block sum xn d4Row1:
	fill_5:
	Block sum xn drRow1:
	Select smallest blockRow1:
	Select smallest blockRow1_2:
	Select smallest blockRow1_3:
	Select smallest blockRow1_4:
	Select smallest blockRow1_5:
	Select smallest blockRow1_6:
	Select smallest blockRow1_7:
	Select smallest blockRow1_8:
	Select smallest blockRow1_9:
	Select smallest blockRow1_10:
	Select smallest blockRow1_11:
	Select smallest blockRow1_12:
	6112:
	1592:
	5809:
	1408:
	Found: Off
	1401:
	Found_2: Off
	1106:
	943:
	Found_3: Off
	807:
	Rank: Off
	Matches: Off
	Found_4: Off
	3787:
	2424:
	1977:

