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INTRODUCTION

Signal and image processing applications require a lot of computing resources. For low-volume applications like in professional
electronics applications, FPGA are used in combination with DSP and GPP in order to reach the performances required by
the product roadmaps. Nevertheless, FPGA designs are static, which raises a flexibility issue with new complex or software
defined applications like software-defined radio (SDR). In this scope, dynamic partial reconfiguration (DPR) is used to bring
a virtualization layer upon the static hardware of FPGA. During the last decade, DPR has been widely studied in academia.
Nevertheless, there are very few real applications using it, and therefore, there is a lack of feedback providing relevant issues to
address in order to improve its applicability. This paper evaluates the interest and limitations when using DPR in professional
electronics applications and provides guidelines to improve its applicability. It makes a fair evaluation based on experiments made
on a set of signal and image processing applications. It identifies the missing elements of the design flow to use DPR in professional
electronics applications. Finally, it introduces a fast reconfiguration manager providing an 84-time improvement compared to the
vendor solution.

Copyright © 2008 Philippe Manet et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

thermal and autonomy issues in embedded systems with
an emphasis for battery-powered applications. Despite those

Signal and image processing applications require a lot
of computing resources. Until recently, many of them
were implemented using digital signal processor (DSP)
that provides flexibility and computing power at a low
cost. Nevertheless, since the beginning of the decade, the
frequency of the processor cores does not increase anymore
while their power consumption increases dramatically with
performances [1, 2]. This power wall leads to unmanageable

limitations, the application roadmaps are still requiring a
substantial increase of computing resources. In order to cope
with those limitations, consumer electronics applications
use the system-on-chip (SoC) approach where optimized
accelerators supply DSP and GPP cores to meet the system
constraints within a limited power envelope [3]. This
approach has the main drawback to be very expensive
and leads to complex systems that are difficult to validate.
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Therefore, they are used for very high volumes applications
like mobile phone handsets [4].

Professional electronics applications are characterized by
low volumes and a high design count compared to consumer
ones preventing the use of an expensive SoC approach.
They rather use DSP or GPP combined with FPGA in
order to increase the computation capabilities and meet
requirements imposed by the roadmaps. Nevertheless, FPGA
designs are static and lack flexibility compared to a pure
DSP approach. However, roadmaps’ evolution is shifting
to multistandards or even software defined applications,
requiring a virtualization layer to adapt or change their
behavior dynamically. It is for example the case for the
software-defined radio (SDR) application [5]. In order to
cope with this flexibility issue, DPR of FPGA can be used
[6, 7]. Indeed, it brings virtualization upon static hardware
making it possible to handle hardware functional blocks
like software components. Thank to this feature, SDR is
announced by Xilinx to be the main target applications for
DPR [8].

During the last decade, DPR has been widely studied in
academia [9-11]. There are many works related to the com-
ponent programming issue as well as case studies for possible
applications [12—17]. Nevertheless, all those experiments are
carried out for research purpose, and only a few of them
take into account its impact for real applications. Indeed,
despite all the researches done, it exists today very few real
applications using DPR. Therefore, there is a lack of feedback
on its use in real products providing relevant research issues
to address in order to improve its applicability.

The contribution of this paper is to evaluate the interest
and limitations when using DPR in real professional elec-
tronics applications, and to provide guidelines to improve
its applicability. First, it makes a fair evaluation based on
experiments made on a set of seven signal and image pro-
cessing applications carried out in real conditions. Second,
based on a precise analysis of the current flow for real usage,
it identifies the missing elements for its use in professional
electronics applications with highlights on the issues raised
by SDR. Third, it identifies a set of advantages for using DPR
in professional electronics applications. Fourth, it provides
research directions in order to improve its usage. Fifth,
it introduces a fast reconfiguration manager used by the
experiments providing an 84-time improvement compared
to the vendor solution. To our knowledge, it is the first
reconfiguration manager working at this speed on the Virtex
4. Indeed in [18], the full speed has been tested only in Virtex
IT for an 8-bit ICAP.

This paper is based on the researches carried out as part
of the RECOPS project that aims to study the use of DPR in
military applications [19]. The evaluation is made on FPGA
from the Virtex family from Xilinx Inc., Calif, USA. As they
are the biggest matrixes available supporting DPR, they were
selected as the FPGA platform for the project.

In the remainder of this paper, Section2 explains
the specificities of professional electronics applications.
Section 3 exposes the DPR possibilities in the latest Xilinx
Virtex components with its current design flow usable in
real applications. Sections 4 and 5 give the main interests

for using DPR in professional electronics applications and
the issues for their implementation using DPR. Section 6
presents the experiments carried out. Section 7 details the
main results obtained, and Section 8 discusses remaining
issues raised by this technology based on the experiments,
followed by the conclusion in Section 9.

2. PROFESSIONAL ELECTRONICS APPLICATIONS

Nowadays, the electronics market is mainly directed by
consumer applications. They are characterized by a very
short time to market, high volumes, autonomous and
battery-powered applications, and have very few validations
or qualification constraints.

However, professional electronics applications are quite
different. They are sold in low volumes, and they take longer
time for development. They are often maintained, or even
updated, during their lifetime that can reach several decades.
They need to address precise requirements and validation
processes. Moreover, most of them are strongly coupled with
other components inside complex systems. It is for example
the case for the electronic subsystems in a plane, or for
an airport radar part of an air traffic management system.
They are also quite diverse. Indeed, a radar application, for
example, performs in real time a very large FFT of up to tens
of thousands of points and must fit in a small volume in order
to be integrated into a plane, while a software-defined radio
(SDR) requires a high level of virtualization, with very low
power consumption for handheld devices.

For systems with a high level of safety, further validations
and certifications are performed. It is the case for systems
that may affect the life of human beings. The ED80/D0254
for hardware and ED12B/DO178B for software, in civil
aviation, are among the most restrictive standards [20].
They impose to strictly validate and demonstrate that
the application requirements are fulfilled in any possible
situation, and identify the possible failure modes.

3. DYNAMIC PARTIAL RECONFIGURATION

Current FPGAs are composed by a user programmable logic
plane, configured by an underlying memory plane. The logic
plane holds fine-grain customizable logic made of LUT and
interconnection resources, but also optimized macroblocks
like SRAM arrays, DSP accelerators, clock tree managers,
I/0O modules, and so forth. For most of the components,
the configuration memory is filled at startup by a bitstream
through a reconfiguration interface. In order to do this,
several interfaces are implemented; they are connected to the
reconfiguration engine accessing the configuration memory.
In Xilinx FPGA, the bitstream is a packet sequence, each
packet containing a header and its data. The header holds
commands and information for the configuration engine, so
that very few external control signals are required during the
reconfiguration process.

In some components of the high-end Virtex family
from Xilinx, an internal interface internal configuration
access port (ICAP) allows accessing the configuration engine
directly from the user logic plane. Thanks to this interface, it
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is possible for an application to perform self-reconfiguration
while it is running. Moreover, according to the vendor, the
internal implementation of the configuration ensures that
(i) modifying a region of the component does not affect
the configuration memory of other, unmodified, regions
and (ii) when the content of the configuration memory is
overwritten by the same content, its corresponding logic can
operate normally without being affected. In order to perform
a dynamic partial reconfiguration (DPR), a partial bitstream
is written into the ICAP. Since it is made of raw configuration
data highly component dependent, special tools are required
for its generation.

3.1. New DPR possibilities in latest
Xilinx Virtex component

The Virtex family encompasses the highest performances
and biggest FPGA from Xilinx. Furthermore, DPR was
introduced in this family with the Virtex II component. Its
layout was organized in columns, defining an entire column
of the component as the basic configuration granularity.
Therefore, the DPR had to cope with severe hardware
constraints that lessen its use in professional applications.

Since the Virtex 4, several improvements facilitate the
use of DPR, making it a credible solution for some spe-
cific applications like software-defined radio (SDR). The
improvements for DPR are on the layout architecture, the
clock tree, and the ICAP. The component is still organized
in columns but the partial reconfiguration granularity is
reduced to a frame, which is here only a part of a column.
Therefore, the partial reconfigurable region (PRR) can be
almost any height and width. Clock regions are rectangular,
allowing to be matched by a PRR. This leads to better timing
performances and clock tree management. Moreover, the
output frequency and phase shift of the digital clock manager
(DCM) can be modified using DPR.

Finally, the width of the ICAP port is extended to 32 bits,
and its speed is increased up to 100 MHz. This significantly
speeds up the reconfiguration time, which is a main concern
when using DPR. Indeed, the HW in the PRR cannot be
used during the reconfiguration process. With all those
improvements, the HW capabilities are far less a limitation
for using DPR in real applications.

3.2. New tools dedicated for reconfiguration

The implementation of DPR in Virtex FPGA requires a
nonstandard flow [21]. It is driven by constraints on
the area and primitives location. It uses special dedicated
resources, bus macro (BM) for communications, and uses
the PlanAhead tool.

Area constraints make it possible to partition a design in
a fixed part and a reconfigurable part. They are required to
force a design to be placed & routed (P&R) in a predefined
region composed of a fixed set of frames.

The BMs are slice-based prerouted elements made of
simple LUT. They enable the communication between the
fixed and the dynamic parts of the design. Indeed, since
placement constraints cannot be directly applied to routing

resources, they lock the starting or the ending point of the
wires to ensure their correct connection after reconfigura-
tion. They can be located on any edge of a PRR (left, right,
top, bottom). They can be asynchronous or clocked, have a
fixed direction (in or out); they are device dependent. Their
main drawbacks are that they consume a significant amount
of resources, and their automatic placement is not supported
by the tools.

PlanAhead is a proprietary tool from Xilinx that is used
to manage the DPR constraints and to drive the imple-
mentation process. It is a production tool with graphical
interface allowing to handle constraints and area location of
a PRR at component level. It provides a hierarchical design
view at netlist level and a resource view at component level.
Moreover, it makes a rough resources and bitstream size
estimation, performs some design rule checking, and exports
the results for implementation.

Finally, a specific partial flow is used to P&R the different
portions of the design. It is based on a modular flow available
in ISE [22]. Tt requires special patch updates that are cur-
rently available for selected customers and research centers.
The flow is compatible with the embedded processors (PPC
and MicroBlaze). At the end, it provides full and partial
bitstreams that can be directly written into the ICAP. Note
that with this flow, the modules do not have to follow the
restrictive constraints of the XAPP290 [23] anymore.

3.3. The next generation

The latest high-end FPGA available in Xilinx is the Virtex
5. It is fabricated in a 65 nm technology, and it introduces
innovations like diagonal routing capabilities and 6-entry
LUT. It has new configuration ports and can manage
multiple configurations. Regarding DPR, the component will
support the features available on Virtex 4. Since DPR is today
highly component dependent, specific tools and patches are
required on top of the standard flow as for Virtex 4. However,
it is not sure that the upcoming components will support
DPR, and there are today no clear vendor roadmap regarding
this technology.

4. ADVANTAGE FOR USING DPRIN
PROFESSIONAL ELECTRONICS

The DPR allows using more hardware than that physically
present in the FPGA. This can be used to reduce the
size of the FPGA and its overall power consumption. This
also permits to execute an algorithm with an optimized
implementation depending on its parameters and data set.
Furthermore, upon the usual speed and power research
goals, DPR offers system-level advantages for professional
electronics [19]. The advantages considered are the follow-
ing.
(a) Task speed. By shifting the partitioning between
hardware and software toward (faster) hardware. More
functions can be implemented in hardware without being
limited by the size of the component.

(b) Power reduction. By having less hardware instanti-
ated and running, and by using a smaller FPGA.
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(c) Survivability. By allowing selection and operation in
a degraded mode when a part of the system is damaged. It
is necessary for applications running in harsh environments
where environmental conditions can exceed the normal
operating range.

(d) Mission change. By allowing to configure the appli-
cation for an entire mission without interrupting services.
The real-time issue is not critical here. The application is
configured for a long period. DPR provides an easy and safe
way to strongly modify an entire system without having the
complexity of implementing all the functionalities in one
design. It is very useful and it facilitates the validation of
applications interconnected in a complex system.

(e) Environment change. During operation, the applica-
tion can be developed specifically for several environments
and switch dynamically. Here, the real-time issue is critical.

(f) Adaptive algorithm change. By adapting dynamically
an algorithm depending on the external conditions. It is a
lower granularity than environment change.

(g) Online system test. A system in harsh environment
can be damaged. For critical systems, it is necessary to know
its level of functionality, for example, to decide to power on
a redundant one.

(h) Hardware virtualization. By having more hardware
available than that physically present in the FPGA. It allows
to manage a set of hardware modules as a component library.
It is used for example in SDR applications.

5. IMPLEMENTATION OF DPRIN
PROFESSIONAL APPLICATIONS

In order to implement DPR in real applications, some issues
need to be carefully handled. The most important ones are
the design flow, the constraints brought by the use of DPR
on the application board, and the minimum development
required for its integration.

5.1. Thedesign flow issue

The deep validation requirements or even the certification
in critical applications is not only performed on the final
product, it also imposes the use of a validation methodology
during the whole development process. In this scope, the
design flow is a key point. For severe requirements, it must
be certified [20]. The validation imposes that at each step
of the development, from the first specifications to the final
tests, one must be able to verify that the application meets
the requirements. For this, it is necessary to have precise
simulations and modeling capabilities and to have efficient
tools, at least for productivity reasons.

The standard design flow for a digital system is based on
a top-down approach. The main steps are the following.

(a) System specification.

(b) Functional modeling and simulation.
(c) Hardware/software partitioning.

(d) Architecture definition.

(e) HW and SW development.

(f) Platform integration.

(g) Validation and qualification.

A complete design is rarely done in one conception pass.
Indeed, in order to meet the application requirements, it
is often necessary to make several iterations until reaching
acceptable performances. The following paragraph focuses
on the missing elements for DPR regarding this flow.

5.2. Identification of missing elements for
the dynamic reconfiguration flow

For each step of the design flow, it is mandatory to have a
simulation model of the DPR. For the first steps until the
architecture definition, a model can be built with SystemC.
For critical designs or for productivity issues, those steps
are usually automated by tools. None of the existing tools
supports DPR. Nevertheless, it is important to note that
FPGAs are generally not well supported. It is for example
difficult to find SystemC models for the complex hard or soft
IP in FPGA like the PowerPC 405 or the MicroBlaze.

For the hardware development step, it is necessary to
have a behavioral model of the ICAP, the BM, and the
configuration process. Indeed, a hardware-level model is
required to make functional simulation, ensure real-time
constraints, and for debug. Without a behavioral model of
the hardware, it is only possible to simulate the modules
independently and verify the design when committing the
application to the final on-board tests. Then, it is possible
to verify a DPR design only when performing the platform
integration. Therefore, if something fails, it is not possible to
reproduce the problem by simulation. Moreover, debugging
tools like ChipScope from Xilinx [24] are not working in a
reconfigurable region. Without complete behavioral models,
the validation and qualification step can only be done on
the hardware platform. Serious difficulties occur, when it is
necessary to take into account the design flow for validation.

The DPR modeling, using a powerful tool like SystemC
[25-28], is mandatory in order to implement complex and
challenging applications like SDR [29, 30]. Moreover, in
order to maintain consistency in the model but also preserve
good validation capabilities, the successive refinements of the
SystemC model during the design flow should also support
DPR.

5.3. The hardware platform and constraints

The board here is the printed circuit board hosting the
FPGA. Its constraints are of two kinds. The first is that
it requires a large amount of external FLASH memory, in
order to permanently store the partial bitstreams, but also
fast external memory like DDR in order to load bitstream
and perform a reconfiguration at the maximum speed. The
second kind of constraints is on the I/O position. For
example, with DDR 1/Os, the memory controller needs to be
placed in front of the I/Os, constraining the placement of the
PRR. Regarding those constraints, the standard development
boards can easily be used to test DPR on a reference
application.



Philippe Manet et al.

5.4. Developments required for DPR evaluation

The developments required for evaluation are the design of
a reconfiguration controller and a scheduler. The controller
is based on an interface between the on-chip peripheral bus
(OPB) available in the Virtex and the ICAP. It offers the
flexibility of the standard bus that allows connecting any
type of memory through a standard interface. Furthermore,
the bus benefits from DMA services that provide sustained
data rate to reach the maximum speed of the ICAP. Since
the configuration manager is connected to a bus that can
be connected to a MicroBlaze or a PowerPC, the scheduler
can be implemented in software, which strongly reduces
its development cost. Note that an OPB-ICAP interface is
available from Xilinx, but not for all the components, and
the full utilization of the ICAP is not supported on the latest
one.

6. EXPERIMENTS

The DPR is evaluated in industrial conditions on a broad
range of applications mainly in the field of defense applica-
tions. The approach is to use a common platform in order
to easily share development experiences, make relevant com-
parisons, and demonstrate the platform flexibility offered by
the FPGA implementation. The broad range of applications
is required by the diversity of applications and constraints
encountered in professional electronics.

6.1. The evaluation applications

The experiments are made on real applications or on a
representative part of them. They have been chosen in order
to have a representative set of challenging applications in
the field of signal and image processing in professional
electronics. They have not been specially chosen for a good
match with DPR. Nevertheless, they all offer opportunities
for improvement by using DPR compared to the usual
solutions at least with several advantages discussed in
Section 4. They are listed in the following with a highlight
on their implementation challenge.

(a) Portable device for remote-control video capture and
transfer. This application realizes image acquisition and
transfer with remote control video using wireless commu-
nication. Several compression algorithms and several band-
widths have to be supported. The quality of the image and the
bandwidth are both adapted depending on the context and
the battery charge. All must fit within a minimal HW. The
reconfigurable process performs axis motion control, image
capture, and data transmission in the same reconfigurable
region.

(b) Blanking management for naval electronic counter
measure/electronic support measure systems. This application
generates control signals avoiding interferences between the
ECM and ESM systems. The system must operate with a
high level of safety and support multiple context switches.
Therefore, the design complexity must be as low as possible.

(¢) Real-time image processing unit for missile applications.
It applies several operators on an image with hard real-time

constraints. The number of operators is potentially high, and
they must be optimized in order to be very fast. The change
of operators must be taken within a narrow time slot. The
operators are implemented in a reconfigurable region.

(d) Front end processing for airborne radar. The maximum
speed of the FPGA is used. The functionality must change
very quickly, and the scenario depends dynamically on the
context of the application. It tests the impact of reconfigu-
ration on the use of high-speed I/O links and the front-end
data processing under hard real-time and jitter constraints.

(e) Short range radio modem. It is used for local and
private data communications and needs to support several
data rates. Only the baseband of the modem needs to change
but it is a very high computational task with only signal
processing. The goal is to obtain the highest data rate in a
given situation. The baseband functions of the modem are
implemented in a reconfigurable region.

(f) Software defined radio transmitter. Only the modula-
tion waveforms are implemented in a reconfigurable region.
It tests the waveform parameterization and change. As the
SDR application is highly reconfigurable, the maximum
variability of the modules is required.

(g) Software defined radio receiver. This application
focuses on all the upper layers of the SDR. Since they are
usually implemented in software, the HW/SW interface with
a high variability support is a main challenge when using
dynamic hardware. It evaluates the hardware virtualization
brought by the dynamic reconfiguration and demonstrates
the partial reconfiguration of the FPGA by software from the
SCA core framework. It has been published in [31].

Fach demonstrator covers its own area of assessment, but
together, they cover a large panel of activities and techniques.
The tests are carried out to emphasize the different areas
where the use of DPR can be interesting. It is not possible to
detail them all here. Nevertheless, we will highlight features
of the software defined radio application.

6.2. The software-defined radio experiments

The opportunity for SDR is to use the virtualization brought
by DPR in order to be implemented in hardware, rather than
in software. It is thus a very good candidate to take benefit
of the dynamic reconfiguration. The experiments conducted
with the SDR transmitter for multiband, multimode radio,
are performed by switching between two different wave-
forms, the D8PSK and the 16QAM. The reconfiguration is
controlled by the internal Power PC core of the FPGA. The
mappings of data patterns to symbol, and symbols to in-
phase and quadrature components, are done in the PRR.
The pulse-shaping filter is also implemented in the PRR. The
experiments with the receiver implement the SCA layer of the
SDR in an FPGA platform using DPR.

6.3. Theevaluation platform

The platform targeted for all the experiments is the ML410
development board from Xilinx. It hosts an XC4V-FX60 with
sufficient external storage resources for storing the partial
bitstreams for all the applications. No other specific board
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development is needed by using the platform. Nevertheless,
the boards ML403 and ML405 are also used for some
experiments (due to the late availability of the ML410 board).
The components used by all the experiments are the XC4V-
FX12, FX20, FX60, and LX60.

6.4. Thereconfiguration controller

For hard real-time applications that need to change fre-
quently the reconfigurable module, a high bandwidth
through the ICAP port is required. It is for example the
case for the image processing application, which applies
sequentially a set of reconfigurable functions for each image
in a narrow time frame. The theoretical speed of the ICAP
is 100 MHz, and its width can be programmed as an 8-bit
or a 32 bits port allowing a bandwidth of 0.75 or 2.98 Gbit/s.
The ICAP is usually connected to an OPB bus. This allows
to use easily all the existing memory resources of the board
by means of standard interfaces. The bus is driven by a
microprocessor that can be a hard embedded PPC core or by
a soft MicroBlaze core. Unfortunately, when the experiments
were carried out, the interface provided by the vendor
was able to operate at no more than 40 MHz in the 8-
bit mode, and was designed for the Virtex II component.
Those performances are not sufficient to meet the real-time
constraints of the image processing application. Therefore,
an improved version based on the OPB-ICAP interface for
Virtex II was developed. The improvements allow working
with the ICAP in the 32 bits mode at 100 MHz. Moreover, it
also provides DMA services allowing to use the OPB bus with
the required bandwidth.

Figure 1 shows a functional description of the reconfigu-
ration controller implementing the OPB-ICAP interface. It is
viewed as an OPB peripheral through an IPIF from the bus.

It is written in VHDL, and generic parameters allow
selecting the memory size as well as the ICAP mode of 8
or 32bits. A control and status register allows writing and
reading bits to command and control the reconfiguration
controller. It implements a DMA able to steer data from the
bus at a sustained rate. The parameters are first written in
two registers, a DMA_START_ADDR register that holds the
base address of the data segment and a DMA_BURST_SIZE
register that defines its size (max 1024 words). Then, a
start bit in the CTRL/STATUS register is set to start the
transfer. When it is finished, a status bit is set in the same
register. The BRAM memory is used as a buffer. It was
originally implemented in the Virtex II controller to convert
the data from a 32 bits stream from the bus to an 8-
bit stream toward the ICAP. Nevertheless, its instantiation
is not mandatory. Indeed, the ICAP can be controlled at
data word level by an enable signal, thus a single 32 bits
register can be used to split the 32 bits data in four 8-bit
words. When using the DMA, the buffer is bypassed. The
reconfiguration controller supports read back, allowing to
transfer the content of selected configuration frames to the
bus. The DMA is not supported with this feature. Configured
in the 32 bits mode, the reconfiguration manager occupies
973 slices and 1 BRAM. It corresponds to 3.7% of the mid-
range XC4VLX60 Virtex 4 component.

BRAM

[

DMA_START_ADDR
DMA_BURST_SIZE
CTRL / STATUS

ICAP

OPB bus
OPB IPIF

CTRL

FIGURE 1: Reconfiguration controller.

EEINIn

DDR

controller DDR

MicroBlaze

Flash

controller Flash

OPB bus

Reconfiguration
manager ZBT

controller

ZBT

HilRIN NN

FIGURE 2: Memory organization.

The memory organization for the image processing
application is given in Figure 2. The external flash is used
to permanently store the bitstreams. The DDR and zero bus
turnaround (ZBT) are used as fast memories. The bitstream
size for the reconfigurable region is around 300 KB for the
biggest. In order to obtain high-speed transfer, the partial
bitstreams need to be stored in a fast external memory.
Indeed, the permanent flash memory is very slow; it can only
deliver 8 bits at 10 MHz. Therefore, the ZBT SRAM or the
DDRs are used since they are the only memories on the board
able to sustain the 100 MHz, 32 bits, throughputs. When the
application starts, the bitstreams are first copied from the
flash to the ZBT SRAM or the DDR depending on the speed
requirements of the application.

7. RESULTS

The results are presented here from a system-level approach
with highlights on the virtualization in the SDR experiments.
Finally, measures of the performances of the ICAP are
detailed.

The characteristics of the seven applications are given
in Table 1. The first column gives the XC4V component
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TaBLE 1: Applications characteristics.

Component N. reconf. region PRR size [%] Reconf. time [ms] Bitstream size [KB] Real-time constr.
(a) Im. acq. FX60 1 16 2.2 330 20 ms
(b) Naval FX12 1 28 195 90 ls
(c) Im. proc. FX60 1 13 1.3 17 5ms
(d) Radar FX20 1 33 0.47 166 1ms
(e) Modem FX12 1 32 3.5 241 s
(f) SDR Tx FX12 1 9 31.6 38 ls
(g) SDR Rx FX12 2 12 15.5 46 Is
used, then the number of reconfigurable regions and the i
relative size of the reconfigurable regions counted in slices. F1A F2A F1B F2B F1A F2A
The fourth column gives the reconfiguration time followed

by the maximum size of all the partial bitstreams targeted
to a region. Note that not all the applications use the fast
reconfiguration manager. Moreover, they can use 8-bit or 32
bits interfaces, and their bus may be interrupted by other
tasks. Therefore, the reconfiguration time summarizes the
application performances for doing a reconfiguration while
respecting its real-time constraints. The last column gives the
real-time constraint for performing a reconfiguration.

7.1. System-level assessment

Most of the advantages listed in Section 4 are tested by
the experiences. The results are given in Table 3. For each
advantage, a rating between —2 and +2 evaluates its benefit
in the application. An empty evaluation means that the
advantage was not tested during the experiments by the
application. A rating between parenthesis means that the
advantage was not directly evaluated during the experiments
but rather estimated. Results show that the most interesting
advantages are virtualization, environment, and mission
change. They allow changing the functionality of a system
under weak real-time constraints. Moreover, in all the
applications using this feature, the architecture of the system
remains the same while an instance of a particular function
is changed. This leads to add more functionalities without
increasing the complexity of the data path of the application.
The telecommunication applications change their waveforms
simply by reconfiguring a region. The adaptive algorithm
change is obtained by the virtualization advantage. It was
only lightly tested by the experiments, since this feature
is today rarely used in the applications due to its novelty.
There was no increase of the tasks’ speed of the application,
except for the SDR applications, where more accelerators
can be instantiated in the FPGA instead of being executed
on a DSP. For the other applications, the accelerators are
always instantiated in hardware. The power reduction is then
obtained by using a smaller FPGA when using DPR, reducing
the leakage and the dynamic power consumption generated
by unused hardware. The survivability possibility of the
application is lower for the SDR application because the DPR
brings new failure modes to the system. Since they are not yet
well characterized, they have to be cautiously handled. The
online system test is experienced by the radar and the image

(a) (b) (c)

FiGuUre 3: PRR reservation.

processing application where every reconfigurable module
has its own communication lines. Therefore, it is possible
for the application to monitor the good operation of the
functions and the reconfiguration process.

Most the evaluated features bring the promised advan-
tages to the application. Nevertheless, a drawback comes
from the size of the design. Indeed, where few virtualization
is used, there is a significant size overhead when using DPR
compared to the static implementation.

7.2. The hardware virtualization

Specific hardware virtualization tests are carried out in the
SDR receiver application. The experiments compare imple-
mentations of crypto algorithms for an SDR application.
The radio has two channels implemented and running at
the same time, one requiring encryption and the other
decryption. The algorithms can be changed dynamically
and can be different for each channel. Three functions are
considered, PLAIN, SCRAMBLER, and DES. Plain returns
the clear message (no encryption), scrambler performs basic
bit scrambling, and DES is a standard symmetric algorithm.
The implementation is done with two PRR and a static
region. Since the PRRs are statically defined, they need
to be sufficiently big to fit the biggest module, and a
significant amount of resources can be wasted. This problem
is illustrated in Figure 3 for two PRRs in three situations. In
Figure 3(a), the PRRs are dimensioned to hold F1A and F2A.
When reconfiguring with F1B and F2B in Figure 3(b), the
place left by F2B cannot be used by F1B. Therefore, the PRR
reserved for F1 in Figure 3(c) needs to be maximal.

The resources consumption for the three modules and
the static part of the design for an XC4VFX12 component
is presented in Table 2. “The static + max PRR” is the
DPR version of the design; the static part and two PRRs
are implemented. In the “static + all modules” version,
all modules are implemented statically. The resource gain
shown in Table 2 is not very important when using DPR.
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TABLE 2: Resource consumption.
Plain Scrambler DES . Static + Static + .
Static Avail
Encr Decr Encr Decr Encr Decr max PRR all modules
Slice 53 53 69 69 379 379 2674 3432 63% 3676 67% 5472
RAMB 16 1 1 1 1 8 8 17 33 92% 37 103% 36
DSP48 0 0 0 0 0 0 0% 0 0% 32
PPC405 0 0 0 0 0 0 1 1 100% 1 100% 1
Bitstream (KB) 31,7 31,7 33,7 33,4 46,3 46,1 — — — — — —
TABLE 3: Advantages evaluation.
Task Power o Mission Environment  Algorithm Online . o
speed reduction Survivability change change change system test Virtualization
(a) Im. acq. +1 (0) +2
(b) Naval 0 +1
(¢) Im. proc. 0 +1 (0) (0) (+1) (+1) (+1) +1
(d) Radar 0 +2 +2 +2
(e) Modem 0 +1 +2 +2 +1 +2
(f) SDR Tx +1 (+1) +2 +2 +2
(g) SDR Rx (+1) (+1) -2 (0) +1 +1 +2

This is due to the choice of the algorithms implemented.
Indeed, the plain and scrambler are very small compared
to the DES that directs the size of the PRR. Nevertheless,
even for that, the RAMB 16 consumption for the static
design overuses the resources available in the component by
103%. Thus, without DPR, it cannot fit into the component.
Furthermore, there are only three algorithms supported
here. For applications with a reasonable level of flexibility
as it is the case for SDR, many more algorithms need to
be supported, like 3DES, AES, and so forth. For those
applications, it is not possible to use a static design.

7.3. ThelCAP performances

For industrial and security reasons, the bitstreams need to
be encrypted. In the components used for the experiments,
the ICAP is not usable when the bitstream encryption is
enabled. The ICAP throughput is an issue for the designs
using DPR in hard real-time applications, and it is carefully
measured by the experiments. The ICAP was successfully
tested at 100 MHz in 32- and 8-bit modes. The write and
read-back modes were tested. Note that for reaching this
speed, we found that the data needs to be sent on the falling
edge of the ICAP clock. This is maybe due to a clock skew
between the user logic and the ICAP. Table 4 summarizes
the performances measured by connecting the ICAP to a
basic GPIO, with the OPB-ICAP provided by Xilinx for
Virtex II and with our reconfiguration manager. The partial
bitstreams are stored in a DDR with a clock at 100 MHz.
The Xilinx interface is always in 8-bit mode. The maximum
theoretical bandwidth of the ICAP is 2.98 Gbit/s. It is not
reached due to DMA overhead. Nevertheless, our custom
OPB-ICAP is 84 times faster, compared to the vendor’s

module. 4 times are due to the data word size, 2.5 times due
to frequency, and 8.4 times to the DMA accesses.

8. DISCUSSION

The development of applications for the experiments shows
that designs using DPR must handle specificities like
communication interfaces between modules, the execution
scenarios, and the bitstream handling. Even if DPR has
many open technology issues, all the applications tested can
potentially gain from its use. For this, there are still many
researches to do in order to bring DPR and dynamic HW at
sufficient maturity level.

8.1. Communication interface

A high-level interface must be designed to handle the
communication between the fixed part and the dynamic
modules. This interface is similar to the one separating
components in a static design but has to be uniform for all
the modules targeted to be instantiated in a given PRR. It
provides an abstraction of the accesses to dynamic modules
allowing their use, as they were statically instantiated.

During the development of the experiments, the oppor-
tunity to use a dedicated interface for dynamic reconfigu-
ration appears clearly. Nevertheless, regarding the number
of application tested and their specific needs in terms of
connections, latencies and throughputs, it was not possible
to find out a solution to this problem. Therefore, the classical
methodology for modeling and implementing interfaces was
used.

The SDR application requires a communication trans-
parency between the functional blocks of an application. This
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TaBLE 4: ICAP performances.

ICAPmode GPIO Xilinx OPB-ICAP Custom OPB-ICAP Theor.

8 bits — 32.4 Mbit/s 0.56 Gbit/s 0.75 Gbit/s

32 bits 22.2 Mbit/s — 2.8 Gbit/s 2.98 Gbit/s

requires the support of innovative middleware services for
reconfigurable platforms.

8.2. Execution management

One of the main challenges when using dynamic reconfig-
uration is the management of the dynamic modules. This
includes spatial and temporal management. Moreover, with
hard real-time constraints, the bitstream is loaded from fast
memory locations that have also to be managed.

In all the experiments carried out, the management
is done at the operating system level. Nevertheless, since
this solution adds substantial complexity to the operating
system, the ideal solution would provide all those services
transparently to the application.

The latency for loading a bitstream is important regard-
ing the operating frequency of the component. A real-
time application must have the control of the latencies to
avoid undetermined behavior. Therefore, the reconfiguration
management must be carried out by a scheduler controlled
by the operating system of the application, which needs to
access all the relevant parameters, like the reconfiguration
latencies and status.

For preemptive scheduling, the context switch must be
supported in the PRR. Therefore, the state hold in the PRR
must be saved and restored.

8.3. Bitstream handling

The size of a complete bitstream reaches several megabytes
for a high-end component, and for a partial bitstream, it
is of the order of hundreds of kilobytes. For experiments
from hard real-time applications, the reconfiguration speed
can be a key factor for improving the performances by
using DPR. This leads to use a high-performance reconfig-
uration manager using DMA to fetch the bitstream from
a fast external memory at the maximum throughput. The
configuration manager is controlled by a processor running
the scheduler. This approach is used to release the pressure
on the processor when transferring bitstream at word level.
Moreover, a dedicated bus connecting memories release the
processor bus allowing its use for other tasks. No other
high-level abstraction for handling the bitstream is used
by the experiments. This basic low-level solution has the
disadvantage of mixing the bitstream handling with the
application, which strongly complexifies the design.

8.4. Technology issues

There is today a single vendor providing large FPGA matrices
supporting DPR. This causes several issues for its use in
professional electronics applications. Upon the commercial

and strategic ones, it lessens its use for safety applications.
Indeed, a good level of safety is often reached by using
redundant systems with the same specifications but designed
by separate teams using different components coming from
different vendors.

There is also no clear roadmap, from the vendor,
regarding the future support of this technology in the
upcoming high-end components. Therefore, this increases
the risk of using it in real professional applications. Indeed,
after their first release most of those applications must be
maintained and upgraded during decades. On the contrary,
consumer electronics products last no more than few years
with barely any updates. The maintenance is performed
to correct bugs, adapting the products with new client
specifications or replacing old and damaged components.
For this, the original (or equivalent) components need to be
used to avoid going again into the heavy validation process.
In this scope, the obsolescence and future compatibility of
the components are a key point that needs to be addressed
by the vendor.

The design flow provided is weak and experimental.
It is not possible to model DPR during all the steps of
an application development. SystemC can be used for first
high-level steps but then it is difficult to use other tools,
like for HW/SW partitioning, since DPR is not integrated
by the tool vendors. For the low-level steps, there is a
lack of behavioral and HW model, allowing to simulate
and validate the designs before the platform integration
into the final board. All those drawbacks are due to the
novelty of this technology and to the fact that it brings the
completely new concept of dynamic HW. Indeed, all the
HW models used so far are static models, and none of the
HDL languages used for description implement dynamic
HW. Moreover, DPR is transverse to all abstraction layers of
an application, from the reconfiguration port and wires at
bit level to the scheduler at operating system level. Therefore,
there are many research opportunities on dynamic HW at
all abstraction levels. For its use in real applications, an
IP library with components like reconfiguration manager,
scheduler, and communication interface is necessary to
abstract the additional complexity and minimize the increase
of development efforts. Furthermore, since the applications
become quite complex as the design effort for implementing
and validate SoCs in large components, the most important
challenge for the DPR is certainly its transparency. The
designer should not worry about the reconfiguration details.

8.5. Application benefits

Many benefits can be taken from DPR in real professional
electronics applications. Indeed, upon the criteria listed in
Section 4 and directly evaluated by the experiments, DPR
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brings a new dimension of flexibility on the HW allowing
its virtualization like with SW library. All experiments are
taken from highly constrained applications, often integrated
in complex systems. Therefore, the flexibility brought by
the DPR enables to ease their development, integration,
maintenance, or evolution. The use of very large components
as high-end FPGA is enabled thanks to the system-on-chip
approach based on IP assembling and reuse. In this scope,
DPR brought the flexibility to modify IP dynamically.

The improved reconfiguration manager used by some
experiments makes possible to use DPR directly in con-
strained hard real-time algorithm and applications. Nev-
ertheless, using the maximum reconfiguration speed leads
to a huge memory traffic causing internal and external
bus congestion and therefore to power consumption. Some
experiments mitigate bus congestion by using dedicated
bus connecting the reconfiguration controller to memories.
However, the power consumption is still important.

When the dynamic modules are changed too frequently,
the power consumption increases and a time overhead
appears because the PRR cannot be used during a reconfig-
uration process. This is the case when the reconfiguration
is performed in a hot loop body of the algorithm. The
most significant advantage pointed out by the experiments
is the use of DPR for hardware virtualization when the
reconfiguration is not part of the algorithm but is rather
used to select the more suitable one in a given situation,
leading to adaptive systems. The experiments show that
adaptive algorithms are not frequent. Indeed, the algorithm
designers are used to consider a static implementation. Here
again, there is a need for a model of dynamic machine for
algorithms designers.

Finally, the classical area, speed, and power metrics
are not necessary improved when using DPR. The area is
always improved when using DPR for virtualization where a
significant part of dynamic HW resides in large- and low-cost
external flash memory. Hence, the static power consumption
is reduced compared to a static solution using a bigger
component. However, the dynamic power consumption and
speed improvements depend on the application.

9. CONCLUSION

During the last decade, DPR has already been widely studied
as a research topic. However, it exists today very few real
applications using it. This paper evaluates the use of DPR for
real signal and image processing applications in professional
electronics. An emphasis is put on the SDR that is the
main target application for DPR as announced by Xilinx.
Moreover, it provides relevant feedback in order to improve
its applicability. For this, it is based on a set of seven real
applications in signal and image processing with experiments
carried out under real conditions. As the design flow is a
key point for professional electronics applications, it makes
a precise analysis of the current flow available and highlights
its missing elements. It shows how SystemC can be used to
supplement the first steps of the flow. Those steps are crucial
for the modeling and validations of the SDR application.

Upon the classical area, speed, and power metrics, profes-
sional electronics applications can also benefit from DPR for
online system test, mission/environment changes, algorithms
adaptive changes, survivability, and hardware virtualization.
The paper provides research directions to improve the
applicability of DPR, the modeling of dynamic hardware,
the definition of a generic reconfiguration interface, the state
handling with preemptive scheduling, and the transparent
bitstream handling by the application.

Finally, it shows how the reconfiguration interface pro-
vided by the vendor can be improved by using DMA and
resolving a clock jitter issue. Thanks to those optimizations; it
is possible to achieve a reconfiguration speed of 2.8 Gbits/sec
close to the theoretical limit.
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