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algorithm which detects a mismatch between the observed eigenvalue profile and the theoretical noise-only eigenvalue profile, as
such a mismatch indicates the presence of a source. Moreover this proposed method allows the probability of false alarm to be
controlled and predefined, which is a crucial point for systems such as RADARs. Results of simulations are provided in order to
show the capabilities of the algorithm.
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1. INTRODUCTION

In sensor array processing, it is important to determine the
number of signals received by an antenna array from a finite
set of observations or snapshots. A similar problem arises
in line spectrum estimations. The number of sources has
to be determined successfully in order to obtain good per-
formance for high-resolution direction finding estimates. A
lot of work has been published concerning the model or-
der selection problem. Estimating the number of sources
is traditionally thought of as being equivalent to the de-
termination of the number of eigenvalues of the covari-
ance matrix which are different from the smallest eigen-
value [1]. Such an approach leads to a rank reduction prin-
ciple in order to separate the noise from the signal eigen-
values [2]. Anderson [3] gave a hypothesis testing proce-
dure based on the confidence interval of the noise eigen-
value, in which a threshold value must be assigned subjec-
tively. He showed [3] that the log-likelihood ratio to the
number of snapshots is asymptotic to a χ2 distribution. For
a small number of snapshots, James introduced the idea
of “modified statistics” [4]. In [5], Chen et al. proposed a

method based on an a priori on the observation probability
density function that detects the number of sources present
by setting an upper bound on the value of the eigenval-
ues.

For thirty years information theoretic criteria (ITC) ap-
proaches have been widely suggested for detection of mul-
tiple sources [6]. The best known of this test family are
the Akaike information criterion (AIC) [7] and the min-
imum description length (MDL) [8–10]. Such criteria are
composed of two terms. The first depends on the data and
the second is a penalty term concerning the number of
free parameters (parsimony). The AIC is not consistent and
tends to over-estimate the number of sources present, even
at high signal-to-noise ratio (SNR) values. While the MDL
method is consistent, it tends to under-estimate the num-
ber of sources at low and moderate SNR. In [11] a theo-
retical evaluation is given of the probability of over—and
under—estimation of source detection methods such as the
AIC andMDL, under the assumption of asymptotical condi-
tions.

In an effort to moderate the behavior of the AIC
and MDL methods Wong et al. proposed a modified ITC
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approach in [12], which uses the marginal p.d.f. of the sam-
ple eigenvalues as the log-likelihood function. In [1] a gen-
eral ITC is proposed in which the first term of the criteria
can be selected from a set of suitable functions. Based on this
methodWu and Fuhrmann [13] then proposed a parametric
technique as an alternative method of defining the first term
of this criteria.

Using Bayesian methodology, Djurić then proposed an
alternative to the AIC and MDL methods [14, 15] in which
the penalty against over-parameterization was no longer in-
dependent of the data. Some authors have also investigated
the possible use of eigenvectors for model order selection
[16, 17], but they generally suffer from the necessity to in-
troduce a priori knowledge. More recently, Wu et al. [18]
proposed two ways of estimating the number of sources by
drawing Gerschgorin radii.

These algorithms work correctly when the noise eigen-
values are closely clustered. However for a small sample size,
where we define a sample as small when the number of snap-
shots is of the same order as the number of sensors, this
condition is no longer valid and the noise eigenvalues can
instead be seen to have an approximately exponential pro-
file.

Recently this problem of detecting multiple sources was
readdressed by means of looking directly for a gap between
the noise and the signal eigenvalues [19]. In this way, and
as an alternative to the traditional approaches, we recently
proposed a method [20] to obtain an estimation of the num-
ber of significant targets in time reversal imaging. Motivated
by experimental results reported in [21], this method ex-
ploits the exponential profile of the ordered noise eigen-
values first introduced in [22]. Assuming that the small-
est eigenvalue is a noise eigenvalue, this exponential pro-
file can then be used to find the theoretical profile of the
noise-only eigenvalues. Starting with the smallest eigenvalue
a recursive algorithm is then applied in order to detect a
mismatch greater than a threshold value between each ob-
served eigenvalue and the corresponding theoretical eigen-
value. The occurrence of such a mismatch indicates the
presence of a source, and the eigenvalue index where this
mismatch first occurs is equal to the number of sources
present.

The test initially proposed in [20] uses thresholds ob-
tained from the empirical dispersion of ordered noise eigen-
values. The proposed paper presents an alternative to de-
termine the corresponding thresholds for a predefined false
alarm probability, and through simulations we show the
improvements in comparison with some of the traditional
tests.

Section 2 presents the basic formulation of the prob-
lem. In Section 3, we recall the model for the eigenvalue
profile and explain how the parameters of this model are
calculated. Section 4 describes the detection test deduced
from this model and how the corresponding thresholds are
calculated in order to control the false alarm. Section 5
compares the performance of this test with that of the
usual tests. Section 6 draws our conclusions concerning the
method.

2. PROBLEM FORMULATION

2.1. Antenna signal model

We consider an array of M sensors located in the wave-
field generated by d narrow-band point sources. Let a(θ) be
the steering vector representing the complex gains from one
source at location θ to theM sensors. Then, if x(t) is the ob-
servation vector of size M × 1, s(t) the emitted vector signal
of size d× 1, and n(t) the additive noise vector of sizeM × 1,
we obtain the following conventional model:

x(t) = As(t) + n(t) = y(t) + n(t), (1)

where A is the matrix of the d steering vectors. Moreover,
the vector n(t) denotes spatially and temporally uncorrelated
circular Gaussian complex noise with distribution N(0, σ2I)
which is also uncorrelated with the signals. Thus, from (1),
the observation covariance matrix Rx can be expressed as

Rx = E
[
x(t)xH(t)

] = Ry + Rn = ARsAH + σ2I. (2)

2.2. Principle of statistical tests based on
eigenvalue profile

According to (1), the noiseless observations y(t) are a lin-
ear combination of a(θ1), . . . , a(θd). Assuming independent
source amplitudes s(t), the random vector y(t) spans the
whole subspace generated by the steering vectors. This is the
“signal subspace.” Assuming d < M and no antenna ambi-
guity, the signal subspace dimension is d, and consequently
the number of nonzero eigenvalues of Ry is equal to d, with
(M − d) eigenvalues being zero.

Now, in the presence of white noise, according to (2), Rx

has the same eigenvectors asRy , with eigenvalues λx = λy+σ2

and the smallest (M−d) eigenvalues equal to σ2. Then, from
the spectrum of Rx with eigenvalues in decreasing order, it
becomes easy to discriminate between signal and noise eigen-
values and order determination would be an easy task.

In practice, Rx is unknown and an estimate is made us-
ing R̂x = (1/N)

∑N
t=1 x(t)x(t)H , where N is the number of

snapshots available. As R̂x involves averaging over the num-
ber of snapshots available R̂x → Rx, as N → ∞, resulting in
all the noise eigenvalues being equal to σ2. However, when
taken over a finite number of snapshots, the sample matrix
R̂x �= Rx. In the spectrum of ordered eigenvalues, the “signal
eigenvalues” are still identified as the d largest ones. But, the
noise eigenvalues are no longer equal to each other, and the
separation between the signal and noise eigenvalues is not
clear (except in the case of high SNR, when a gap can be
observed between signal and noise eigenvalues), making dis-
crimination between signal and noise eigenvalues a difficult
task.

2.3. Qualification of order estimation performance

Letting d̂ equal the estimated number of sources, three ex-
clusive situations and their corresponding probabilities will
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be considered:

d̂ = d : correct detection, Pd = Prob
[
d̂ = d

]
,

d̂ > d : false alarm, Pf a = Prob
[
d̂ > d

]
,

d̂ < d : nondetection, 1− Pd − Pf a = Prob
[
d̂ < d

]
.

(3)

Various methods will be compared on the basis of Pd and Pf a

values for various numbers of sources, locations, and power
conditions.

Usually, a detection threshold may be adjusted to pro-
vide the best compromise between detection and false alarm.
In such situations, a common practice is to set the threshold
for a given value of Pf a (1% for instance) and to compare the
corresponding values of Pd for different methods. The prob-
abilities Pd and Pf a will be estimated from statistical occur-
rence rates by Monte Carlo simulations.

2.4. Classical tests

Several tests have been proposed for determining the num-
ber of sources in the presence of statistical fluctuations. The
most common of these tests, recalled below, are the Akaike
information criterion (AIC) [7], and Rissanen’s minimum
description length (MDL) criterion [8]. More recently, a new
version of the MDL, named (MDLB), has been proposed in
[10] and an information theoretic criterion, the predictive
description length (PDL) has been proposed in [23], able to
resolve coherent and noncoherent sources. They are based
on a decomposition of the correlation matrix Rx into two
orthogonal components; the signal and noise subspaces. As
the MDLB and PDL require a maximum likelihood (ML) es-
timation of the angle of arrival, their computational cost is
significantly greater than for the AIC andMDL tests, but they
lead to more precise model order selection.

The AIC, MDL, MDLB, and PDL tests will be used as
benchmarks in this paper.

The aim of the AICmethod is to determine the order of a
model using information theory. Using the expression given

in [9] for the AIC, the number of sources is the integer d̂
which, for m ∈ {0, 1, . . . ,M − 1}, minimizes the following
quantity:

AIC(m) = −N(M −m) log

(
g(m)
a(m)

)

+m(2M −m), (4)

where g(m) and a(m) are, respectively, the geometric and
arithmetic means of the (M −m) smallest eigenvalues of the
covariance matrix of the observation. The first term stands
for the log-likelihood residual error, while the second is a
penalty for over-fitting. This criterion does not determine the
true number of sources with a probability of one, even with
an infinite number of samples.

The MDL approach is also based on information the-
oretic arguments, and the selected model order is the one
whichminimizes the code length needed to describe the data.

In this paper we use the form of the MDL given in [9]:

MDL(m) = −N(M −m) log

(
g(m)
a(m)

)

+
1
2
m(2M −m) logN.

(5)

It appears that theMDLmethod is similar to AICmethod
except for the penalty term, leading to an asymptotic consis-
tent test.

Concerning now the MDLB and PDL tests, ML estimates
are used to find the projection of the sample correlation ma-
trix R̂x onto the signal and noise subspaces. The summation
of the ML estimates of these matrices is the ML estimate of
the correlation matrix. The number of sources detected by
the PDL and MDLB tests are, respectively, obtained by the
minimization of the cost functions:

d̂PDL = argmin
m

PDLm(N),

d̂MDLB = argmin
m

MDLBm(N),
(6)

where m ∈ {0, 1, . . . ,M − 1}, PDLm(N) and MDLBm(N)
are the PDL criterion and MDLB criterion computed with N
snapshots and a number ofm candidate sources. Expressions
of PDLm(N) and MDLBm(N) are obtained as follows.

If the estimate of R̂x is computed with i snapshots, R̂x(i),
then

R̂x(i) = 1
i

i∑

t=1
x(t)xH(t). (7)

In the sequel, the sample estimates will be represented by
a “hat” (·̂) placed on the top of the character and the ML
estimates by a “bar” (·).

The estimated matrix R̂x(i−1) can be projected onto sig-
nal and noise subspaces. The projected correlation matrices
for themth model are given by

R̂m
xs(i− 1) = Ps

(
θm

)
R̂x(i− 1)Ps

(
θm

)
,

R̂m
xn(i− 1) = Pn

(
θm

)
R̂x(i− 1)Pn

(
θm

)
,

(8)

where Ps(θm) and Pn(θm) are, respectively, the projector on
the signal subspace and the projector on the noise subspace.
The projectors Ps(θm) and Pn(θm) are defined by

Ps
(
θm

) = A
(
θm

)(
AH

(
θm

)
A
(
θm

))−1
AH

(
θm

)
,

Pn
(
θm

) = I− Ps
(
θm

)
,

(9)

where A(θm) is the matrix of the m steering vectors a(θ j),
j ∈ {1, 2, . . . ,m} and θm is the direction of arrival vector.

The ML estimate of the correlation matrix for the mth
model (a model with m sources) and obtained with (i − 1)
snapshots is

R
m
x (i− 1) = R

m
xs(i− 1) + R

m
xn(i− 1). (10)

If θ̂m is the ML estimate vector of the m directions of ar-
rival (θ̂m = θm), then

R
m
xs(i− 1) = R̂m

xs(i− 1). (11)
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In a similar way, it is possible to show that R
m
xn(i− 1) has

the same eigenvectors as R̂m
xn(i− 1) and a single eigenvalue of

multiplicity (M −m) obtained by

σ
(
θ
m
i−1

) = 1
M −m

tr
(
R̂m
xn(i− 1)

)
, (12)

where tr(·) represents the trace of a matrix. The matrix
R
m
xn(i − 1) is thus obtained while applying the linear trans-

formation,

R
m
xn(i− 1) = Tm

i−1R̂
m
xn(i− 1) (13)

with λj(R̂xn(i−1)), j = 1, . . . ,M−m the nonzero eigenvalues

of R̂m
xn(i− 1), V̂n,M−m theM × (M −m) matrix of the corre-

sponding eigenvectors, diag[·] the diagonal matrix formed
by the elements in the brackets, and

Tm
i−1 = V̂n,M−m diag

[
σ
(
θ
m
i−1

)

λj
(
R̂m
xn(i− 1)

)

]

V̂H
n,M−m. (14)

The PDL test for N snapshots andm candidate sources is
then obtained with [23]

PDLm(N)

=
N∑

i=M+1

[
log ζ

(
R̂m
xs(i− 1)

)

+ (M −m)× log
(

1
M −m

tr
(
R̂m
xn(i− 1)

))

+ xH(i)
(
R̂m
xs(i− 1) + Tm

i−1R̂
m
xn(i− 1)

)−1
x(i)

]

(15)

and the MDLB expression is given by [10, 23]

MDLBm(N) = N log ζ
(
R̂m
xn(N)

)

+N(M −m) log
(

1
M −m

tr
(
R̂xs(i− 1)

))

+
m(m + 1)

2
log(N),

(16)

where ζ(·) represents the multiplication of the nonzero
eigenvalues. Note that in expression (15), the PDL test is
computed for all i =M + 1,M + 2, . . . ,N .

In [23], the estimate R̂x(i) of the true correlation matrix
Rx(i) is obtained by the recursion R̂x(i) = αR̂x(i− 1) + (α−
1)x(i)xH(i) where α < 1 is a real smoothing factor and the
factor 1/(α−1) is the effective length of the exponential win-
dow [24]. In this paper, R̂x(i) is estimated with expression
(7).

The computation of the PDL and MDLB depends on the
ML estimation of the angle of arrival vector θ

m
i−1. As sug-

gested in [10, 23], the alternate projection algorithm is used
to reduce the complexity [25].

These two methods (PDL, MDLB) can detect both co-
herent and noncoherent signals. The PDL can also be used
online and then applied to time varying systems and target
tracking. In this paper, as the EFT is applicable to fixed and
noncoherent sources detection, only this case will be investi-
gated.

3. EIGENVALUE PROFILE OF THE CORRELATION
MATRIX UNDER THE NOISE-ONLY ASSUMPTION

As the noise eigenvalues are no longer equal for a small sam-
ple size it is necessary to identify the mean profile of the de-
creasing noise eigenvalues. We therefore consider the eigen-
value profile of the sample covariance matrix for the noise-
only situation R̂n = (1/N)

∑N
t=1 n(t) · n(t)H . The distribu-

tion of the matrix R̂n is a Wishart distribution [26] with N
degrees of freedom. This distribution can be seen as a mul-
tivariate generalization of the χ2 distribution. It depends on
N , M, and σ2 and is sometimes denoted by WM(N , σ2I). In
order to establish the mean profile of the ordered eigenvalues
(denoted as λ1, . . . , λM) the joint probability of an ordered
M-tuplet has to be known. The joint distribution of the or-
dered eigenvalues is then [26]

p
(
λ1, . . . , λM

)

= α

(

− 1
2σ2

M∑

i=1
λi

)( M∏

i=1
λi

)(1/2)(N−M−1)∏

i> j

(
λj − λi

)
,

(17)

where α is a normalization coefficient. The distribution of
each eigenvalue can be found in [27], but this requires zonal
polynomials and, to our knowledge, produces unusable re-
sults.

Instead we use an alternative approach which consists of
finding an approximation of this profile by conserving the
first two moments of the trace of the error covariance matrix
defined byΨ = R̂n−Rn = R̂n−E{R̂n} = R̂n− σ2I. It follows
from E{tr[Ψ]} = 0 that, in a first approximation,

Mσ2 =
M∑

i=1
λi. (18)

Using the definition of the error covariance matrix Ψ, the
element Ψi j can be expressed as

Ψi j = 1
N

N∑

t=1
ni(t) · n∗j (t)− σ2δi j . (19)

Consequently, E[‖Ψi j‖2] is obtained as follows:

E
[∥
∥Ψi j

∥
∥2
]
= E

⎡

⎣

∥
∥∥
∥
∥
1
N

N∑

t=1
ni(t) · n∗j (t)− σ2δi j

∥
∥∥
∥
∥

2
⎤

⎦

= E

⎡

⎣

∥
∥∥
∥
∥
1
N

N∑

t=1
ni(t) · n∗j (t)

∥
∥∥
∥
∥

2
⎤

⎦ + E
[∥
∥σ2δi j

∥
∥2
]

+ E

[

− 2�
{

σ2δi j
1
N

N∑

t=1
ni(t) · n∗j (t)

}]

,

(20)

where�{·} represents the real part of a complex value.
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(a)M = 5, N = 5
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(b)M = 5, N = 20
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(c)M = 5, N = 100
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(d)M = 5, N = 1000

Figure 1: Profile of the ordered eigenvalues under the noise-only assumption for 50 independent trials, withM = 5 and various values ofN .

Let us now derive each term of (20):

E

⎡

⎣

∥
∥∥
∥
∥
1
N

N∑

t=1
ni(t) · n∗j (t)− σ2δi j

∥
∥∥
∥
∥

2
⎤

⎦ = 1
N2

Nσ4 = σ4

N
,

E
[∥∥σ2δi j

∥∥2
]
= σ4δi j ,

E

[

− 2�
{

σ2δi j
1
N

N∑

t=1
ni(t) · n∗j (t)

}]

= −2σ2δi j
N

E

[

�
{ N∑

t=1
ni(t) · n∗j (t)

}]

= −2σ2δi j
N

(
Nσ2

2

)
= −σ4δi j .

(21)

Finally,

E
[∥
∥Ψi j

∥
∥2
]
= σ4

N
+ σ4δi j − σ4δi j = σ4

N
. (22)

Since the trace of a matrix remains unchanged when the
base changes, it follows that

∑

i, j

E
{∥
∥Ψi j

∥
∥2
}
= E

{
tr
(
R̂n − Rn

)2} =M2 σ
4

N
(23)

and, in a first approximation,

M2 σ
4

N
=

M∑

i=1

(
λi − σ2

)2
. (24)

From both simulation results shown in Figure 1, and ex-
perimental results reported in literature (e.g., see [21]) the
decreasing model of the noise-only eigenvalues can be seen
to be approximately exponential. The decreasing model re-
tained for the approximation is

λi = λ1r
i−1
M,N , (25)
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with 0 < rM,N < 1. Of course, rM,N depends onM and N , but
is denoted by r for simplicity. From (18) we get

λ1 =M
1− r

1− rM
σ2 =MJMσ

2, (26)

where

JM = 1− r

1− rM
. (27)

Considering that (λi − σ2) = (MJMri−1 − 1)σ2, the relation
(23) gives

M +N

MN
= (1− r)

(
1 + rM

)

(
1− rM

)
(1 + r)

. (28)

We therefore set r = e−2a(a > 0), leading to the re-
expression of (28) as

M · tanh(a)− tanh(Ma)
M · tanh(Ma)

= 1
N
, (29)

where tanh(·) is the hyperbolic tangent function. An order-4
expansion gives the following biquadratic equation in a:

a4 − 15
M2 + 2

a2 +
45M

N
(
M2 + 1

)(
M2 + 2

) = 0 (30)

for which the positive solution is given by

a(M,N)

=
√
√√
√
√
1
2

{
15

M2+2
−
√
√√
√ 225
(
M2+2

)2 −
180M

N
(
M2−1)(M2+2

)

}

.

(31)

As the calculation of the noise-only eigenvalue profile
takes into account the number of snapshots, this profile is
valid for all sample sizes, with the exponential profile tend-
ing to a horizontal profile as the noise eigenvalues become
equal.

4. A RECURSIVE EXPONENTIAL FITTING TEST (EFT)

4.1. Test principle

The expressions for the noise-only eigenvalue profile can
now be extended to the case where the observations consist
of d noncoherent sources corrupted by additive noise. Un-
der these conditions the covariance matrix can be broken
down into two complementary subspaces: the source sub-
space Es of dimension d, and the noise subspace En of di-
mension Q = M − d. Consequently, the profile established
in the previous section still holds for theQ noise eigenvalues,
and the theoretical noise eigenvalues can be found by replac-
ing M with Q in the previous expressions for the noise-only
eigenvalue profile.

The proposed test then finds the highest dimension P of
the candidate noise subspace, such that the profile of these P

1 2 3 4 5 6 7 8 9 10

Ordered eigenvalues index

0

2

4

6

8

10

12

λ i

Signal eigenvalues

Break point

Figure 2: Profile of ordered noise eigenvalues in the presence of 2
sources, and 10 sensors. The ordered profile of the observed eigen-
value is seen to break from the noise eigenvalue distribution, when
there are sources present.

candidate noise eigenvalues is compatible with the theoret-
ical noise eigenvalue profile. The main idea of the test is to
detect the eigenvalue index at which a break occurs between
the profile of the observed eigenvalues and the theoretical
noise eigenvalue profile provided by the exponential model.
Figure 2 shows how a break point appears between the signal
eigenvalues and the theoretical noise eigenvalue profile, while
the observed noise eigenvalues are seen to fit the theoretical
profile.

Firstly, an eigen-decomposition of the sample covariance
matrix is performed and the resulting eigenvalues λ1, . . . , λM ,
which we call the observed eigenvalues, are arranged in or-
der of decreasing size. Beginning with the smallest observed
eigenvalue λM , this is assumed to be a noise eigenvalue, giving
the initial candidate noise subspace dimension P = 1. Then
using λM , P = 1, and the prediction equation (32) we find
the next eigenvalue of the theoretical noise eigenvalue profile

λ̂M−1:

λ̂M−P = (P + 1)JP+1σ̂2, with JP+1 = 1− rP+1,N

1− (
rP+1,N

)P+1 ,

σ̂2 = 1
P + 1

P∑

i=0
λM−i.

(32)

Now taking both λM and λ̂M−1 to be noise eigenvalues,
corresponding to a candidate noise subspace dimension P =
2, (32) is applied again to predict λ̂M−2.

These steps are then repeated, and for each step the can-
didate noise subspace dimension P is increased by one. Then
taking all the previously estimated noise eigenvalues, the next

noise eigenvalue in the theoretical profile λ̂M−P is found. This
process is continued until P =M−1, and we now have theM

eigenvalues of the theoretical noise-only profile, λ̂1, . . . , λ̂M ,

where (λ̂M = λM).
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We define the following two hypotheses:

HP+1 : λM−P is a noise eigenvalue,

HP+1 : λM−P is a signal eigenvalue.
(33)

Then, starting with the smallest eigenvalue pair (that are

not equal) λ̂M−1 and λM−1, the relative distance between each
of the theoretical noise eigenvalues and the corresponding
observed eigenvalue is found, and compared to the threshold
found for that eigenvalue index, (34) and (35),

HP+1 :

∣
∣
∣
∣∣
λM−P − λ̂M−P

λ̂M−P

∣
∣
∣
∣∣ ≤ ηP , (34)

HP+1 :

∣
∣
∣
∣∣
λM−P − λ̂M−P

λ̂M−P

∣
∣
∣
∣∣ > ηP. (35)

If the relative difference between the theoretical noise eigen-
value and the observed eigenvalue is less than (or equal
to) the corresponding threshold, the observed eigenvalue
matches the theoretical noise-only eigenvalue profile, and so
it is deemed to be a noise eigenvalue, which is the case shown
by (34).

We then compare the next eigenvalues λ̂M−2 and λM−2 in
the same manner. This process continues until we find a pair

of eigenvalues, λ̂M−P and λM−P whose relative difference is
greater than the corresponding threshold, as shown in (35).
When this happens the observed eigenvalue is taken to cor-
respond to a signal eigenvalue and so the test stops here. The
estimated dimension of the noise subspace P̂ is the value P
where the test stops, that is, when the hypothesis given in
(35) is chosen over that in (34). The estimated model order
is then given by d̂ =M − P̂.

Note on the complexity

The proposed EFT method requires calculation of the sam-
ple correlation matrix for each set of observations. An eigen-
value decomposition of this matrix must then be performed
and the smallest of the observed eigenvalues is used to pre-
dict the theoretical noise-only eigenvalue profile. The com-
putational cost of the EFT method is of the same order as
those of the AIC and MDL tests. Compared to the methods
proposed in [9, 23] the computational complexity of the pro-
posed algorithm is much lower due to the fact that both
these algorithms rely on initially finding a maximum like-
lihood estimate of the direction of arrival for each proposed
number of sources. This estimation step greatly increases the
computational complexity and necessitates the introduction
of computational cost reduction techniques. Moreover, the
PDL proposed in [23] requires the calculation of the sample
covariance matrix and its eigen-decomposition at each indi-
vidual snapshot.

4.2. Computation of thresholds

The comparison thresholds are closely related to the statis-
tical distribution of the prediction error and are determined

to respect a preset probability of false alarm Pf a. The Pf a is
the probability of the method mistakenly determining that a
source is present, and is defined as

Pf a = Pr
[
d̂ > d0 | d = d0

]
for d0 = 0, 1, 2, . . . ,M − 1.

(36)

For the noise-only case d = 0, and the expression for Pf a can
be decomposed as follows:

Pf a = Pr
[
d̂ > 0 | d = 0

] =
M−1∑

i=1
Pr

[
d̂ = i | d = 0

] =
M−1∑

p=1
P
(p)
f a ,

(37)

where P(P)
f a = Pr[d̂ = M − P | d = 0] is the contribution of

Pth step to the total false alarm.
Reexpressing (34) and (35) we get

HP+1 : Q(P) =
∣
∣∣
∣
∣

λM−P
∑M

i=M−P λi

∣
∣∣
∣
∣ ≤

(
ηp + 1

)
JP+1,

HP+1 : Q(P) =
∣
∣∣
∣
∣

λM−P
∑M

i=M−P λi

∣
∣∣
∣
∣ >

(
ηp + 1

)
JP+1,

(38)

resulting in the following expression for P(P)
f a in the noise-

only situation:

P(P)
f a = Pr

[
Q(P) >

(
ηP + 1

)
JP+1 | d = 0

]
. (39)

Then, denoting the distribution of Q(P) as hp(q) the thresh-
old ηP is defined by the following integral equation:

P(M−P)
f a =

∫ +∞

JP+1(ηP+1)
hP(q)dq. (40)

Solution of this equation in order to find ηP is reliant on
knowledge of the distribution hP(q). For P = M and P =
M − 1 the distribution is known as given in [8], but is un-
usable in our application. To our knowledge, this statistical
distribution is not known for other values of P. Hence, nu-
merical methods must instead be used in order to solve for
ηP .

4.3. Threshold determination byMonte Carlomethods

Using I = P(M−P)
f a for the sake of notational simplicity, we

rewrite equation (40) as

I =
∫

D
p
(
λ1, . . . , λM

) M∏

i=1
dλi = E

[
1D

]
, (41)

whereD is the domain of integration defined as follows:

D = {
0 < λM < · · · < λ1 <∞ | Q(P) > JP+1

(
ηP + 1

)}
,
(42)

and 1D (λ1, . . . , λM) is the indicator function over the domain
D . The value of the indicator function is unity if the eigen-
values belong to D and zero otherwise. Equation (41) can
then be estimated by Monte Carlo simulations, in which the
steps are
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Figure 3: Thresholds computation forM = 5 and N = 10.

(i) generation of q noise-only sample correlation matri-
ces, where q is the number of the Monte Carlo trials to
be run;

(ii) computation of the ordered eigenvalues for each of
these q matrices: (λ1, j , . . . , λM, j) 1 ≤ j ≤ q;

(iii) estimation of I by Î = (1/q)
∑q

j=1 1D(λ1, j , . . . , λM, j).

As the Pf a is usually very small, qmust be statistically de-
termined in order to obtain a predefined precision for the es-
timation of I . Because of the central limit theorem, Î follows
a Gaussian law. Consequently, denoting the standard devia-
tion of Î as σ , we can say Pr[(

√
q/σ)|I − Î| < 1.96] = 0.95,

where Pr[x < y] is the probability that x < y. Then, as
σ2 = E[(1D(·))2]− I2 = I − I2 ≈ I , we obtain σ = √I .

Application

For M = 5 sensors and a false alarm probability of 1%,
identically distributed over the M − 1 steps of the test, I =
P(M−P)
f a = 0.01/4 = 0.0025 and 1 ≤ P ≤ 4. With a probability

of 95%, I is estimated with an accuracy of 10% if q = 160000.

In Figure 3 we have plotted the P(M−P)
f a versus ηp. From this,

ηP is selected for each P and for a given Pf a.

5. PERFORMANCE AND COMPARISONWITH
CLASSICAL TESTS

In order to evaluate the test performance in white Gaussian
complex noise, computed simulations have been performed
with a uniform linear array of five omnidirectional sensors.
The distance between adjacent sensors is half a wavelength.
The number of snapshots is N = 6. All the simulations have
been performed with 1000 Monte Carlo simulations. Two
sources of the same power impinge on the array at −10◦ and
+10◦. The SNR is defined as

SNR = 10 · log10
(
σ2s
σ2

)
, (43)

where σ2s is the power of one of the sources and σ
2 is the noise

power.
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Figure 4: Comparison of the probability of false alarm for the EFT
(predefined Pf a = 10%), the MDL, the AIC, the PDL, and the
MDLB.
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Figure 5: Probability of detection for the EFT (predefined Pf a =
10%), the MDL, the AIC, the PDL, and the MDLB.

For various SNR, all the criteria, AIC, MDL, EFT, PDL,
MDLB are applied. The EFT test has firstly been designed
for a Pf a = 10%. In such a configuration, the thresholds of
the EFT test are η1 = 26.3990, η2 = 3.6367, η3 = 1.2383,
and η4 = 0.6336. In Figure 4 we have reported the probabil-
ity of false alarm versus SNR for AIC, MDL, EFT, PDL, and
MDLB. As expected the Pf a of EFT is 10% and we observe
that the uncontrolled Pf a of other tests is significantly higher,
except for the MDLB which is about 10% when the SNR is
lower than −4 dB. In Figure 5 we have reported the proba-
bility of correct detection versus SNR for the same tests. We
observe that only the EFT and MDLB tests give good results
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Figure 6: Comparison of the probability of false alarm for the EFT
(predefined Pf a = 1%), theMDL, the AIC, the PDL, and theMDLB.
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Figure 7: Probability of detection for the EFT (predefined Pf a =
1%), the MDL, the AIC, the PDL, and the MDLB.

both in terms of probability of correct detection and prob-
ability of false alarm. When the SNR is lower than 5 dB, the
MDLB gives the best probability of detection and acceptable
results for the probability of false alarm, but requires an im-
portant computational complexity. When the SNR is greater
than 5 dB, the EFT outperforms all the other tests in terms of
Pd with a Pf a still lower than 10%.

Now, if the Pf a = 1%, the thresholds of the EFT test are
η1 = 88.5464, η2 = 6.5121, η3 = 2.1086, and η4 = 1.1050.
We observe in Figure 6 that the Pf a of the EFT is always well
controlled. In Figure 7 we observe that even with such a dis-
advantageous constraint for EFT, this last gives better results
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than the classical tests in terms of correct probability of de-
tection Pd for SNR higher than 7 dB.

We can note that the Pd of classical tests has drastically
decreased when the noise eigenvalues are not closely clus-
tered.

6. CONCLUSION

We have proposed a new test for model order selection based
on the geometrical profile of noise-only eigenvalues. We have
shown that noise eigenvalues for white Gaussian noise fit
an exponential law whose parameters have been predicted.
Contrary to traditional algorithms, this test performs well
when there is a small number of snapshots used for the es-
timation of the correlation matrix. Another important ad-
vantage over classical tests is that the false alarm probability
can be adjusted by a predetermined threshold. Moreover, the
computational cost of the EFT method is of the same order
as those of the AIC and MDL.
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[14] P. M. Djurić, “Model selection based on asymptotic Bayes the-
ory,” in Proceedings of the 7th IEEE SP Workshop on Statistical
Signal and Array Processing, pp. 7–10, Quebec City, Quebec,
Canada, June 1994.

[15] W. B. Bishop and P. M. Djurić, “Model order selection of
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from École Normale Supérieure de Cachan,
France, in 1988 and 1992, respectively, and
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